

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Reality v10.0
Differences Supplement

Copyright © NEC Software Solutions UK Limited (Company No.00968498) ("NEC") [2003]. All rights reserved.

Reality V10.0 Differences Supplement v0.1 Page 2 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Document control

Software Version Document

Status

Document

Revision

Issue Date Reason for Change

v10.0 Published v0.1 September

2003

Final draft

Table of Contents

Reality V10.0 Differences Supplement v0.1 Page 3 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table of Contents

Section 1: About this manual .. 6

1.1 Purpose of this manual ... 6

1.1.1 Contents ... 6

1.1.2 Related Documents... 6

1.2 Conventions .. 7

Section 2: New Features in Reality V10.0 .. 9

2.1 GUI Administration ... 9

2.2 Foreign Database Support ... 9

2.3 MultiValue Compatibility .. 10

2.3.1 File Triggers ... 10

2.3.2 TCP Connections in DataBasic ... 10

2.3.3 Pseudo Floppy ... 11

2.3.4 Additional ACCOUNT-RESTORE Options .. 11

2.3.5 SYSTEM Statement .. 11

2.3.6 SP-ASSIGN ... 11

2.4 Rapid Recovery File System ... 12

2.5 Compressed Tape Image ... 12

2.6 Other New Features .. 12

2.6.1 Large Databases ... 12

2.6.2 Networking ... 12

2.6.3 RealEdit ... 13

Section 3: GUI Administration ... 14

3.1 GUI Administration .. 14

3.1.1 Tree Structure .. 14

3.1.2 Features ... 15

3.1.3 Logging In .. 16

3.1.4 Setting Up and Maintaining Databases ... 16

3.1.5 Backup and Restore ... 16

3.1.6 Users ... 16

3.1.7 Security Profiles .. 16

Section 4: Foreign Database Support .. 17

4.1 Summary of Reality File Types .. 17

4.1.1 LISTFILES .. 18

4.2 Foreign Database Files (Reality-specific Storage Format) 20

4.2.1 File Definition Item .. 20

4.2.2 FDB-CLEAR ... 22

Table of Contents

Reality V10.0 Differences Supplement v0.1 Page 4 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.2.3 FDB-SET .. 23

4.2.4 FDB-SHOW ... 23

4.2.5 Saving and Restoring ... 23

4.3 SQL View Files .. 24

4.3.1 SQL-VIEW .. 24

Section 5: MultiValue Compatibility ... 26

5.1 File Triggers ... 26

5.1.1 How to Write a Trigger Routine ... 26

5.1.2 Debugging Triggers ... 27

5.1.3 How to Associate a Trigger with a File .. 29

5.1.4 Commands that might run Triggers ... 30

5.1.5 Examples ... 31

5.1.6 Triggers Dos and Don’ts ... 34

5.2 TCP Connections in DataBasic ... 35

5.2.1 Example Programs .. 35

5.3 Pseudo Floppy Support .. 45

5.4 SP-ASSIGN Enhancements ... 46

5.5 Additional ACCOUNT-RESTORE Options.. 46

5.6 TCL Commands .. 46

5.6.1 CREATE-TRIGGER .. 46

5.6.2 DELETE-TRIGGER .. 47

5.6.3 FDISCTOTAPE ... 47

5.6.4 LIST-TRIGGERS .. 49

5.6.5 TAPETOFDISC ... 49

5.7 DataBasic Statements and Functions ... 50

5.7.1 ACCEPT Statement .. 50

5.7.2 ACCESS Function .. 52

5.7.3 CONNECT Statement ... 54

5.7.4 SYSTEM Statement .. 57

5.8 Debugger Commands .. 57

5.8.1 @ .. 57

5.8.2 M .. 58

5.8.3 WF .. 58

5.8.4 WS .. 59

Section 6: Rapid Recovery File System .. 60

6.1 Description of Rapid Recovery .. 60

6.1.1 What is Rapid Recovery? .. 60

Table of Contents

Reality V10.0 Differences Supplement v0.1 Page 5 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.1.2 How Rapid Recovery Works? ... 60

6.2 Configuring a Database for Rapid Recovery .. 61

6.3 Recovery Procedure .. 62

6.3.1 Shadow Databases .. 63

6.3.2 Actions Following Rapid Recovery .. 63

Section 7: Compressed Tape Image .. 64

7.1 Tape Images .. 64

7.1.1 Data Compression ... 64

Section 8: Support for Distributed Transactions under MTS/COM+ 66

8.1 Distributed Transactions .. 66

8.2 MDTC Recovery Process ... 68

8.2.1 rxaserver Command .. 68

Section 1: About this manual

Reality V10.0 Differences Supplement v0.1 Page 6 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 1: About this manual

This chapter describes the different sections of this manual and any conventions used.

1.1 Purpose of this manual

This manual summarises the differences seen by users upgrading from Reality V9.1 to

V10.0.

1.1.1 Contents

Chapter 1, About this Manual, describes the different sections of the manual and

any conventions used.

Chapter 2, New Features in Reality V10.0, summarises the features that have been

added in Reality V10.0 and describes in detail those features that are not covered

elsewhere in this manual.

Chapter 3, Administration Tool, describes the GUI Administration Tool. This allows

many administrative tasks to be carried out through a simple-to-use graphical

interface.

Chapter 4, Foreign Database Support, describes how Reality can access data held

on SQL-based databases.

Chapter 5, MultiValue Migration, describes new features in Reality that have been

added to improve compatibility with other MultiValue system.

Chapter 6, Rapid Recovery File System, describes an additional resilience option

that logs all changes to a database's structure, so that it is possible to return a

database to a usable state within minutes of restarting after a system failure.

Chapter 7, Compressed Tape Image, describes how you can specify a compression

level for data saved in a tape image.

Chapter 8, Support for Distributed Transactions under MTS/COM+, describes

how Reality V10.0 provides support for distributed transactions through the ODBC and

XA interfaces. It also explains the recovery procedures required when using distributed

transactions.

1.1.2 Related Documents

Reality on-line documentation.

On-line help for Reality GUI Administration Tool.

On-line help for RealEdit.

Section 1: About this manual

Reality V10.0 Differences Supplement v0.1 Page 7 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1.2 Conventions

The following conventions are used in this manual:

Example Meaning

TEXT Bold text shown in this typeface is used to indicate input

which must be typed at the terminal.

Text Text shown in this typeface is used to show text that is

output to the screen.

Bold text Bold text in syntax descriptions represents characters typed

exactly as shown. For example

WHO

{ } Braces enclose options and optional parameters. For

example in

BLIST {DICT} file-name item-id {(options}

The word DICT can optionally be typed to specify the

dictionary of the file.

file-name and item-id must be supplied.

One or more single-letter options can be included, as

defined for the command; these must be preceded by an

open parenthesis, can be given in any order, and are not

separated by spaces. Any number of options can be used

except where specified in text.

Text Characters or words in italics indicate parameters which

must be supplied by the user. For example in

LIST file-name

the parameter file-name is italicized to indicate that you

must supply the name of the actual file defined on your

system.

Italic text is also used for titles of documents referred to by

this document.

[param | param] Parameters shown separated by vertical lines within square

brackets in syntax descriptions indicate that at least one of

these parameters must be selected. For instance,

[THEN statements | ELSE statements]

indicates that either a THEN clause or an ELSE clause must

be included (or both).

… In syntax descriptions, indicates that the parameters

preceding can be repeated as many times as necessary

CTRL+X Two (or more) key names joined by a plus sign (+) indicate

a combination of keys, where the first key(s) must be held

down while the second (or last) is pressed.

For example, CTRL+X indicates that the CTRL key must be

held down while the X key is pressed.

RETURN Small capitals are used for the names of keys such as

RETURN.

Section 1: About this manual

Reality V10.0 Differences Supplement v0.1 Page 8 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Example Meaning

Enter To enter means to type text then press RETURN. For

instance, 'Enter the WHO command' means type WHO, then

press RETURN.

In general, the RETURN key (shown as ENTER or ↵ on some

keyboards) must be used to complete all terminal input

unless otherwise specified.

Press Press single key or key combination, but do not press

RETURN afterwards.

X'nn' This denotes a hexadecimal value.

Section 2: New Features in Reality V10.0

Reality V10.0 Differences Supplement v0.1 Page 9 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 2: New Features in Reality V10.0
This chapter summarises the features that have been added in Reality V10.0.

2.1 GUI Administration

GUI Administration is a tool providing a Graphical User Interface for easy routine

dministration of the system. Via a tree-structure the user is able to:

• Set up and maintain databases including:

o Security profiles.

o Users.

o Backup & restore.

• Administer the system

o Add/remove system users.

o Server administration.

o Thread management.

o Set up and administer user access to databases though the GUI

Administration tool.

The tasks replace and supplement most of those available to the system administrator at

TCL.

The interface runs on a client and allows different systems to be accessed via a tree

structure to enable administrative tasks to be performed on Reality databases and their

environments. It consists of a two-pane screen with the left-hand pane containing the

tree structure representing the systems and their Reality databases, and the right hand

pane containing tabbed sub-panes whose contents reflect the selected tree node.

Tooltips are displayed when hovering over most fields but if more information is needed

then tab-specific help can be displayed below the panes.

The GUI Administration Tool is described in greater detail in Chapter 3.

2.2 Foreign Database Support

This feature provides Reality with access to data held on SQL-based foreign databases

(currently Oracle or SQL Server). There are two ways of doing this, implemented as new

Reality file types:

• Reality-specific storage format. In this format, the foreign database is set up to

emulate Reality files, thus allowing Reality applications to store their data in the

foreign database. The Reality account is set up in a local database, with some or

all of the files held on a remote foreign database. The file definition item contains

details of the file location.

A new verb, FDB-SET, is used to change the way in which the CREATE-FILE verb

operates. Following execution of FDB-SET; subsequent CREATE-FILE operations

take place within the specified foreign database. Subsequent restore operations

will restore files onto this foreign database. CREATE-FILE and the restore

commands work in this way until FDB-CLEAR is executed. The verb FDB-SHOW

lets you view the current foreign database setting.

Section 2: New Features in Reality V10.0

Reality V10.0 Differences Supplement v0.1 Page 10 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Data exchange storage format (SQL-VIEW). This provides Reality with a view of

data held in the foreign database. The data remains in the foreign database

format and therefore only limited access is possible from Reality.

Foreign database support requires a working ODBC installation, appropriate ODBC

driver(s) and Data Source Definition(s) on the Reality system.

Foreign database support is described in greater detail in Chapter 4.

2.3 MultiValue Compatibility

Reality V10.0 has been further enhanced to improve compatibility with other MultiValue

systems. The new features are summarised here and described in greater detail in

Chapter 5.

2.3.1 File Triggers

This feature allows the user to specify a DataBasic subroutine that will run

automatically before a file item is written or deleted. A file trigger can be set to run

before or after an item is written and before or after an item is deleted.

• Triggers that run before file operations are mainly used to validate the

attempted change to the database against user-defined constraints, or “business

rules”, and allow the change only if the constraint is satisfied.

• Triggers that run after file operations are normally used to create audit trails and

other transaction logs.

• All types of trigger can be used to create relationships between files, to ensure

that whenever one file is updated, another related file is also updated.

The components of the file triggers feature are as follows:

• A new DataBasic function, ACCESS, can be called from within a trigger

subroutine. It returns information relating to the trigger, the file with which it is

associated and the item being written or deleted.

• New debugger commands @*, WF, WF* and WS and additional options to the

SET-OPTION command make it possible to debug triggers. They also make it

easier to debug DataBasic programs called from PERFORM statement and Procs.

• New TCL verbs: CREATE-TRIGGER, DELETE-TRIGGER, LIST-TRIGGERS. The first

of these allows you to associate a trigger subroutine with a Reality file and to

specify whether it will run when an item is written or deleted and whether it will

run before or after this file operation. The other two allow you to delete file

trigger associations and to list the triggers associated with a file.

For more details, refer to File Triggers in the Programming in DataBasic section of the

DataBasic Reference Manual.

2.3.2 TCP Connections in DataBasic

Section 2: New Features in Reality V10.0

Reality V10.0 Differences Supplement v0.1 Page 11 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This feature allows DataBasic programs to connect to and accept connections from

remote systems using raw TCP instead of DDA. This allows connections between Reality

and many different types of system; for example:

• other Reality systems;

• web, ftp, telnet and time servers;

• SMTP and POP3 email servers;

• networked applications (written in Java, for example);

• other MultiValue systems that support raw TCP;

• XML applications;

• SOAP processes (using XML technology).

For details, refer to the descriptions of the DataBasic CONNECT and ACCEPT

statements.

2.3.3 Pseudo Floppy

The format used for Reality tape images is different to the pseudo-floppy (.vtf) format

used by other MultiValue systems. Two new verbs, FDISCTOTAPE and TAPETOFDISC,

allow you to transfer data between Reality and other MultiValue systems by converting

Reality tape images into MultiValue pseudo-floppy images and vice versa.

2.3.4 Additional ACCOUNT-RESTORE Options

Two additional ACCOUNT-RESTORE options are provided to simplify restoring accounts

onto systems with a frame size smaller or larger than the original.

2.3.5 SYSTEM Statement

This new DataBasic statement provides an alternative to using the ASSIGN statement

for changing system elements whose values can be retrieved using the SYSTEM

function. Refer to the DataBasic Reference Manual for details.

2.3.6 SP-ASSIGN

By default, the Reality SP-ASSIGN command will close any open print jobs. This

behaviour can be changed by calling the SET-OPTION command with the SPASSIGN

option, so that open print jobs will only be closed if SP-ASSIGN is called with no

parameters.

Section 2: New Features in Reality V10.0

Reality V10.0 Differences Supplement v0.1 Page 12 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

2.4 Rapid Recovery File System

This feature provides an additional resilience option. When a database is configured for

Rapid Recovery, all changes to the database's structure are logged so that it is possible

to return the database to a usable state within minutes of restarting after a system

failure. There is no need to restore the latest backup from tape. Transaction logs can

then be rolled forward and the database brought back into use.

Note

This feature is only available on partition databases. It is therefore not available on some

existing UNIX databases.

The Rapid Recovery file system is described in greater detail in Section 6.

2.5 Compressed Tape Image

This feature allows Reality data to be saved to tape in compressed format, with a choice

of compression levels.

The required compression level can be specified in three ways:

By setting a database configuration parameter.

By setting an operating system environment variable. This overrides any database

configuration parameter settings.

By modifying the path to the tape image. This can be done in the database configuration

file, or by using the T-DEVICE command at TCL. Specifying the level in this way

overrides any default set with the previous two methods.

For details of how to set the compression level, refer to Tape Images in the Tape

Operation and Commands section of the Reality Reference Manual, Volume 2: Operation.

The default is no compression, for compatibility with older versions of Reality. Note,

however, that a compressed tape image cannot be read by versions of Reality earlier

than V9.1. Reality V9.1 and later can read any tape image, whatever the compression

level.

The Compressed Tape Image feature is described in greater detail in Section 7.

2.6 Other New Features

2.6.1 Large Databases

The maximum database size has been increased from 256 gigabytes to 2 terabytes.

2.6.2 Networking

UNIX-Connect is now available on Linux. The following features are therefore also now

available:

• Remote Tape.

• UNIX-Connect.

• Remote file access.

• DDA terminal interface.

Section 2: New Features in Reality V10.0

Reality V10.0 Differences Supplement v0.1 Page 13 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Remote client server.

• PLID handling.

• Remote Basic.

• RealWeb.

• SQL (ODBC and JDBC).

• Failsafe

• Heartbeat

 2.6.3 RealEdit

RealEdit is a new Reality editor running under Windows. You can use RealEdit to modify

any item in the database to which you have access. It can create and/or modify

DataBasic programs, Procs, data file items, and file dictionary items. The only items

you cannot edit with RealEdit are cataloged DataBasic programs and other binary

format files.

RealEdit is similar in operation to other Windows editors. However, it also allows you to

perform Reality-specific operations such as compiling and cataloging DataBasic

programs and viewing included code.

Section 3: GUI Administration

Reality V10.0 Differences Supplement v0.1 Page 14 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 3: GUI Administration
Via a simple-to-use graphical interface, GUI Administration supports many of the

Administrative tasks that can currently be performed from green-screen terminal

connections to Reality systems. Enhanced functionality is provided to suit the Client GUI

view of the world including maintenance and housekeeping tasks to ensure that Reality

systems are internally consistent and coherent.

3.1 GUI Administration

GUI Administration is a suite of programs and files that enable Reality-related

administrative tasks to be performed on one or more computer systems from a client

graphical user interface running on the same, or different, computer system.

The client component of GUI Administration, referred to hereafter as the Client GUI, is

deployed to client platforms and allows users to take administrative control of various

Reality systems that are visible across the network, subject to the appropriate security

checks being satisfied.

• Some major features offered by the Client GUI are

• Presents comprehensive Tree model of Reality systems and databases

• Displays sets of tabbed Panes for tasks relevant to current Tree-node

• Offers consistent, but configurable, ‘look and feel’ throughout the Client GUI.

• Extensive use of context-sensitive and embedded Help facilities

• Supports and extends existing functionality offered by green-screen equivalents.

• Utilises Wizards to guide users through complex or unfamiliar operations.

• Imposes logon security, on a system-by-system basis, and limits the user’s

actions and their view of the system, according to their specified privilege level.

The administrator who has been entered as the initial user at installation must first set

up more users to administer the system, then select the databases to be part of the

network to be administered and authorise the relevant users to administer the

databases. The tree structure visible to each user is tailored to their security profile. If a

system is not currently available on the network it is indicated in red.

Via the tree-structure the user is able to

• Set up and maintain databases including:

o Security profiles.

o Users.

o Backup & restore.

• Administer the system

o Add/remove system users.

o Server administration.

o Thread management.

o Set up and administer user access to databases though the GUI

Administration tool.

3.1.1 Tree Structure

Section 3: GUI Administration

Reality V10.0 Differences Supplement v0.1 Page 15 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The system information is presented in a System Tree structure. If the system name is

red then the system is not currently connected to the network. If the name is black the

system exists on the network but may or may not have a GUI Administration (RAJI)

server running. The server must be running for you to access the databases and admin

tasks.

Clicking on the + sign preceding the system name expands a structure of Databases

and Admin. Clicking on further + signs displays the available databases with associated

GUI administration tasks, such as Backup and Restore, setting up Roles and Security

Profiles, and the system administration setup tasks.

3.1.2 Features

Features of Reality GUI Administration which are available at all times:

• A status bar at the base of the screen which displays your log on details, and a

Log Off button.

• A File Menu allowing you to Print the tab/screen in focus or Exit.

• An Options Menu with tick boxes to allow you to choose to display the help panel

at the base of the GUI Admin panel and/or tooltips on many of the fields requiring

input, as in the diagram above. The tooltips (displayed when hovering over the

field) may provide sufficient information for you to enter data. If not, then the

help provides more details. Links to further background information, including the

Reality on-line documentation, are supplied where necessary.

• A Preferences screen allows you to set up, view and change the paths from the

client to where the Reality on-line documentation and the browser are stored, and

the location of the list of systems to populate the viewable network. These should

be set up before logging in.

Section 3: GUI Administration

Reality V10.0 Differences Supplement v0.1 Page 16 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• A Help panel (if selected in Preferences) documenting the pane of the GUI Admin

Client that you are running.

3.1.3 Logging In

The System Login dialog is displayed when you attempt to access a system on the

Systems Tree by double-clicking a system icon or by attempting to expand a system

icon. This dialog will also be presented if your security credentials are revoked while you

are within one of the system’s sub-nodes, the most likely cause being that you have

been timed-out due to inactivity.

You must enter your User name and Password. These fields are initialised with no

content the first time a system is accessed during a session of the Client GUI, but

thereafter the Username field retains the name of the last submitted user for that

particular system. Once both fields have content, pressing Proceed attempts to

authenticate your credentials.

When you are successfully authenticated, you must choose which user role you wish to

adopt within this system, which determines which tree nodes and panes are accessible.

If you have only been assigned one user role, you will be logged on using this role.

3.1.4 Setting Up and Maintaining Databases

A summary of existing databases and their current status is displayed and diagnostics

can also be run on individual databases to check whether the database is clean or needs

checking. The database instance summary shows information that allows the

administrator to see if there are any potential problems.

The Create Database pane has advanced options which echo those available with the

operating system mkdbase command.

Having created a database you must create Database Access Files (DAFs) from the

Admin/Database Access pane to enable the new database to be administered from the

GUI Client, and then use Database Users to enable specified users to access the

database.

3.1.5 Backup and Restore

These panes replace the ACCOUNT-SAVE, FILESAVE and DBSAVE with the ACCOUNT-

RESTORE, DBSAVE (with restore) and Multiple account restore.

3.1.6 Users

A Users Summary panel displays information on all of the users of the selected database.

The User Instance summary displays information about the selected user, while the

Modify panes include all the fields on the SSM menu, Option 2.

3.1.7 Security Profiles

Replaces Option 3 of the SSM menu.

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 17 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 4: Foreign Database Support
This feature provides Reality with access to data held on SQL-based foreign databases

(currently Oracle or SQL Server). There are two ways of doing this, implemented as new

Reality file types:

• Reality-specific storage format. In this format, the foreign database is set up to

emulate Reality files, thus allowing Reality applications to store their data in the

foreign database.

• Data exchange storage format (SQL View). This provides Reality with a view of

data held in the foreign database. The data remains in the foreign database

format and therefore only limited access is possible from Reality.

Foreign database support requires a working ODBC installation, appropriate ODBC

driver(s) and Data Source Definition(s) on the Reality system.

Support for foreign database files and SQL View is not available on AIX and HP

platforms.

4.1 Summary of Reality File Types

Reality supports the following types of file:

• Normal. An ordinary Reality file on the local database. A normal file has the basic

structure described in File and Item Structures in the Reality Users’ Reference

Manual, Volume 1: General. Normal files are backed up via the usual Reality save

and restore procedures.

• Foreign Database. This is a Reality file which has nearly all the characteristics of

a Normal file, with the structure described in File and Item Structures, but which

is located on a foreign (SQL-based) database. You can create, update and

manage Foreign Database files in the same way as Normal files. Multi-values and

binary items are supported. The files also support indexing and Transaction

Handling.

It is unlikely that you would want to back up Foreign Database files using the

Reality save commands. If a Reality application is storing its data on a foreign

database, it is recommended that this data is secured by saving the SQL

database in whatever way is appropriate.

• SQL View. This is a Reality file that provides a view of an existing SQL table (or

SQL view) on a foreign database. A table, or view, is mapped to the Reality file;

each row in that table becomes an item in the Reality file and each column within

that row is an attribute in the item.

As the data is stored in a form compatible with the foreign database’s native

applications, restrictions are imposed on Reality applications writing such data.

There is no support for multi-values, indexing or Transaction Handling.

SQL View files are primarily used for read access, but it is possible to update the

external table data if you know the exact structure and controls. If you save an

SQL View file, you are saving the file definition item, but not the external data,

which is secured on the foreign database.

• Directory View. A Reality file that provides a view of a directory in the host

system (UNIX or Windows). A directory is mapped to the Reality file; each file in

the directory appears as an item in that file.

Directory view files are primarily aimed at text file manipulation. A Directory view

file contains Reality items for regular system text files within the referenced

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 18 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

directory. Non-regular files - such as sub-directories, pipes and devices – are not

visible as items.

The LISTFILES command indicates the different types of file on a particular account.

4.1.1 LISTFILES

Reality supports the following types of file:

Purpose

Lists all dictionaries, data sections and index sections defined from a particular account

or specified dictionary.

Command Class

Cataloged DataBasic program

Syntax

LISTFILES {file-specifier} {(options}

Syntax Elements

Syntax elements Description

file-specifier is a file, other than the MD, for which the data sections will

be listed. If no file-specifier is specified, LISTFILES defaults

to the current MD, and each file and data section on the

account is listed.

The file-specifier can be the name of another account if the

MD contains a Q-pointer to the other account. If file-

specifier is the name of a Q-pointer to another account,

each file and data section on that other account are listed.

Options:

Option Description

P sends the listing to the printer.

Report Listing

Each dictionary name is listed with associated data sections listed below, indented by

one space. Indexes are listed below associated data sections, indented by two spaces.

Report Headings

The following information is displayed:

File name Name of each file.

Type Type of D/CODE.

Ftype Type of file This is defined by two characters; a letter and a

number.

The letter can be:

A A clean log binary data section.

B A byte stream file. (A ‘normal’ Reality file.)

C A clean log user view data section.

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 19 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

D A directory view.

F A file on a foreign database.

G An SQL view.

The number can be:

1 Master Dictionary

2 File Dictionary

3 Data Section

Mod Modulo

Sep Separation

Just Type of justification (L or R)

Len Number of columns for output

Listing Files from Another Account

If the MD of the account you are currently logged onto contains a Q-pointer to another

account, the account synonym item-id can be given as the file-name. This then lists the

files on the other account.

For example, you are logged on to the INVENTORY account and you want to list the files

on the PERSONNEL account. The MD of INVENTORY has a Q-pointer as follows:

PERSONNEL
0001 Q
0002 PERSONNEL
:LISTFILES PERSONNEL

The PERSONNEL account files are then listed.

Example of Report

File definition items in file: TESTACC Page 1

File name Type Ftype Mod Sep Just Len

TAB2 D B2 1 1 L 10
 TAB2 DY G3 dbora,bob TAB2 L 10

TEMP D B2 1 1 L 10

TEMP DY D3 /Temp

LOCAL DL B2 1 1 L 10
 DATA2 DL B3 11 1 L 10
 LOCAL DL B3 11 1 L 10
 X1 D B4 7 1 L 10

ORACLE DL F2 dbora,bob L 10
 ORA2 DL F3 dbora,bob L 10
 ORACLE DL F3 dbora,bob L 10
 X1 D F4 dbora,bob L 10

In this report:

LOCAL is a local file with two data sections and one index.

ORACLE is a Foreign Database file with two data sections and one index (all stored on an

Oracle database called 'dbora')

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 20 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

TEMP is a Directory-View file of directory '/Temp'.

TAB2 is a Sql-View file of Table 'TAB2' on database 'dbora'.

4.2 Foreign Database Files (Reality-specific Storage Format)

The foreign database is set up to emulate Reality files, thus allowing Reality applications

to store their data in the foreign database. The Reality account is set up in a local

database, with some or all of the files held on a remote foreign database. The file

definition item contains details of the file location.

You can create, update and manage the files on the foreign database files in the same

way as local Reality files. Multi-values and binary items are supported. The files also

support indexing and Transaction Handling.

To create a Reality file on a foreign database, you should use the FDB-SET command to

specify details of the foreign database and then use CREATE-FILE to create the file. The

FDB-SHOW command lets you display the current foreign database setting. FDBCLEAR

clears the foreign database setting, so that subsequent uses of CREATE-FILE create files

on the local Reality database.

4.2.1 File Definition Item

A file definition item, located in an account's MD, defines the location and characteristics

of a file. It points to the file dictionary, giving system information in attribute 2, which

specifies the location of the file in the host system, and file creation parameters in

attribute 3. It also defines retrieval and update lock codes in attributes 5 and 6, and

English formatting characteristics in attributes 7 to 11.

Item Format

item-id File-name

001 D {L|R} {X|Y}

where:

'D' marks a Definition Item.

'L' marks that the file is to be logged by Transaction

Logging.

‘R’ indicates that the file is not logged by Transaction

Logging, but that its data will be recovered during the

automatic recovery of a database configured for Rapid

Recovery. (For more information on the logging status of

files, please refer to the Reality Resilience Reference

Manual.)

'X' marks that the file is to be ignored by the SAVE

command. Use

of the O option in the SAVE verb overrides the 'X' code.

'Y' specifies that during the execution of the SAVE verb, no

data, except for D-pointers (data level descriptors) is saved

to tape. This also applies to FILE-SAVE and ACCOUNT-SAVE

which use the SAVE verb. Use of the O option in the SAVE

verb overrides the 'Y' code.

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 21 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

002 On a Filestore Database:

UNIX path name of File Dictionary

OR, on a Partition Database:

start, id, scatter

where,

start is the logical block no. of the start of file.

id is the reuse identifier.

scatter is the number of blocks in scatter ma

OR, for a file on a Foreign Database:

n;TableName

where,

n is a number indicating which version of the access method

created the file.

TableName is the name of the SQL table on the foreign

database created to hold this Reality file.

003 For a file on the Local Database:

File creation parameters - Filetype (B2) modulo, 1.

OR, for a file on a Foreign Database:

Fn DSN, {Userid}, {Passwd}

where

F indicates the foreign database access method.

n is a number indicating the level of the file in the Reality

file system, for example, 3 for a Data section.

DSN is the ODBC Data Source Name for the foreign

database. The Data Source Name may itself include a user-

id and password. For information on how to set up Data

Source Names, refer to the documentation for the ODBC

installation on your system.

Userid is the user id for connecting to the foreign database.

Passwd password associated with this userid

(encrypted).

004 Null

005 Retrieval lock code(s)

006 Update lock code(s)

Note

For a description of lock code operation, refer to Reality
Reference Manual Volume 3.

007 Optional conversion codes for English to display item-ids.

008 Optional V (sublist) code for English.

Note

For a description of English sublists, refer to the English
Reference Manual.

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 22 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

009 Contains a code specifying the type of alignment to be used

by:

L Left aligned.

R Right aligned.

T Text aligned. Text wraps at word boundaries.

U Unlimited

Note

For more details, refer to the topic Data Definition Item.

010 Maximum width of item-id column (default = 10).

011 Not used and reserved.

012 Null.

013 Reallocation parameters. At the next restore from a FILE-

SAVE, the File Dictionary is allocated the new modulo and

separation parameters specified here.

The format of this specification is (m,s) expressed in

decimal integer format where m is the new modulo

(separation (s) is always '1' on the current version of

Reality).

014 - 020 Reserved.

Note

If a file has associated indexes, attributes 2, 3 and 13 are multivalued, with the second and

subsequent multivalues containing the corresponding information for the indexes. Attribute 4 is
also multivalued with the names of the indexes in the second and subsequent multivalues.

4.2.2 FDB-CLEAR

Purpose

Used following the execution of FDB-SET to clear the options set by that command. The

functionality of the CREATE-FILE command and of restore commands reverts to normal.

Command Class

TCL-I verb

Syntax

FDB-CLEAR

Example

FDB-CLEAR

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 23 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

[5425] Foreign Database not active

4.2.3 FDB-SET

Purpose

Changes the functionality of the CREATE-FILE and restore commands so that files are

created/restored on the specified foreign database. This changed functionality of

CREATE-FILE remains in place throughout the current logon session, or until the

FBDCLEAR command is executed.

Command Class

TCL-I verb

Syntax

FDB-SET database, {user}, {password}

Syntax elements Description

database is the ODBC Data Source Name (DSN) for the foreign

database. The DSN may itself include a user-id, and

password if required, for logging on to the database. In this

case, you will not need to enter them as independent

parameters. For information on how to set up DSNs, refer to

the documentation for the ODBC installation on your Reality

system.

user is the user-id for logging on to the database. (If the

database is not made up entirely of Reality files, it may be

partitioned so that all Reality files share one user-id.)

password is the password associated with this user-id.

Example

FDB-SET FINANCE,REALITY,WELCOME

[5426] Foreign Database active: Dsn 'FINANCE', User 'REALITY'

4.2.4 FDB-SHOW

Purpose

Displays the current foreign database setting (and therefore the current functionality of

the CREATE-FILE and restore commands.

Command Class

TCL-I verb

Syntax

FDB-SHOW

Example

FDB-SHOW

Foreign Database active: Dsn=dbora, User=bob

4.2.5 Saving and Restoring

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 24 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Although Foreign Database files can be saved using the Reality save commands, it is

unlikely that you would want to do this. If a Reality application is storing its data on a

foreign database, it is recommended that this data is secured by saving the SQL

database in whatever way is appropriate.

If you do save a file on a foreign database using a Reality save command, the File

Definition Item is saved with no amendments, so that when the file is restored it is

restored onto that foreign database.

It is possible to restore files saved from a Reality database onto a foreign database. Use

the FDB-SET command to indicate that subsequent uses of restore commands should

restore files onto the specified foreign database.

Note

Before restoring files onto a foreign database, you must first ensure that the required database is

online.

4.3 SQL View Files

These files provide Reality with a view of an existing SQL table (or SQL view) on a

foreign database. A table, or view, is mapped to the Reality file; each row in that table

becomes an item in the Reality file and each column within that row is an attribute in the

item.

As the data is stored in a form compatible with the foreign database’s native

applications, restrictions are imposed on Reality applications writing such data. There is

no support for multi-values, indexing or Transaction Handling.

SQL View files are primarily used for read access, but it is possible to update the

external table data if you know the exact structure and controls. If you save an SQL

View file, you are saving the file definition item, but not the external data, which is

secured on the foreign database.

You create an SQL View file using the SQL-VIEW command.

4.3.1 SQL-VIEW

Purpose

Creates a Reality file that provides a view of an existing SQL table (or SQL view) on a

foreign database. This command does not create a new table. The DICT section resides

in the local Reality database; the Data section(s) are located on the foreign database.

Syntax

SQL-VIEW file-name database, {user}, {password} Table PkCols DataCols {(K)}

Syntax Elements

Syntax elements Description

file-name is the name of the SQL view file you want to create.

database is the ODBC Data Source Name for the foreign database.

The DSN may itself include a user-id, and password if

required, for logging on to the database. If this is the case,

you will not need to supply these as independent

parameters.For information on how to set up DSNs, refer to

the documentation for the ODBC installation on your Reality

system.

Section 4: Foreign Database Support

Reality V10.0 Differences Supplement v0.1 Page 25 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax elements Description

user is the user-id for logging on to the database.

password is the password associated with this user-id.

Table is the name of the SQL table or view for which you want to

create the SQL view file.

PkCols is the name, or names, of the Primary Key column(s) on the

SQL table or view, separated by commas if necessary.

Where a table has a single Primary Key column, the Reality

item-id maps to this column and is used directly to identify

an SQL row. Where a table has multiple Primary Key

columns, the Reality item-id comprises the same number of

parts and these are used to identify the matching SQL row.

The delimiter used to separate the different parts of the

item-id is ‘\’ by default. This can be changed by specifying

the (K) option, which causes SQL-VIEW to prompt for the

Key Separator character.

DataCols are the data column names in the SQL table or view,

separated by commas.

Options:

Option Description

K Causes the command to prompt for a Key Separator

character to be used in place of ‘\’. You can specify any

character that is not a Reality system delimiter and which

does not appear in the data to be viewed.

Restrictions

As the data is stored in a form compatible with the foreign database’s native

applications, restrictions are imposed on Reality applications writing such data. There is

no support for multi-values, indexing or transaction management.

The foreign database will impose strict control over the type and size of data that may

be stored in each column. A Reality application using SQL view files must be aware of

the format of the external table data and must keep within these controls. SQL view files

may not be updateable, depending on the view definition and the capabilities of the

foreign database.

Comments

An SQL view file may be based on an SQL table, or on a view definition in the foreign

database. A view can be used to filter the data available to Reality, or to combine data

from more than one table into a single file view.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 26 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 5: MultiValue Compatibility
Reality V10.0 has been further enhanced to improve compatibility with other MultiValue

systems. The following new features are provided:

• File Triggers.

• TCP Connections in DataBasic.

• Pseudo Floppy support.

• Enhancements to SP-ASSIGN.

• Additional ACCOUNT-RESTORE options.

• SYSTEM statement.

5.1 File Triggers

A file trigger is a cataloged subroutine that is called automatically whenever an item is

written to or deleted from a particular file. A trigger can be set to run before or after an

item is written and before or after an item is deleted.

Triggers that run before file operations are mainly used to validate the attempted change

to the database against user-defined constraints, or “business rules”, and allow the

change only if the constraint is satisfied.

Triggers that run after file operations are normally used to create audit trails and other

transaction logs.

All types of trigger can be used to create relationships between files, to ensure that

whenever one file is updated, another related file is also updated.

Note

Triggers are only run when individual items are written to or deleted. They do not run when a
complete file is cleared (for example, with the CLEARFILE statement).

5.1.1 How to Write a Trigger Routine

A file trigger must be written as an external subroutine that accepts a single parameter.

When the trigger is called by the system, the contents of this parameter depends on the

type of trigger:

Pre-write triggers The parameter contains the item that is to be written. The data to

be written to the item can be modified by changing the contents of this parameter. You

can also prevent the item being written by calling the INPUTERROR statement.

Post-write triggers The parameter contains the data that was written to the item.

Delete triggers The parameter always contains a null string.

Within the trigger subroutine, you can access other information about the file and the

item by calling ACCESS function (see page 5-32). This accepts a data-element number

that specifies the type of information you require, as follows:

Syntax elements Description

1 A reference to the trigger file.

2 A reference to the dictionary of the trigger file. If the trigger

file is a dictionary, this is the same as ACCESS(1).

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 27 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax elements Description

These two elements allow you to access other items in the

trigger file by passing the file reference to I/O statements

such as READ and WRITE.

3 The item body. Null if a delete operation. This is similar to

the contents of the trigger parameter, but always returns

the item data as passed to the trigger; that is, before any

changes made by the trigger. Note that in a POST-WRITE

trigger, this element will contain the data that was written

to the item.

10 The id of the item being written or deleted.

11 The file name in the form {DICT}

{/account/}filename{,data-section-name}.

12 True if the trigger is of type PRE-DELETE or POST-

DELETE.

16 True if the item does not exist; false otherwise. Its value

therefore depends on the type of trigger:

PRE-WRITE True if a new item is being created; false if an

existing item is being updated.

PRE-DELETE Normally false, but true if the user is

attempting to delete a non-existent item (if the item does

not exist, no action is taken, but any triggers still run).

POST-DELETE Always true.

POST-WRITE Always false.

Note that ACCESS(16) checks whether the item exists each

time it is called.

20 This element is only valid in a POST-WRITE trigger – if

true, it indicates that the item was modified by the PRE-

WRITE trigger; if false, the item was written without

modification. Note that if you need to compare the original

item with that written to the file, you will have to save the

original to a variable in a named COMMON area from within

the PRE-WRITE trigger.

In PRE-WRITE, PRE-DELETE and POST-DELETE triggers

this element is always false

5.1.2 Debugging Triggers

5.1.2.1 Global DEBUG Options

Three options, set with the SET-OPTION verb or from within the DataBasic debugger,

allow you to specify that DataBasic programs will enter the debugger on encountering a

DEBUG statement, or if a warning is generated:

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 28 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

DB.DEBUG Causes any DataBasic program initiated by the user to enter

the DataBasic symbolic debugger on executing DEBUG

statements within the program. This is similar to starting

the program with the DEBUG command, but can be used to

debug programs called from PERFORM statements and from

Procs.

Programs initiated by the user are those that are started

directly or indirectly from TCL. They include those initiated

by a Proc or other program that was itself started directly or

indirectly from TCL.

EB.DEBUG Causes any DataBasic program run from External Basic to

enter the DataBasic symbolic debugger on executing DEBUG

statements within the program. Programs run from External

Basic include file triggers and RealWeb subroutines; you

should set EB.DEBUG before starting to debug these types

of routine.

FATAL.WARNINGS Causes all warning messages generated by DataBasic

programs to be treated as fatal errors. Breaks to the

DataBasic debugger to allow determination of error and

possible recovery. Similar to starting the program with the F

option.

These options can be cleared with the CLEAR-OPTION verb or from within the

DataBasic debugger.

5.1.2.2 Debugger Commands

New debugger commands and additional options to the SET-OPTION command make it

possible to debug triggers:

@* This command toggles the appropriate global DEBUG option

(DB.DEBUG or EB.DEBUG), depending on whether the

program being debugged was entered from the TCL prompt

or was called from External Basic. Equivalent to calling the

SET-OPTION or CLEAR-OPTION verb.

M Toggles the option that causes a break whenever a CALL or

RETURN statement is encountered; that is, each time your

program calls or returns from an external subroutine.

WF Toggles the option that treats warning messages as fatal

errors. The effect is limited to the currently running

program.

WF* Toggles the global FATAL.WARNINGS option (equivalent

to calling the SET-OPTION or CLEAR-OPTION verb).

WS The WF command toggles the option that suppresses run-

time warning messages (normally enabled by running your

program with the S option).

Refer to page 5-42 for more detail.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 29 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

These debugger commands also make it easier to debug DataBasic programs called from
PERFORM statement and Procs.

5.1.2.3 Debugger Prompt

If your program has been called from a PERFORM statement, the debugger prompt

shows the level of nesting. This can help you keep track of which of a number of

different programs or routines you are currently debugging. It is particularly useful when

debugging file triggers.

File triggers are always at nesting level 1 or above. For example, if a program called

from TCL causes a trigger to run, the trigger will be at nesting level 1. If that trigger

then carries out an action that causes a second trigger to run, the second trigger will be

at nesting level 2 and the debugger prompt will appear as follows:

{2}*

5.1.3 How to Associate a Trigger with a File

Once you have written your trigger, you must associate it with the appropriate Reality

file using the CREATE-TRIGGER command (page 5-25). You must specify the name of

the file, the name of the trigger subroutine and the type of trigger required (PRE-WRITE,

POST-WRITE, PRE-DELETE or POST-DELETE). Note that the trigger subroutine must be

cataloged in the master dictionary of the account containing the file. A trigger can be

associated with a file data section, a file dictionary or an account’s master dictionary.

The DELETE-TRIGGER command (page 5-26) allows you to remove trigger

associations. In this case you need only specify the file name and the trigger type.

LIST-TRIGGERS (page 5-28) lists the triggers associated with a file.

Caution

When associating a trigger with a file, you need to be aware of the effects of any other triggers
that might run as a consequence.

Notes:

• It is strongly recommended that triggers should not be associated with system

files.

• When accessing files in a different account on the same database (either by

defined or direct Q-pointers), the trigger subroutine must exist in the current

master dictionary.

• When accessing files in a different database, both the trigger definition and

trigger subroutine must reside in the remote database where the file resides, not

in the local database.

• If a file is open, changes to its associated triggers will not take effect until it is

closed and re-opened.

• Only D-pointers can have trigger definitions; Q-pointers will use the definition in

the target D-pointer.

• The first time a trigger is used after you have logged on or associated it with a

file, it will be copied into a local cache. Subsequent calls to the trigger will

therefore be much quicker because it will not be necessary to fetch the trigger

from disk. The cache will be cleared when you log off, log to another account or

catalog any DataBasic program.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 30 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• If the cataloged version is changed, only those processes that do not have the

trigger cached will use the new version when the trigger next runs. Note that

because the local cache is cleared when a DataBasic program is catalogued, the

user that catalogs the new version of the trigger will use the new version

immediately.

5.1.4 Commands that might run Triggers

When running the following commands, you should be aware of the effects of any file

triggers that might be run as consequence (the list is not exhaustive).

5.1.4.1 TCL Commands

TCL Commands

BASIC (R (trigger on MD) BASIC (trigger on data section)

BLIST (U (trigger on data section) CATALOG (trigger on MD)

COPY (trigger on destination file) CREATE-FILE (trigger on MD)

CREATE-INDEX (trigger on dictionary) DB

DECAT (trigger on MD) DELETE

DELETE-FILE (trigger on MD) DELETE-INDEX (trigger on DICT)

DIR-VIEW (trigger on MD) ED{IT} (see EDITOR Commands below)

EDELETE MAKE-SPECIAL (trigger on MD)

MOVE-FILE (trigger on dictionary or MD) NEW-COPY-LIST

NEW-SAVE-LIST NEW-SORT-LIST

PQ-COMPILE REFORMAT

RENAME-FILE (trigger on MD) RESIZE-FILE (trigger on dictionary)

SE{D{IT}} (see Screen Editor Commands

below)

SET-FILE (trigger on MD)

SP-COPY SQL (update commands)

SQL-VIEW (trigger on MD) SREFORMAT

T-LOAD

Proc Commands

F-DELETE F-WRITE

EDITOR Commands

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 31 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

FD FI FS

Screen Editor Commands

F

DataBasic

DELETE Statement MATWRITE Statement

MATWRITEU Statement WRITE Statement

WRITEU Statement WRITEV Statement

WRITEVU Statement

5.1.5 Examples

The first example is a subroutine that is intended to be used as a PRE-WRITE and

PREDELETE trigger. It performs some validation and also records information about the

operation for later use by the second example.

SUBROUTINE PRE.TRIG(ITEM)

 *

 * This routine can be used as Pre-Write and Pre-Delete trigger.

 *

 * It performs some validation and also records information

 * about the operation for later use by the Post Trigger.

 *

 *---

 *

 * Named Common - used to share info between Pre and Post Triggers

 *

 COMMON /TRIGSTUFF/ T.LOGFILE,T.TYPE,T.SEQ

 *

 * In case we need to debug this routine

 * using SET-OPTION EB.DEBUG

 *

 DEBUG

 CRT "PRE-TRIGGER"

 *

 * Open Logfile for use by Post Trigger

 *

 IF UNASSIGNED(T.LOGFILE) THEN

 *

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 32 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * We open the logfile here so that we can abort the operation

 * if there is any problem. By the time the Post trigger is called

 * the operation has completed and cannot easily be cancelled.

 *

 OPEN "LOGFILE" TO T.LOGFILE ELSE

 INPUTERR "Cannot open logfile - operation aborted"

 RETURN

 END

 END

 *

* Only users with SYS2 privilege are allowed to update this file

 *

 PRIV = SYSTEM(28) ;* current system privilege level (0,1,2)

 IF (PRIV<2) THEN

 INPUTERR "You do not have permission to update this file"

 RETURN

 END

 *

 * Determine type of operation

 *

 DELETING = ACCESS(12) ;* True if item being deleted

 NEW.ITEM = ACCESS(16) ;* True if new item being written

 BEGIN CASE

 CASE DELETING; T.TYPE="DEL"; * delete item

 CASE NEW.ITEM; T.TYPE="NEW"; * write new item

 CASE 1; T.TYPE="UPD"; * update existing item

 END CASE

 *

 * Check the value of attribute 2 is valid

 *

 IF NOT(DELETING) THEN

 A2 = ITEM<2>

 IF (A2<0) OR (A2>100) THEN

 INPUTERR "Value out of range"

 RETURN

 END

 END

 *

 * Now, we have successfully opened the logfile

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 33 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * (if it was not already open)

 * verified that the current user is allowed to update this file

 * and that the data is correct.

 * We have also recorded the type of operation for logging

 * in the Post trigger.

 *

 * Returning without using INPUTERR allows the operation to

complete.

 *

 RETURN

The second example is a POST-WRITE and POST-DELETE trigger subroutine. It logs

the operation using information saved by the previous example.

SUBROUTINE POST.TRIG(ITEM)

*

* This routine is a Post-Write and Post-Delete trigger.

*

* It logs the operation using information saved by the Pre Trigger.

*

 *---

 *

 * Named Common - used to share info between Pre and Post Triggers

 * and to save a logging sequence number

 *

 COMMON /TRIGSTUFF/ T.LOGFILE,T.TYPE,T.SEQ

 IF UNASSIGNED(T.SEQ) THEN T.SEQ=0

 *

 * In case we need to debug this routine

 * using SET-OPTION EB.DEBUG

 *

 DEBUG

 CRT "POST-TRIGGER"

 *

 * Construct a unique Log item-id

 *

 PORT = SYSTEM(18) ;* current port number

 T.SEQ += 1 ;* logging sequence number

 *

 LOGID = DATE():'~':TIME():'~':PORT:'~':T.SEQ

 *

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 34 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * Construct Log record

 *

 LOGITEM = ''

 LOGITEM<1> = ACCESS(10) ;* Item-id of item written or deleted

 LOGITEM<2> = T.TYPE ;* Operation type (NEW, UPD or DEL)

 *

 * Record operation to logfile

 *

 WRITE LOGITEM ON T.LOGFILE,LOGID ON ERROR

 *

 * Write to logfile failed, but operation on datafile completed.

 * Not much we can do here except shout loudly.

 * If using Transaction Boundaries we could use TRANSABORT.

 *

 CRT

 CRT "*** ERROR - Cannot write to logfile"

 CRT

 END

 *

 RETURN

5.1.6 Triggers Dos and Don’ts

• It is strongly recommended that you do not associate triggers with system files.

• When you write DataBasic programs or subroutines, always include the ON

ERROR clause for statements that update files. This is especially important when

using triggers, since any failure caused by a trigger aborts the DataBasic program

unless the ON ERROR clause is present.

Note

If the cataloged DataBasic trigger subroutine cannot be found, the trigger will return an
error and the update will be aborted. This is because the file would no longer be
protected by its business rules and invalid data could be inserted.

• A trigger can invoke another trigger (Reality limits the number of levels you can

nest triggers to 256). Be careful to use conditional statements to avoid infinite

loops that can be caused by nested triggers.

• PRE-DELETE and POST-DELETE triggers will run even if the item specified by the

user does not exist. You should test element 16 of the ACCESS function (page 5-

32) for this situation and take appropriate action.

• If you need to pass data between triggers, use variables in a named COMMON

area.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 35 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.2 TCP Connections in DataBasic

This feature allows DataBasic programs to connect to and accept connections from

remote systems using raw TCP instead of DDA. This allows connections between Reality

and many different types of system; for example:

• other Reality systems;

• web, ftp, telnet and time servers;

• SMTP and POP3 email servers;

• networked applications (written in Java, for example);

• other MultiValue systems that support raw TCP;

• XML applications;

• SOAP processes (using XML technology).

For details, refer to the descriptions of the DataBasic CONNECT and ACCEPT

statements on pages 5-37 and 5-32 respectively.

5.2.1 Example Programs

5.2.1.1 TCP Client/Server

The following client and server programs demonstrate how you might use TCP/IP to

communicate between two Reality systems.

Client Program:

* RTCL - Execute remote TCL command

*

* RTCL Host|* TclCommand -- * for localhost"

*

* Connect to XTCL listening on HostName, port 52002, send TCL

* command which XTCL will PERFORM and return the response.

*

* Set environment variable RNWS_LOG_LEVEL in range 0 to 7 for

* tracing. Set environment variable RNWS_LOG_FILE to specify trace

* file.

*

 EQU EDISCONN TO 4235

*

 TCL = SENTENCE()

 HOST = FIELD(TCL," ",2)

 CMD = FIELD(TCL," ",3)

 PORT = 52002

*

 IF HOST = "" OR HOST = "?" THEN

 PRINT "RTCL Host|* {TclCommand} -- * for localhost"

 STOP

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 36 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 END

*

 IF HOST = "*" THEN HOST = "127.0.0.1"

 SYS="*TCP*":HOST:";port=":PORT

*

 CONNECT SYS TO SESS SETTING ERRNO ELSE

 OPN = "CONNECT"

 GOTO FIN

 END

*

 ONEOFF = CMD # ""

 LOOP

 IF NOT(ONEOFF) THEN INPUT CMD

 WHILE CMD # "" DO

 SDAT=CMD

 GOSUB SEND_SDAT

 IF ERRNO THEN GOTO FIN

 GOSUB RECV_RDAT

 IF ERRNO THEN GOTO FIN

 PRINT RDAT<1>

 IF ONEOFF THEN GOTO FIN

 REPEAT

* FIN:

*

 IF ERRNO THEN

 IF ERRNO = EDISCONN THEN

 PRINT SYS:" disconnected"

 END ELSE

 PRINT OPN:" (":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 IF NOT(UNASSIGNED(SESS)) THEN

 DISCONNECT SESS SETTING ERRNO ELSE PRINT "DISCONNECT

(":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 IF NOT(UNASSIGNED(LSESS)) THEN

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 37 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 DISCONNECT LSESS SETTING ERRNO ELSE

 PRINT "DISCONNECT(listener) (":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 STOP

*

**

*** SEND_SDAT:

 MSG = "<":SDAT:">"

 SEND MSG TO SESS SETTING ERRNO ELSE

 OPN = "SEND"

 END

 RETURN

*

**

*** RECV_RDAT:

 RDAT = ""

 LOOP

 RECEIVE MSG FROM SESS SETTING ERRNO ELSE

 OPN = "RECEIVE"

 GOTO FIN_RECV_RDAT

 END

 RDAT = RDAT:MSG

 AGAIN = RDAT[-1,1] # ">"

 WHILE AGAIN DO REPEAT

*

 RDAT[-1,1] = ""

 RDAT[1,1] = ""

* FIN_RECV_RDAT:

*

 RETURN

*

** ***

END

Server Program:

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 38 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* XTCL - Perform TCL command from remote client

*

* XTCL LocalHostName|* -- * for all local interfaces

*

* Listen on port 52002 for incoming connection, receive and perform

* TCL command and return response to client. Loop back for next

* command or client disconnect. 'RTCL host OFF' will log us off.

*

* Set environment variable RNWS_LOG_LEVEL in range 0 to 7 for

tracing.

* Set environment variable RNWS_LOG_FILE to specify trace file.

*

 EQU EDISCONN TO 4235

*

 LOOPING = 0

 TCL = SENTENCE()

 HOST = FIELD(TCL," ",2)

 PORT = 52002

*

 IF HOST = "" OR HOST = "?" THEN

 PRINT "XTCL LocalHostname|* -- * for all local interfaces"

 STOP

 END

*

 IF HOST = "*" THEN

 HOST = ""

 END

*

 SYS="*TCP*":HOST:";port=":PORT

*

* Activate listening socket

*

 ACCEPT SYS:";listen=1" TO LSESS SETTING ERRNO ELSE

 OPN = "ACCEPT(listen)"

 GOTO FIN

 END

*

* Accept incoming connection

*

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 39 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 LOOPING = 1

 ERRNO = 0

 LOOP

 ACCEPT SYS TO SESS SETTING ERRNO ELSE

 OPN = "ACCEPT"

 GOTO FIN

 END

*

 LOOP

 ERRNO = 0

 GOSUB RECV_RDAT

 IF ERRNO = 0 THEN

 IF RDAT = "STOP" THEN

 SDAT = "CLOSING SERVER"

 LOOPING = 0

 END ELSE

 PERFORM RDAT CAPTURING SDAT

 END

 GOSUB SEND_SDAT

 END

 WHILE ERRNO = 0 DO REPEAT

 IF ERRNO = EDISCONN THEN ERRNO=0

*

FIN:

*

 IF ERRNO THEN

 PRINT OPN:" (":SYS:") failed, ERRNO=":ERRNO

 END

*

 IF NOT(UNASSIGNED(SESS)) THEN

 DISCONNECT SESS SETTING ERRNO ELSE

 PRINT "DISCONNECT (":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 WHILE ERRNO = 0 AND LOOPING DO REPEAT

*

 IF NOT(UNASSIGNED(LSESS)) THEN

 DISCONNECT LSESS SETTING ERRNO ELSE

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 40 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 PRINT "DISCONNECT(listener) (":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 STOP

*

**

SEND_SDAT:

 MSG = "<":SDAT:">"

 SEND MSG TO SESS SETTING ERRNO ELSE

 OPN = "SEND"

 END

 RETURN

*

**

RECV_RDAT:

 RDAT = ""

 LOOP

 RECEIVE MSG FROM SESS SETTING ERRNO ELSE

 OPN = "RECEIVE"

 GOTO FIN_RECV_RDAT

 END

 RDAT = RDAT:MSG

 AGAIN = RDAT[-1,1] # ">"

 WHILE AGAIN DO REPEAT

*

 RDAT[-1,1] = ""

 RDAT[1,1] = ""

*

FIN_RECV_RDAT:

*

 RETURN

*

**

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 41 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

END

5.2.1.2 TCP Ping

* PING - Reality sockets test program to send/receive to echo server

*

* PING HostName

*

* Provides similar functionality to the UNIX ping utility. A

* connection is established to a remote TCP 'echo' server specified

* by argument 1. A message is sent and echo received, five times.

*

* Set environment variable RNWS_LOG_LEVEL in range 0 to 7 for

* tracing. Set environment variable RNWS_LOG_FILE to specify trace

* file.

*

 TCL = SENTENCE()

 HOST = FIELD(TCL," ",2)

 PORT=7

*

 IF HOST = "" OR HOST = "?" THEN

 PRINT "PING [HostName|IP address]"

 STOP

 END

*

 SYS="*TCP*":HOST:";port=":PORT

*

 CONNECT SYS TO SECHO TIMEOUT 1 SETTING ERRNO ELSE

 PRINT "Failed to connect to ":SYS:", error=":ERRNO

 GOTO L_ABORT

 END

*

 SMSG="Data/Basic socket call to echo port"

*

 FOR I = 1 TO 5

 SEND SMSG TO SECHO SETTING ERRNO ELSE

 PRINT "Failed to send msg to ":SYS:", error=":ERRNO

 GOTO L_ABORT

 END

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 42 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

*

 RECWAIT RMSG FROM SECHO TIMEOUT 1 SETTING ERRNO ELSE

 PRINT "Failed to receive msg from ":SYS:", error=":ERRNO

 GOTO L_ABORT

 END

 PRINT "Received:'":RMSG:"' from ":HOST

 NEXT I

*

L_ABORT:

 IF NOT(UNASSIGNED(SECHO)) THEN

 DISCONNECT SECHO SETTING ERRNO ELSE

 PRINT "Failed to disconnect from ":SYS:", error=":ERRNO

 END

 END

*

 STOP

*

END

5.2.1.3 TCP Email

* MAIL - send email

*

* MAIL <To:> <From:> <SmtpServer>

*

* Connect to SMTP service on specified DNS name and pass sender and

* recipient's mail path, viz email addresses, finally send the email

* body.

*

* This program was based on information found in RFC 821, it in no

* way handles every eventuality and is for example purposes only.

*

 EQU EDISCONN TO 4235

EQU TRACING TO 1

 CRLF = CHAR(13):CHAR(10)

*

 TCL = SENTENCE()

 EML.TO = FIELD(TCL," ",2)

 EML.FROM = FIELD(TCL," ",3)

 SMTPHOST = FIELD(TCL," ",4)

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 43 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 PORT = 25

*

 IF SMTPHOST = "" THEN

 PRINT "MAIL <To:> <From:> <SmtpServer>"

 STOP

 END

*

 SYS="*TCP*":SMTPHOST:";port=":PORT

*

* Build email header

*

 EML.HEADER = "Subject: TEST Sockets API":CRLF:"From: ":EML.FROM

 EML.HEADER = EML.HEADER:CRLF:"To: ":EML.TO

*

 PRINT "Enter message text:"

 INPUT EML.TEXT

*

 CONNECT SYS TO SESS SETTING ERRNO ELSE

 OPN = "CONNECT"

 GOTO FIN

 END

*

 SDAT = "MAIL FROM:":EML.FROM

 GOSUB POST; IF ERRNO THEN GOTO FIN

 IF RDAT[1,6] # "250 OK" THEN GOTO PROTOCOL.ERROR

*

 SDAT = "RCPT TO:":EML.TO

 GOSUB POST; IF ERRNO THEN GOTO FIN

 IF RDAT[1,6] # "250 OK" THEN GOTO PROTOCOL.ERROR

*

 SDAT = "DATA"

 GOSUB POST; IF ERRNO THEN GOTO FIN

 IF RDAT[1,3] # "354" THEN GOTO PROTOCOL.ERROR

*

* Build email body - header, blank line, text & a '.' on it's own

line,

* this, with the final CRLF added by POST, terminates the message

body.

*

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 44 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 SDAT = EML.HEADER:CRLF:CRLF:EML.TEXT:CRLF:"."

 GOSUB POST; IF ERRNO THEN GOTO FIN

IF RDAT[1,6] # "250 OK" THEN GOTO PROTOCOL.ERROR

*

 GOTO FIN

*

PROTOCOL.ERROR:

*

 PRINT "Unexpected response from SMTP server."

 PRINT "SDAT=":SDAT

 PRINT "RDAT=":RDAT

*

FIN:

*

 IF ERRNO THEN

 IF ERRNO = EDISCONN THEN

 PRINT SYS:" disconnected"

 END ELSE

 PRINT OPN:" (":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 IF NOT(UNASSIGNED(SESS)) THEN

 DISCONNECT SESS SETTING ERRNO ELSE

 PRINT "DISCONNECT (":SYS:") failed, ERRNO=":ERRNO

 END

 END

*

 STOP

*

**

POST:

 IF TRACING THEN PRINT "POST:":SDAT

 MSG = SDAT:CRLF

 SEND MSG TO SESS SETTING ERRNO THEN

 GOSUB RECV

 END ELSE

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 45 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 OPN = "SEND"

 END

 RETURN

*

**

RECV:

 RDAT = ""

 LOOP

 RECEIVE MSG FROM SESS SETTING ERRNO ELSE

OPN = "RECEIVE"

 GOTO FIN_RECV

 END

 RDAT = RDAT:MSG

 AGAIN = RDAT[-2,2] # CRLF

 WHILE AGAIN DO REPEAT

*

 RDAT[-2,2] = ""

*

 IF TRACING THEN PRINT "RECV:":RDAT

 IF RDAT[1,3] = "220" THEN

* This is the greeting reply from server, is ok, go do another

receive

 GOTO RECV

 END

FIN_RECV:

*

 RETURN

*

**

END

5.3 Pseudo Floppy Support

The format used for Reality tape images is different to the pseudo-floppy (.vtf) format

used by other MultiValue systems. Two new verbs, FDISCTOTAPE (page 5-26) and

TAPETOFDISC (page 5-30), allow you to transfer data between Reality and other

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 46 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

MultiValue systems by converting Reality tape images into MultiValue pseudo-floppy

images and vice versa.

5.4 SP-ASSIGN Enhancements

By default, the Reality SP-ASSIGN command will close any open print jobs. This

behaviour can now be changed by calling the SET-OPTION command with the

SPASSIGN option, so that open print jobs will only be closed if SP-ASSIGN is called

with no parameters.

5.5 Additional ACCOUNT-RESTORE Options

Two additional options are provided for the ACCOUNT-RESTORE command. These

simplify restoring accounts onto systems with a frame size smaller or larger than the

original.

D Doubles the modulo in the files restored. Use this option if

the target system has a smaller frame size.

H Halves the modulo in the files restored. Use this option if

the target system has a larger frame size.

Note

The new modulos will be only a working approximation to allow the system to work reasonably
efficiently. For optimum efficiency, you should resize the files.

5.6 TCL Commands

5.6.1 CREATE-TRIGGER

Associates a trigger with a Reality file.

Syntax

CREATE-TRIGGER file-specifier trigger-name trigger-type

Syntax Elements

Syntax elements Description

file-specifier is the name of the file with which the trigger will be

associated. This can be a file data section, a file dictionary

or an account’s master dictionary.

trigger-name
The name of the trigger subroutine. This must be a

catalogued DataBasic subroutine in the MD of the account

containing the file.

trigger-type The type of trigger – one of the following:

WRITE or PRE-WRITE

Run the trigger routine before writing a file item.

POST-WRITE Run the trigger routine after writing a file

item.

DELETE or PRE-DELETE

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 47 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax elements Description

Run the trigger routine before deleting an item

from the file.

POST-DELETE Run the trigger routine after deleting an

item from the file.

Restrictions

Requires SYS2 privileges.

Comments

The file specified may be a local file (dictionary or data section) or the master dictionary

of an account.

When associating a new trigger with a file, any existing trigger of the specified type must

first be deleted (see DELETE-TRIGGER on page 26).

Example

:CREATE-TRIGGER TF TRIG1 PRE-WRITE

[1901] 'PRE-WRITE' trigger added to file 'TF'.

5.6.2 DELETE-TRIGGER

Deletes one or all of the trigger associations for a Reality file.

Syntax

DELETE-TRIGGER file-specifier [trigger-type | *]

Syntax Elements

Syntax elements Description

file-specifier is the name of the file with which the trigger is associated.

trigger-type The type of trigger: WRITE, PRE-WRITE, POST-WRITE,

DELETE, PRE-DELETE or POST-DELETE (see CREATE-

TRIGGER).

* specifies all triggers.

Note that the keywords WRITE and DELETE are synonyms

for PRE-WRITE and PRE-DELETE respectively

Restrictions

Requires SYS2 privileges.

Comments

The file specified may be a local file (dictionary or data section) or the master dictionary

of an account.

Example

:DELETE-TRIGGER TF * [1915] All triggers deleted from file 'TF'.

5.6.3 FDISCTOTAPE

Purpose

Converts a MultiValue pseudo-floppy image into a Reality tape image.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 48 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

FDISCTOTAPE file-specifier item-id path {(options}

Syntax Elements

Syntax elements Description

file-specifier The name of a Reality binary DIR-VIEW file containing the

MultiValue pseudo floppy image.

item-id The name of the item containing the MultiValue pseudo

floppy image.

path The native directory path into which to save the Reality tape

image.

Note

You will be prompted for any missing parameters.

Options

Option Description

Cn Sets the Reality tape compression to level n; defaults to 0.

S Suppresses the progress '#' characters.

Operation

FDISCTOTAPE reads the MultiValue pseudo floppy image item-id from the Reality binary

DIR-VIEW file file-specifier and converts it to a Reality tape image. The tape image is

saved in the native directory defined by path and is given the same name as the pseudo

floppy image, but with the file extension ‘.rti’ or ‘.rci’. Compressed tape images have the

extension ‘.rci’ and uncompressed images the extension ‘.rti’.

Caution

Any existing file with the same name will be overwritten.

Restrictions

The size of image that can be converted is limited to about 60Mb by the active

workspace limit.

Note

This restriction is likely to be removed on future releases; please check the NEC web site for the

latest product and documentation updates.

You can increase the active workspace limit by setting the environment variable

RWSMAXSIZE. For example, if you need to convert a 200Mb image, you should set

RWSMAXSIZE to at least 204800.

• On UNIX, add a line containing the following to the file .realityrc in your home

directory.

RWSMAXSIZE=limit

where limit is the required active workspace limit in kilobytes.

Once you have converted your pseudo floppy image, you should return the active

workspace limit to its original value by removing RWSMAXSIZE from .realityrc.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 49 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• On Windows, set the environment variable when you log on, as follows:

Logon please : username RWSMAXSIZE=limit

where username is your Reality user name and where limit is the required active

workspace limit in kilobytes.

In neither case will this change affect other Reality users.

Example

DIR-VIEW HOST-FILES C:\images\tapes (B

FDISCTOTAPE HOST-FILES PFDATA C:\images\tapes (C6

Sets up a binary directory view of the PC directory C:\images\tapes and then converts

the item PFDATA into a Reality tape image. The tape image is saved with level 6

compression, in the file C:\images\tapes\PFDATA.rci.

5.6.4 LIST-TRIGGERS

Lists the triggers associated with a Reality file.

Syntax

LIST-TRIGGERS file-specifier

Syntax Elements

Syntax elements Description

file-specifier is the name of the file for which to list the triggers.

Comments

The file specified may be a local file (dictionary or data section) or the master dictionary

of an account.

Example

:LIST-TRIGGERS TEST File 'TF' has the following triggers:

 PRE-WRITE: T1

PRE-DELETE: T2 2 trigger(s) listed.

5.6.5 TAPETOFDISC

Purpose

Converts a Reality tape image into a MultiValue pseudo-floppy image.

Syntax

TAPETOFDISC path tape-image file-specifier {(options}

Syntax Elements

Syntax elements Description

path The native directory path containing the Reality Tape image.

tape-image The name of the native file containing the Reality Tape

image. This must have a file extension of either ‘.rci’ or ‘.rti’.

file-specifier The name of a Reality binary DIR-VIEW file into which to

save the MultiValue pseudo floppy image.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 50 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

You will be prompted for any missing parameters.

Options

Option Description

S Suppresses the progress '#' characters.

Operation

TAPETOFDISC reads the Reality tape image tape-image from the directory path and

converts it to a MultiValue pseudo floppy image. The pseudo floppy image is saved in the

Reality binary DIR-VIEW file file-specifier as an item with the same name as the tape

image, but without the extension ‘.rti’ or ‘rci’.

Caution

Any existing file with the same name will be overwritten.

Restrictions

Only Reality tapes images that have a block size of 500 can be converted to MultiValue

pseudo floppy images.

The size of image that can be converted is limited to about 60Mb by the active

workspace limit (see FDISCTOTAPE on for more details).

Example

DIR-VIEW HOST-FILES C:\images\tapes (B

TAPETOFDISC C:\images\tapes PFDATA.rci HOST-FILES

Sets up a binary directory view of the PC directory C:\images\tapes and then converts

the Reality tape image C:\images\tapes\PFDATA.rci into a MultiValue pseudo floppy

image. The image is saved in the DIR-VIEW file as the item PFDATA.

5.7 DataBasic Statements and Functions

5.7.1 ACCEPT Statement

Purpose

To declare the availability of the server to the local session manager, or to accept a

connection from a client that has just requested a connection.

Syntax

ACCEPT accept-string TO session {TIMEOUT minutes}

{SETTING error} {RETURNING client-id} [THEN statement(s) | ELSE statement(s)]

Syntax Elements

Syntax elements Description

accept-string is a string with one of the formats described in the section

Accept String.

session is a variable to hold a “session handle”. On return this will

contain a value that identifies the connection.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 51 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax elements Description

minutes is an expression giving a timeout value in minutes. The

ELSE clause is executed if a connect request is not received

and a session established within this time. If a connect

request is not received and the TIMEOUT clause is omitted

(or minutes = 0), error is set to 4225 and the ELSE clause is

taken.

client-id is a dynamic array variable consisting of two attributes that

identify the client program, that is:

client-plid^client-system*user-id

where:

client-plid is the PLId of the process running the client

program. This forms the first attribute.

client-system is the name of the system running the client

program, specified in the client's routing information

(ROUTE-FILE in UNIX or the registry in Windows).

user-id is the user-id used to logon the client process.

This forms part of the second attribute and is separated

from the first part, client-system, by an asterisk (*).

^ represents an attribute mark inserted by entering

CTRL+^.

error is a variable that is assigned an error code number

according to any errors detected if the ELSE clause is taken.

If the ELSE clause is not taken, the value of error is set to 0.

The error codes and corresponding messages are given in

the DataBasic Reference Manual.

statement(s) comprises one or more DataBasic statements, executed as

part of a THEN or ELSE clause. A statement must be

included. The THEN clause is executed if the ACCEPT

establishes a session without error, otherwise, the ELSE

clause is executed.

Accept String

The accept-string parameter must be a string with one of the following formats:

To accept a connection from a Reality client program:

{*PTP*}server

where:

PTP specifies that this is a Reality process-to-process connection. Note

that, for Reality process-to-process this element is optional.

server is the name by which the client knows this PTP server.

To accept a connection from a remote system using raw TCP/IP:

*TCP*host;port=port{;option}{;option}...

where:

 TCP specifies that this is a raw TCP/IP connection.

 host is the IP address on which to accept a connection. This can be

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 52 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

the IP address of a local network interface, blank to listen on all

local network interfaces, or for local loopback, either the IP address

127.0.0.1 or “localhost”.

 port is the port on host from which to accept a connection.

option is a name/value pair (separated by an equals sign), specifying an

optional parameter to be passed to the host.

Examples:

“*TCP*152.114.24.126;port=1045;listen=1”

Listens on port 1045 of the network interface with IP address 152.114.24.126.

“*TCP*;port=52002;listen=1”

Listens on port 52002 of all local network interfaces.

“*TCP*localhost;port=2701;listen=1”

Listens on local loopback port 2701.

Operation DDA Connections

The ACCEPT statement is used either to declare to the Session Manager that the server

is available to any client that might subsequently request connection or it might be used

as a reply to accept connection to a client that has just requested connection.

Raw TCP/IP Connections

When using the ACCEPT statement to accept raw TCP/IP connections, you must first

create a listening socket by issuing an ACCEPT with the listen option. For example:

ACCEPT “*TCP*152.114.24.126;port=1045;listen=1” TO LISTENSESS ELSE STOP

Incoming connections from this host will then be queued. The listen option specifies the

size of the queue (note that the operating system may limit on the size of the queue).

Subsequent ACCEPT calls, specifying the same host and port, but without the listen

option, can then be used to fetch connection requests from the queue. For example:

ACCEPT “*TCP*152.114.24.126;port=1045” TO CONNSESS ELSE STOP

When your program has finished with a connection or no longer wishes to accept

incoming connections on the specified address, it should issue a disconnect:

DISCONNECT CONNSESS ELSE STOP

5.7.2 ACCESS Function

Purpose

To provide access to the current states of various data elements. Can be used only

within a file trigger subroutine.

Syntax

ACCESS(data-element)

Syntax Elements

Syntax elements Description

data-element is the number corresponding to the data element to be

referenced.

Operation

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 53 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax elements Description

1 A reference to the trigger file.

2 If the trigger file is a data section, a reference to the

dictionary of the trigger file. If the trigger file is a dictionary,

a reference to the trigger file.

3 The item body. Null if a delete operation.

10 The id of the item being written or deleted.

11 The file name in the form {DICT}

{/account/}filename{,data-section-name}.

12 True if the trigger is of type PRE-DELETE or POST-

DELETE.

13 Always returns 0.

16 True if the item does not exist; false otherwise. Its value

therefore depends on the type of trigger:

PRE-WRITE True if a new item is being created; false if an

existing item is being updated.

PRE-DELETE Normally false, but true if the user is

attempting to delete a non-existent item (if the item does

not exist, no action is taken, but any triggers still run).

POST-DELETE Always true.

POST-WRITE Always false.

Note that ACCESS(16) checks whether the item exists each

time it is called.

20 In a POST-WRITE trigger, if true, indicates that the item

was modified by the PRE-WRITE trigger; if false, the item

was written without modification. Always false in PRE-

WRITE, PRE-DELETE and POST-DELETE triggers.

23 The calling environment. Currently always returns 1

(trigger).

Examples

* Named Common - used to share info between Pre and Post Triggers

 COMMON /TRIGSTUFF/ T.TYPE

* Determine type of operation

 DELETING = ACCESS(12) ;* True if item being deleted

 NEW.ITEM = ACCESS(16) ;* True if new item being written

 BEGIN CASE

 CASE DELETING; T.TYPE="DEL"; * delete item

 CASE NEW.ITEM; T.TYPE="NEW"; * write new item CASE 1;

T.TYPE="UPD"; * update existing item

 END CASE

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 54 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This example calls ACCESS(12) and ACCESS(16) to determine whether an item is being

created, updated or deleted, and stores the result in a named common area for use in a

subsequent trigger.

* Construct Log record

 LOGID = DATE():'~':TIME()

 LOGITEM = ''

 LOGITEM<1> = ACCESS(10) ;* Item-id of item written or deleted

 LOGITEM<2> = T.TYPE ;* Operation type (NEW, UPD or DEL)

 *

* Record operation to logfile

 *

 WRITE LOGITEM ON LOGFILE,LOGID ON ERROR

* * Write to logfile failed, but operation on datafile completed.

* Not much we can do here except shout loudly.

* If using Transaction Boundaries we could use TRANSABORT.

 *

 CRT

 CRT "*** ERROR - Cannot write to logfile"

 CRT

 END

This example calls ACCESS(10) obtain the item-id of the item being written of deleted

and then writes this information to a log file.

5.7.3 CONNECT Statement

Purpose

To establish a connection between the client program and a server on a local or remote

system.

Syntax

CONNECT connect-string TO session {TIMEOUT minutes} {SETTING error}

[THEN statement(s) | ELSE statement(s)]

Syntax Elements

Syntax elements Description

connect-string is a string with one of the formats described in the section

Connect String. This specifies the protocol to use, the host

to which to connect, etc.

session is a variable to hold a “session handle”. On return this will

contain a value that identifies the connection.

minutes is an expression giving a timeout value in minutes. The

ELSE clause is executed if a connect request is not received

and a session not established within this time. If the

TIMEOUT clause is omitted, the program waits indefinitely

for the CONNECT to complete.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 55 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax elements Description

error is a variable that is assigned an error code number if the

CONNECT operation fails. If the connection is established

successfully, error is set to 0. The error codes and

corresponding messages are given in the DataBasic

Reference Manual.

statement(s) is either a THEN or ELSE clause (or both). A statement must

be included. The THEN clause is executed if the CONNECT

establishes a connection without error. The ELSE clause is

executed otherwise.

Connect String

The connect-string parameter specifies the protocol to use, the host to which to connect,

etc. The available protocols are:

• Reality process-to-process.

• TCP/IP.

Reality process-to-process:

For a Reality process-to-process connection, connect-string must be a string with the

following format:

{*PTP*}{system}^{account{,acct-passwd}}^server{,server-passwd}{^Q}

where:

PTP specifies that this is a Reality process-to-process connection. Note that, for

Reality process-to-process this element is optional.

system is an entry in the UNIX ROUTE-FILE or Windows registry, that identifies

the remote system to connect to. The local database is used if this is omitted.

^ represents an attribute mark (character with decimal value 254, typed as

CTRL+^). All except the last of these must be included.

account is an account on which a server is to be started. Can be omitted if the

server should already be running.

acct-passwd is the password for the named account, if one is required, unless the

account is the server's default account in which case the acct-passwd is not required.

server is a command in the named account's MD that executes a server program or the

name of a server program already running on the specified system or database. In the

latter case, the name of the server program is that specified as its server-id in the

ACCEPT statement it executes.

If the server-id specified in the CONNECT statement exists as a user-id on the remote

system (the system to which connection is being connected), then the server-id is used

as the user-id to log to and its associated user profile is used to validate the connection.

If the server-id is not defined as a user-id, the local user's profile is checked for a

network id (net-id). If a net-id is defined then this is used as the user-id. However, the

net-id must also be defined as a user-id on the remote system otherwise the connection

will fail.

If a net-id is not defined on the local system either, then the user-id used on the remote

system defaults to the user-id used to logon the process running the client program.

 server-passwd is required if the server requires a password.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 56 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Q is the character Q. If it is appended after an attribute mark, queues the connect

instead of starting a server.

The connect request is queued until an already-running server with the name specified

issues an accept.

For example:

"FINANCE":AM:"SALES-ACCOUNT":AM:"ORDER-SERVER"

TCP/IP:

For connection to a remote system using raw TCP/IP, connect-string must be a string

with the following format:

*TCP*host;port=port{;option}{;option}...

where:

 TCP specifies that this is a raw TCP/IP connection.

host is the IP address or DNS domain name of the system to which to connect.

 port is the port on host to which to connect.

option is a name/value pair (separated by an equals sign), specifying an optional

parameter to be passed to the host.

For example:

“*TCP*152.114.24.123;port=21;linger=5000”

Operation

The CONNECT statement is executed by a client program to establish a connection with a

server program on a local or remote system.

• For Reality process-to-process connections, the connection is made to the system

and account identified by the system and account parameters in the connect-

string parameter. If a program, identified by server, is running and has issued an

ACCEPT statement to this process, the connection is made. If not, the server is

instructed to start the program on the server system.

• For TCP/IP connections, the connection is made to the system identified by the

host parameter. The port used is specified in the port parameter. Connections can

be to various kinds of remote system. For example:

o other Reality systems;

o web, ftp, telnet and time servers;

o SMTP and POP3 email servers;

o networked applications (written in Java, for example);

o other MultiValue systems that support raw TCP/IP;

o XML applications;

o SOAP processes (using XML technology).

Note, however, that the CONNECT statement provides only a raw TCP

connection. You must implement the protocols needed for communication with

these remote systems.

Once a session has been started, either the client or the server can send data, receive

data, or terminate the connection.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 57 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A program can maintain more than one connection at the same time. Each connection is

identified in SEND, RECEIVE, RECWAIT, and DISCONNECT statements by the session

handle that is assigned by the CONNECT and ACCEPT statements.

5.7.4 SYSTEM Statement

Purpose

To allow the states of various system elements to be changed. An alternative to the

ASSIGN statement for setting a system element.

Syntax

SYSTEM(sys-element) = value

Syntax Elements

Syntax elements Description

sys-element is the number corresponding to the system element to be

changed.

System Elements

Only the following system elements can be changed:

2 Current page width (numeric).

3 Current page length (numeric).

5 Current page number (numeric).

7 Terminal type (numeric).

30 Pagination in effect (numeric).

35 Language in use (numeric).

37 Thousands separator in use (string).

38 Decimal separator in use: comma or period (string).

39 Money sign in use (string).

Examples

SYSTEM(5) = 12

Assigns the value 12 to system element 5, the current page number.

See Also

SYSTEM Function, ASSIGN Statement.

5.8 Debugger Commands

5.8.1 @

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 58 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Purpose

To inhibit a break if a DEBUG statement is encountered.

Syntax

@{*}

Syntax Elements

Syntax elements Description

* Toggles the appropriate global DEBUG option (DB.DEBUG

or EB.DEBUG), depending on whether the program being

debugged was entered from the TCL prompt or was called

from External Basic. Equivalent to calling the SET-OPTION

or CLEAR-OPTION verb.

Note: Use SET-OPTION to set EB.DEBUG before starting

to debug file triggers. If this element is omitted, the effect

of the @ command is limited to the program currently being

debugged.

Operation

If a program contains one or more DEBUG statements and the program was run via the

DEBUG command, an execution break occurs every time a DEBUG statement is

encountered.

The @ command toggles the function of the DEBUG statement. Issuing the @ command

one time inhibits breaking. Issuing it a second time turns it back on.

The words ON and OFF are printed next to the @ to indicate the current status of the @

command.

Examples

*@ ON

Indicates that any subsequent DEBUG statements will be ignored.

*@ OFF

Turns the @ command off, so a subsequent DEBUG statement will cause an execution

break.

5.8.2 M

Purpose

The M command toggles the option that causes a break whenever a CALL or RETURN

statement is encountered; that is, each time your program calls or returns from an

external subroutine.

Syntax

M

Operation

The words ON and OFF are printed next to the M to indicate the status of the option.

5.8.3 WF

Purpose

he WF command toggles the option that treats warning messages as fatal errors.

Section 5: MultiValue Compatibility

Reality V10.0 Differences Supplement v0.1 Page 59 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

WF{*}

Syntax Elements

Syntax elements Description

* Toggles the global FATAL.WARNINGS option (equivalent

to calling the SET-OPTION or CLEAR-OPTION verb). You

should use this option when debugging file triggers.

If this element is omitted, the effect of the WF command is

limited to the program currently being debugged.

Operation

The option that treats warning messages as fatal errors can be enabled by running your

program with the F option. The WF debugger command toggles this option on and off.

The words ON and OFF are printed next to the WF to indicate the status of the option.

5.8.4 WS

Purpose

The WF command toggles the option that suppresses run-time warning messages.

Syntax

WS

Operation

The option that suppresses run-time warning messages can be enabled by running your

program with the S option. The WS debugger command toggles this option on and off.

The words ON and OFF are printed next to the WS to indicate the status of the option.

Section 6: Rapid Recovery File System

Reality V10.0 Differences Supplement v0.1 Page 60 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 6: Rapid Recovery File System
This feature provides an additional resilience option. All changes to a database's

structure are logged so that it is possible to return a database to a usable state within

minutes of restarting after a system failure. There is no need to restore the latest

backup from tape. Transaction logs can then be rolled forward and the database brought

back into use.

Note

This feature is only available on partition databases. It is therefore not available on some
existing UNIX databases.

6.1 Description of Rapid Recovery

6.1.1 What is Rapid Recovery?

Rapid Recovery is a software facility that enables quick restoration of a database to a

valid structure following a system failure. Structural changes to a database are saved to

a dedicated log disk so that, if the database becomes corrupted, recent changes can be

rolled back until the database is in a consistent state. The images of structural changes

are known as Quick images.

Rapid Recovery is normally used together with Transaction Logging to ensure that both

the database structure and the users’ data are restored during recovery. However, for

purposes of efficiency, it is possible to configure a database (or individual files) to a

lower level of resilience, but still maintain recovery of the database structure

6.1.2 How Rapid Recovery Works?

Each time a structural change is made to a database that has Rapid Recovery enabled,

the Rapid Recovery software writes the change to the raw log located on the log disk.

The raw log is a raw partition on the log disk. It acts as a central repository for the

Before and After images saved by the Transaction Logging software (see Raw Log) and

for the Quick images logged by the Rapid Recovery software. One raw log partition is

shared by all databases on a system.

Rapid Recovery software will save After images of changes to any file that is defined as

Recoverable. These images are written to the raw log, as described in Introduction to

Transaction Logging in the Reality Resilience Manual but are tagged as ‘phantom’ to

indicate that they should not be copied to the clean log. (If the database is not

configured for Transaction Logging, there will be no clean log available.) After images

are available on the raw log during automatic database recovery to restore the file’s

data.

The logging status of files on a Rapid Recovery database can be:

• Logged: Before and After images are written to the raw log as well as the Quick

images. The After images are then stored in the clean log as an audit trail and for

disaster recovery. (This status is only available if the database is also configured

for Transaction Logging.)

• Recoverable: Before and After images are written to the raw log as well as the

Quick images, but the After images are tagged as ‘phantom’ and are not written

to the clean log. This mode may be useful for application level indexes for

example.

Section 6: Rapid Recovery File System

Reality V10.0 Differences Supplement v0.1 Page 61 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Not Logged: Only Quick images are written to the raw log. Following automatic

recovery, the database will have a consistent structure but there may be data

missing from these files. This mode is suitable for scratch files.

6.2 Configuring a Database for Rapid Recovery

To use Rapid Recovery on a particular database it must first be configured. This is

carried out from tlmenu’s Configuration and Setup menu (Figure 6-1), displayed by

selecting option 2 on the main administration menu. A full description of tlmenu is

provided in the Reality Resilience Manual.

Transaction Logging Menu System Mon Jul 31 1999
Database name : dbase2 Host name : crime
State : Transaction Handling/Logging not enabled

 Configuration and Setup
 =======================

1. Define/Redefine the Database Configuration
2. Start Transaction Logging
3. Stop Transaction Logging
4. Configure the Transaction logging Status Monitor

 Enter option (1-4) : _

Figure 6-1. Transaction Logging Configuration and Setup Menu

1. Select option 1 on the Configuration and Setup menu. A message is then

displayed describing the purpose of the procedure and prompting you to confirm

that you wish to continue.

2. Enter y at the confirmation prompt. You are asked to select the resilience option

that you want to configure, from the menu:

Configure database for :

1. Transaction Handling

 2. Stand-Alone Transaction Logging

 3. Shadow

 4. FailSafe/Heartbeat (Heartbeat on UNIX Only)

 5 Stand-Alone Rapid Recovery

 Enter option (1-5) :

3. Either:

• Select option 2 to configure both Rapid Recovery and Transaction Logging.

When prompted:

Do you wish to set up database for Rapid Recovery File System?

(y/n/q) ?

Section 6: Rapid Recovery File System

Reality V10.0 Differences Supplement v0.1 Page 62 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Enter y and follow the procedure for Defining/Redefining a Transaction

Logging database described in the Reality Resilience Manual.

Or:

• Select option 5 to configure Rapid Recovery only. A message is displayed

indicating that this will also enable Transaction Handling; enter y to

confirm that you want to continue. Rapid Recovery is enabled on the

database and you are then returned to the Configuration and Setup menu.

Note

Transaction Handling must be running in order for Rapid Recovery to be
possible. If logging is stopped on the database – either by executing TL-STOP
at TCL or via option 3 on tlmenu’s Configuration and Setup Menu – the Rapid
Recovery feature is inhibited. It will not be possible to recover the database

following a system failure until Transaction Handling is restarted.

6.3 Recovery Procedure

When Reality restarts following a system or application failure, any Rapid Recovery

database that has become corrupted is marked as ‘Waiting for Recovery’. If a user tries

to log on to one of these databases, the message Awaiting Rapid Recovery is displayed

and the logon will fail.

Once you are satisfied that the underlying operating system is stable, execute the

command

realrecover

to initiate recovery of the database(s).

Note

On UNIX you must be logged on as root to run realrecover.

The Rapid Recovery process is not repeatable. If a second system crash occurs while recovery is
in process, the database will not be recoverable. This leads to problems if, for example, the
system enters a power cycling mode. It is therefore recommended that you do not execute the
realrecover command until you are confident that the system is stable. However, if you would

like database recovery to be automatic when the system restarts after a failure, you can achieve
this by adding the line REALRAPIDRECOVERY=1 into the file $REALROOT/files/realityrc.

There is no need to restore a database from a backup tape. The Rapid Recovery Process

will restore the database to a consistent state within minutes.

If a user tries to log on to a database while the recovery is in progress, the message

Rapid Recovery in Progress is displayed and the logon will fail. When recovery is

complete, the database is unlocked and users can log on.

When the database is restored to a valid structure, application updates made during the

five minutes before failure are lost. For files that are Recoverable or Logged, logged

updates are automatically replayed, but there will be application data missing from files

that are Not Logged.

If the recovery process fails, the corrupted database remains locked. If anyone attempts

to log on to the database, the message This database needs checking is displayed

and the logon fails. It will then be necessary to restore the database from the most

recent backup tape and, if the database is configured for Transaction Logging, to restore

Recovery Procedure updates from the clean log. Refer to Transaction Logging Database

Recovery in the Reality Resilience Manual for a full description of this manual recovery

procedure.

Section 6: Rapid Recovery File System

Reality V10.0 Differences Supplement v0.1 Page 63 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.3.1 Shadow Databases

If you have any shadow databases configured, the realrecover script will attempt to

check and mount the base file system for each of these databases. Various messages

are displayed as this process takes place.

If the mount of the file systems fails, the following message is displayed:

File system <mount_point> needs to be checked. Please check and mount

the above filing systems and then rerun this script.

Alternatively rerun this script with the –f switch and the above

databases will not be recovered.

If you are unable to recover a shadow database via realrecover, you must follow the

procedure described in Shadow Database Recovery in the Reality Resilience Manual.

6.3.2 Actions Following Rapid Recovery

If any of the operations listed in the following table were in progress at the time of the

system failure, you should take the appropriate action once the Rapid Recovery process

has completed.

Operation in Progress Action Following Rapid Recovery

Resize file Restart the resize operation using

RESIZE-FILE filename (R

Create index Delete the index and recreate it.

Account restore Delete any incomplete accounts and restore them again.

Note: Account restore of a complete database is normally

carried out before the database is enabled for logging. In

this case the database cannot be recovered using Rapid

Recovery: you should remake the database and restart the

account restore.

MOVE-FILE Check that there is no duplicate D-pointer. If there is a

Dpointer in both the old location and the new location, use

EDELETE to delete the old D-pointer.

Section 7: Compressed Tape Image

Reality V10.0 Differences Supplement v0.1 Page 64 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 7: Compressed Tape Image
This chapter describes how you can specify a compression level for data saved in a tape

image.

7.1 Tape Images

A tape image is an ordinary file that is used to emulate a Reality tape device (on UNIX it

can also be a named pipe). This provides a method of saving Reality data to disk. Any

file name may be used, but it is recommended that the .rti extension is used so that

tape images can be easily identified. For compressed images (see below), you could use

the extension .rci.

Reality tape image emulates tape operations as closely as possible. When accessing a

normal file (not a pipe), all normal tape operations are supported (T-FWD, T-REW,

TWEOF, etc.). When using a pipe as a tape image, you can only move forwards through

the image; commands that rewind the tape (such as T-BCK and T-REW) are not

available.

Notes:

1. When accessing a tape image, a control file tracks the current position in the tape

image. If you attach to a tape image, read a file, log off, log back on and re-

attach to the tape image, you will be where you left off; that is, one file down the

tape.

Always treat a tape image exactly as you would a real tape. If in doubt, do a T-

REW before doing anything else.

2. As with tape drives, a tape image can contain multiple tape files.

3. Writing to a tape image will always write a full block, as it would to a tape drive.

To save space in the image file use the compression feature described below.

7.1.1 Data Compression

If required, you can specify that the data saved in the tape image should be

compressed. This can be done in three ways:

1. Set the database configuration parameter CompressTapeImage to the

compression level required. See Chapters 9 (UNIX) and 14 (Windows) of the

Reality Reference Manual, Volume 3: Administration for details.

2. Set the operating system environment variable REALCOMPTAPEIMAGE to the

compression level required. This overrides any CompressTapeImage setting.

3. Modify the path to the tape image to specify the compression level. This can be

done in the database configuration file, or by using the T-DEVICE command at

TCL.

Specifying the level in this way overrides any default set with the previous two

methods.

To specify the tape image compression, append :clevel to the tape image

filename when defining the tape device, where level is the required compression

level. For example, /tmp/filsave.rti:c8 sets the compression level to 8 for the

file /tmp/filsave.rti.

In all cases, the compression level must be a number from 0 to 9, where 0 is no

compression (fastest) and 9 is maximum compression (slowest). The recommended

compression level, optimising compression and performance, is 6. Compression is

Section 7: Compressed Tape Image

Reality V10.0 Differences Supplement v0.1 Page 65 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

performed at the tape block level, so when using compression always use the maximum

tape block size allowed to maximise compression.

The default is no compression, for compatibility with older versions of Reality. Note,

however, that a compressed tape image cannot be read by versions of Reality earlier

than V9.1. Reality V9.1 and later can read any tape image, whatever the compression

level.

Section 8: Support for Distributed Transactions under MTS/COM+

Reality V10.0 Differences Supplement v0.1 Page 66 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: Support for Distributed Transactions under
MTS/COM+
If an application accessing Reality via the SQL/ODBC interface is running in a Microsoft

MTS/COM+ environment, it may be using distributed transactions. These transactions

are fully supported by Reality, using both ODBC and XA interfaces:

8.1 Distributed Transactions

SQL for Reality enables ODBC compliant applications to read and write data on a Reality

database. If the ODBC compliant application accessing the database via the SQL/ODBC

interface is running in a Microsoft COM+ environment, it may be using distributed

transactions. Reality’s support for COM+ transactions uses both ODBC and XA interfaces,

see Figure 8-1.

A distributed transaction, like a local transaction, is a set of related updates logically

grouped by transaction boundary commands. However, the related updates can be to

different databases on different systems on the network. If one of the updates is applied,

all of the other systems must be updated to maintain consistency. In this scenario,

updates applied to each database are classified as belonging to a transaction branch,

each branch being uniquely identified by the Transaction Manager (TM). The

responsibility for managing distributed transactions rests not with the local Reality TM,

but with a remote TM: Microsoft’s Distributed Transaction Co-ordinator (MDTC).

Where distributed transactions are being used, the Reality database must be configured

for Transaction Handling and for Transaction Logging. Refer to Defining and

Starting/Stopping Transaction Handling and Configuring for Transaction Logging in the

Reality Resilience Manual.

Section 8: Support for Distributed Transactions under MTS/COM+

Reality V10.0 Differences Supplement v0.1 Page 67 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 8-1. COM+ Distributed Transactions

A local transaction is committed when the final update in that logical group is applied to

the database. Up to that point, the transaction can be rolled back if remaining updates

Distributed Transactions

fail to complete because of process or system failure, or because the transaction is

deliberately aborted. The transaction is also rolled back if remaining updates fail to

complete before the specified timeout period.

A distributed transaction has a two phase commit. In the first phase, each participating

database is requested to prepare their transactions for commitment; then, providing

they all return a successful outcome to phase-one, they enter phase-two whereby they

are requested to commit their transactions. If one or more databases fail to prepare

their transaction branches, the TM requests all databases to roll back their updates,

effectively aborting the transaction. Once a transaction branch is prepared, the database

effectively guarantees that it is capable of committing the transaction, even after a

database crash. If there is a crash, the database may be requested to commit the

transaction twice - once during normal operation and once after system recovery.

Section 8: Support for Distributed Transactions under MTS/COM+

Reality V10.0 Differences Supplement v0.1 Page 68 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Until a transaction has been prepared, it can be rolled back, for example, if it exceeds

the local transaction timeout value. The Reality SQL server informs the MDTC of the

rollback and the MDTC rolls back all other participating transaction branch updates. Once

a transaction is prepared, it cannot be rolled back by the local TM. In the case of a

failure, the MDTC runs a recovery process, examining each prepared transaction branch

in turn and requesting either a commit or a rollback.

8.2 MDTC Recovery Process

Recovery of processes using distributed transactions is handled by the MDTC.

In a distributed environment, failure can occur on the client, on the Reality server, or at

any point on the network. Failures on the Reality server are of two types: process failure

and system failure. When a process fails:

• if the transaction branch has not been prepared, updates are rolled back, any locks

taken are released, and the remote TM aborts the transaction.

• if the transaction branch has been prepared, it persists in that state - as do any

locks taken on its behalf - even though the process itself may have terminated.

When the MDTC initiates its automated recovery, it requests the transaction branch

to either commit or roll back its transaction updates, effectively completing the

transaction, and releasing all associated locks.

When a system failure occurs, Reality runs its standard transaction recovery phase, in

which it scans the raw log and rolls back all uncompleted local transaction updates.

During this period all Reality databases on the system are locked to all users. If the raw

log contains any prepared distributed transactions, it is the responsibility of the MDTC to

initiate and complete recovery of these outstanding transaction branches. When both

local and distributed transactions have been resolved, the databases are released back

to users.

If the MDTC itself fails, any outstanding prepared transaction branches will persist on the

raw log until the MDTC restarts and connects to run the recovery process. This is known

as cold recovery.

If the MDTC does not fail, it will connect to the Reality system immediately and start the

recovery process. This is known as hot recovery.

When the MDTC connects to the Reality system to initiate the recovery, the connection is

to the RXA server instead of to the SQL server as shown in Figure 8-1. The RXA server

provides the MDTC with details of all prepared transactions currently in the raw log. For

each of these transactions, the MDTC issues a request to the RXA server to roll back or

commit. When all of the rollback or commit operations have completed successfully, the

MDTC closes the connection.

If the MDTC’s automatic recovery process fails to complete, it is possible to carry out

manual recovery of distributed transactions via the rxaserver command.

8.2.1 rxaserver Command

f, following a system failure, the raw log contains prepared transactions for which the

MDTC has not issued a request to rollback or commit; Reality databases on the system

(all of which need access to the raw log) will remain locked to users. If the MDTC’s

automatic recovery process fails to complete, the rxaserver command allows you to

manually commit or rollback prepared transactions.

Caution

In order to make the decision to rollback or commit a prepared transaction, you must have
information about the state of all other systems participating in that transaction.

Section 8: Support for Distributed Transactions under MTS/COM+

Reality V10.0 Differences Supplement v0.1 Page 69 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

At the UNIX or Windows system prompt, execute the following command to list all

distributed transactions in the raw log:

rxaserver –l

Transaction 001 of 002

======================

Database : d:\dbases\live DbKey : 1 Port : 401 Pid : 1896

Status : ACTIVE Started: 11:33 Offset: 0x08a18a00 Flags: 0x02

XID : XA Transaction Identifier

FormatID : 0x4478019 Gtrid : 48 Bqual : 16

Data : 9FB37754665F574D819A550FC9CAF9602364B472884F3F4EBA08302B03D699B1

 990B2E20B08A9C479BDABA08BC1C1FBD0B8F02E2CC317D41B1B6F4E260D0FDCD

Transaction 002 of 002

======================

Database : d:\dbases\live DbKey : 1 Port : 404 Pid : 2073

Status : PREPARED Started: 11:35 Offset: 0x08a1C800 Flags: 0x82

XID : XA Transaction Identifier

FormatID : 0x4478019 Gtrid : 48 Bqual : 16

Data : F6737754665F574D819A550FC9CAF5102364B472884F3F4EBA08302B03D699B1

 990B2E20B08A9C479BDABA08BC1C1FBD0B8F02E2CC317D6AB109C2AAF020DE79

Execute the following command to run the manual recovery process:

rxaserver –r

The recovery process displays each prepared transaction in turn, giving you the option to

abort or commit.

Transaction 001 of 001

======================

Database : d:\dbases\live DbKey : 1 Port : 404 Pid : 2073

Status : PREPARED Started: 11:35 Offset: 0x08a1C800 Flags: 0x82

XID : XA Transaction Identifier

FormatID : 0x4478019 Gtrid : 48 Bqual : 16

Data : F6737754665F574D819A550FC9CAF5102364B472884F3F4EBA08302B03D699B1

 990B2E20B08A9C479BDABA08BC1C1FBD0B8F02E2CC317D6AB109C2AAF020DE79

Enter 'I'gnore (default), 'A'bort, 'C'ommit : C You are about to Commit

transaction 1 do you want to continue? <Y/N> : Y

Operation to Commit transaction 1 was successful, result 0

Reality V10.0 Differences Supplement v0.1 Page 70 of 70

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

