

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Reality v9.0
C API Reference Manual

Copyright © NEC Software Solutions UK Limited (Company No.00968498) ("NEC") [2002]. All rights reserved.

Reality v9.0 C API Reference Manual v0.1 Page 2 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Document control

Software Version Document

Status

Document

Revision

Issue Date Reason for

Change

9.0 Published 0.1 April, 2002 Final draft

Prepared by

Name Contact details

Pubali Pramanik pubali.pramanik@necsws.com

Vijita Patel vijita.patel@necsws.com

mailto:pubali.pramanik@necsws.com
mailto:vijita.patel@necsws.com

Table of Contents

Reality v9.0 C API Reference Manual v0.1 Page 3 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table of Contents

Section 1: About this manual .. 7

1.1 Overview .. 7

1.2 Purpose of this manual ... 7

1.3 Contents of this manual .. 7

Section 2: Introduction to Reality interfaces ... 10

2.1 Overview ... 10

2.2 Interactive key files ... 10

2.3 Inter-Process Communication (IPC) ... 16

2.4 Error handling and return codes .. 20

Section 3: Reality Communications Interface functions 22

3.1 Rcc functions .. 22

3.2 RccAccept .. 24

3.3 RccConnect .. 26

3.4 RccDisconnect .. 28

3.5 RccError .. 29

3.6 RccReceive ... 30

3.7 RccReceiveMsg ... 32

3.8 RccRecWait .. 34

3.9 RccRecWaitMsg ... 36

3.10 RccSend ... 38

3.11 RccSendMsg ... 39

3.12 RccSetAcceptOptions ... 40

3.13 RccSetConnectOptions ... 41

Section 4: Reality Filing Interface ... 43

4.1 Rfc functions .. 43

4.2 Using the Rfc functions .. 44

4.3 RfcClear ... 45

4.4 RfcClearFile .. 46

4.5 RfcClose .. 46

4.6 RfcClose .. 47

4.7 RfcCreateFile .. 48

4.8 RfcDelete ... 50

4.9 RfcDeleteFile .. 50

4.10 RfcDisconnect ... 51

4.11 RfcGetAccount .. 51

4.12 RfcGetHeader ... 52

Table of Contents

Reality v9.0 C API Reference Manual v0.1 Page 4 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.13 RfcInsert .. 53

4.14 RfcInsertUnlock .. 54

4.15 RfcLockRead ... 54

4.16 RfcLockReadAttr.. 55

4.17 RfcOpenFile .. 57

4.18 RfcRead ... 57

4.19 RfcReadAttr .. 58

4.20 RfcReadRest ... 59

4.21 RfcRenameFile .. 60

4.22 RfcSetAccount .. 61

4.23 RfcSetFileOptions .. 62

4.24 RfcSetHeader ... 62

4.25 RfcSetLockMode .. 63

4.26 RfcSetRetUpdLocks.. 63

4.27 RfcUnlock ... 64

4.28 RfcUnlockAll ... 64

4.29 RfcWrite ... 65

4.30 RfcWriteAppend .. 65

4.31 RfcWriteAttr ... 66

4.32 RfcWriteAttrUnlock .. 67

4.33 RfcWriteUnlock ... 68

Section 5: Reality General Service Interface ... 70

5.1 Reality General Services Interface Functions .. 70

5.2 RgcDeleteAttr ... 71

5.3 RgcDeleteSubValue ... 72

5.4 RgcDeleteValue .. 72

5.5 RgcErrMsg ... 73

5.6 RgcFindAttr .. 73

5.7 RgcFindSubValue .. 74

5.8 RgcFindValue.. 75

5.9 RgcGetAttr ... 75

5.10 RgcGetNumAttr ... 76

5.11 RgcGetSubValue ... 76

5.12 RgcGetTimeDate ... 77

5.13 RgcGetValue ... 78

5.14 RgcInsertAttr .. 78

5.15 RgcInsertNumAttr ... 79

Table of Contents

Reality v9.0 C API Reference Manual v0.1 Page 5 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.16 RgcInsertNumSubValue ... 80

5.17 RgcInsertNumValue ... 81

5.18 RgcInsertSubValue .. 82

5.19 RgcInsertValue ... 83

5.20 RgcPerror ... 84

5.21 RgcSetAttr ... 85

5.22 RgcSetNumAttr ... 85

5.23 RgcSetNumSubValue ... 86

5.24 RgcSetNumValue .. 87

5.25 RgcSetSubValue .. 88

5.26 RgcSetValue ... 89

5.27 RgcShutDownServices ... 90

5.28 RgcStartUpServices ... 90

Section 6: Reality Index Sequential Services Interface 92

6.1 Introduction ... 92

6.2 Index description structure .. 98

6.3 RiscClear ... 99

6.4 RiscClose ... 100

6.5 RiscConnect ... 100

6.6 RiscCreateFile ... 102

6.7 RiscCreateIndex ... 103

6.8 RiscDelCurr .. 104

6.9 RiscDelete .. 104

6.10 RiscDeleteFile ... 105

6.11 RiscDeleteIndex .. 105

6.12 RiscDescribeIndex ... 106

6.13 RiscDisconnect .. 107

6.14 RiscGetMultiValues .. 107

6.15 RiscInsert ... 108

6.16 RiscOpen .. 108

6.17 RiscPosition .. 109

6.18 RiscRead .. 110

6.19 RiscReadByKey ... 112

6.20 RiscReadRest .. 113

6.21 RiscSelect .. 114

6.22 RiscUnlock .. 115

6.23 RiscUpdate ... 115

Table of Contents

Reality v9.0 C API Reference Manual v0.1 Page 6 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.24 RiscWrite ... 116

Section 7: Reality List Services Interface .. 117

7.1 Rlc functions .. 117

7.2 RlcCloseList .. 118

7.3 RlcDeleteList .. 118

7.4 RlcGetList .. 118

7.5 RlcGetMultiValues ... 119

7.6 RlcLockReadNextItem .. 120

7.7 RlcMakeList .. 121

7.8 RlcNext .. 121

7.9 RlcReadNextItem .. 122

7.10 RlcSaveList ... 123

7.11 RlcSelect .. 124

Section 8: Appendix A – Error Return Codes .. 126

8.1 Introduction ... 126

Section 9: Appendix B – Connecting to multiple databases 136

9.1 Overview ... 136

9.2 Example .. 136

Section 10: Appendix C – Example programs .. 138

10.1 File access .. 138

10.2 Client and server ... 140

10.3 Using the Risc interface in multi-threaded applications 146

Section 11: Glossary .. 155

Section 1: About this manual

Reality v9.0 C API Reference Manual v0.1 Page 7 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 1: About this manual
This chapter gives a brief overview of the C programming interface, explains the purpose

of this guide and the conventions used within it, and references other manuals which

provide further information.

1.1 Overview

The Reality Interface described in this manual enables communication between UNIX and

Reality or RealityX environments. To be more precise, it allows a C program to:

• Access files in a Reality or RealityX environment.

• Communicate with a DataBasic program running in a Reality or RealityX

environment.

To achieve this, the C program must call the appropriate functions from the C function

libraries provided:

• For UNIX or Microsoft Windows NT/2000 systems running Reality, the C function

libraries are provided as an integral part of Reality.

• For other UNIX systems, the C function libraries are provided as part of the UNIX-

Connect product.

UNIX-Connect is the generic name for a family of products which enable communication

between NEC supported UNIX and Reality environments. For example, to enable

communication between a UNIX system (without Reality) and a Reality 7.0 system, the

UNIX-Connect product must be purchased and installed on the UNIX system.

Note

Remote UNIX and Reality environments must be connected via an IEEE 802.3 Local

Area Network (Ethernet LAN) or via an X.25 Wide Area Network (X.25 WAN).

1.2 Purpose of this manual

This manual is intended for programmers who wish to do either of the following:

• Write C programs to access Reality or RealityX files.

• Write application programs in C which need to communicate with DataBasic

programs in Reality or RealityX environments.

It is assumed that readers of this manual are familiar with the UNIX operating

environment and the C programming language and that they have some knowledge of

the Reality operating environment and the DataBasic programming language.

1.3 Contents of this manual

The remaining chapters of this guide are organised as follows:

• Chapter 2, Introduction to Reality Interfaces, gives a general overview of UNIX-

Connect and Reality Networking, Interactive File Access and Interprocess

Communication. It also explains how the Reality interfaces work. It is important

that you read this chapter before attempting to use the Reality interfaces.

Section 1: About this manual

Reality v9.0 C API Reference Manual v0.1 Page 8 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Chapter 3, Reality Communications Interface, details the Reality Communications

Interface (Rcc) functions.

• Chapter 4, Reality Filing Interface, details the Reality Filing Interface (Rfc)

functions.

• Chapter 5, Reality General Services Interface, details the Reality General Services

Interface (Rgc) functions.

• Chapter 6, Reality Indexed Access Interface, details the Reality Indexed Access

Interface (Risc) functions.

• Chapter 7, Reality List Services Interface, details the Reality List Services

Interface (Rlc) functions.

• Appendix A, Error Return Codes, lists the return codes referenced in the body of

the manual and gives their meaning.

• Appendix B, Connecting to Multiple Databases, describes how to make connections

to multiple Reality databases using the Rfc and Risc interfaces.

• Appendix C, Example Programs, contains example C programs demonstrating

Interactive File Access and Inter-process Communication.

1.3.1 Comment sheet

A User Comment Sheet is provided for your comments on this manual.

If you have any comments at all, please let us know - it helps us to improve our

documentation.

If your comment sheet has already been used, please write to the Technical Publications

Manager at the address on the front cover, or email techpubs@NEC-is.com.

1.3.2 Abbreviations

A glossary of terms and abbreviations used in this manual is included at the end of the

manual.

1.3.3 Conventions

This manual uses the following conventions:

Conventions Description

Text Bold text shown in this typeface is used to indicate input which

must be typed at the terminal.

Text
Text shown in this typeface is used to show text output on the

screen.

Bold text

Bold text in synopsis descriptions represents characters input

exactly as shown. For example:

 RccConnect

text

Characters or words in italics indicate parameters which

must be supplied by the programmer. For example, in,

 RccSend (Shandle, Buffer, Length)

the arguments Shandle, Buffer and Length are italicized to indicate

this is the general form for the RccSend routine. In the program

you must supply specific arguments.

Italic text is also used for titles of documents referred to by this

Section 1: About this manual

Reality v9.0 C API Reference Manual v0.1 Page 9 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Conventions Description

document.

[brackets]

Brackets enclose optional parameters. For example, in,

 accountname[,password]

the brackets around ,password indicate that this is an optional

parameter which, when given, must be separated from

accountname by a comma.

vertical

ellipses...

Vertical ellipses are used in program examples to indicate that a

portion of the program has been omitted.

0xNN This denotes a hexadecimal value.

1.3.4 References

The following manuals contain further information:

• UNIX-Connect System Administration Guide

• Reality Reference Manual Volume 3: Administration

• UNIX-Connect User Guide

• DataBasic Reference Manual

• English Reference Manual

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 10 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 2: Introduction to Reality interfaces
This chapter provides an overview of the Reality interfaces. It introduces Interactive File

Access (IFA) and Inter-process Communication (IPC) and explains how they work. It is

important that you read the information contained in this chapter before attempting to

use the Reality interfaces.

2.1 Overview

The Reality IFA and IPC Interfaces enable a C program running in a UNIX or Windows

environment to access standard Reality features. A program can:

• Access Reality files using Interactive File Access (IFA).

• Communicate with DataBasic programs running in a Reality environment using

Inter-process Communication (IPC).

The implementation of the Reality interfaces is such that a C program can access Reality

files or communicate with DataBasic programs using the same methods regardless of

whether the Reality environment is local or remote.

2.2 Interactive key files

The Reality Interactive File Access (IFA) Interface enables an application running in the

UNIX or Microsoft Windows environment to read from and write to Reality files,

manipulate the data within them and use Reality list handling features. IFA comprises

four interfaces:

• Reality General Services Interface (Rgc).

• Reality Filing Interface (Rfc).

• Reality List Services Interface (Rlc).

• Reality Index Sequential Services Interface (Risc). This provides a C-ISAM-like

interface to Reality files, items and indexes. An application will normally use either

the Rfc interface or the Risc interface.

When using these interfaces, an application can access the Reality environment directly

or via a Reality server, depending on how the application is linked.

• To access the Reality environment directly, the application must be running on the

same physical system (local) as the Reality environment and must be linked with

the main Reality libraries.

• To access the Reality environment via a Reality server, the application must be

running on UNIX and be linked with the UNIX-Connect library. This allows the

application to access a Reality environment on the same physical system (local),

or on a different physical system (remote). When using the client-server interface,

the application may communicate with the following:

o A local Reality environment running on UNIX.

o A remote Reality environment running on UNIX or Windows NT/2000.

o A remote Reality environment running on NEC proprietary Series 18/19

hardware (provided the client communications support OSI).

Note

The Risc Interface is only available if the application is linked with the main Reality

libraries.

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 11 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The Reality IFA Interface API provides a consistent interface to the application,

irrespective of the connection mechanism used to communicate with the Reality

environment.

Figure 2-1. Application Using IFA To Access Reality Locally

Figure 2-1 shows a layered model that illustrates an application accessing Reality on a

local machine. Communication between the application and Reality is provided by a

collection of C API functions that collectively form the Reality IFA Interface. The API

functions make calls to the Reality Services provided in the Reality Environment layer,

which in turn access the databases via the underlying UNIX or Windows operating

system. The Reality Interface and Reality Services are provided as part of Reality.

Figure 2-2. Application Using IFA to Access Reality Remotely

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 12 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 2-2 shows an application accessing a remote Reality environment. As with the

local model, the application communicates directly with the Reality IFA Interface by using

C API functions. In this case, however, the Reality IFA Interface makes calls to the UNIX–

Connect Libraries. (UNIX-Connect is supplied on the Reality CD.) The operating

system communicates with the Reality environment remotely via a LAN.

2.2.1 Reality general services

The Reality General Services (Rgc) Interface is a library of functions that allow a C

program to do the following:

• Start up and shut down all services

• Manipulate items, attributes, values and subvalues

• Display error messages

• Obtain the time and date in Reality format

The Rgc functions are described in detail in Chapter 5.

2.2.1.1 Starting-up and shutting-down services

RgcStartUpServices is a macro that must be called by a C program that is going to use

Rfc, Rgc, Rlc or Risc services.

The RgcShutDownServices function must be called to terminate those services initialized

by RgcStartUpServices.

2.2.1.2 Data manipulation

The Rgc functions work on items which have been read into a buffer using the RfcRead

function (RfcRead is part of the Rfc services). They allow the construction and

manipulation of strings of data containing Reality entities – attributes, values and

subvalues.

2.2.1.3 Error handling

Almost all IFA functions return an integer that is a numeric return code. In general, a

return value of zero indicates success. Other values can be translated by calling the

RgcErrMsg function to access error message text associated with a particular return code.

2.2.2 Reality filing services

The Reality Filing Services (Rfc) Interface is a library of functions that allow a C program

to connect to a database and then create, delete, clear, read from and write to Reality

files. The RgcStartUpServices macro (see above) must be called to initialise the Rfc

services.

The Rfc functions are described in detail in Chapter 4.

2.2.2.1 Connecting to a database

Note

RgcStartUpServices initialises only those services that are used by the program; that

is, for which header files have been included. See later in this chapter for details of

header files.

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 13 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The RfcConnect function connects to a specific account on a database. For a connection

to a Series 18/19 system, the database is the remote system name.

2.2.2.2 Account handles

Once a connection to a database has been established, the account name can be saved

to an account handle using the RfcGetAccount function. Having saved the account

handle you can use RfcConnect to connect to a second database (or another account on

the same database) and, subsequently, return to the first by simply referencing the

account handle (using RfcSetAccount).

General rules for connecting to multiple databases are described in Appendix B.

2.2.2.3 File handles

To open a file, the RfcOpenFile function must be called. The RfcOpenFile function is

passed a file name and returns a file handle. This file handle is then used by all functions

that perform operations on open files.

2.2.2.4 File names

The file name parameter (used by RfcOpenFile and other functions) can take one of

three forms:

File names Description

'filename' Specifies the default data section.

'filename,dataname' Specifies a particular data section.

‘DICT filename' Specifies the dictionary section.

2.2.3 Reality list services

The Reality List Services (Rlc) Interface is a library of functions that allow a C program to

use Reality list handling features. The RgcStartUpServices macro (see page 2-5) must

be called to initialise the Rlc services.

Reality lists are lists of item-ids created by list-generating English verbs. A list can be

saved in a file item – this can be in POINTER-FILE or another specified file. Alternatively,

a list can be dynamically created from the item-ids of an open file. For further details on

lists, see English Reference Manual.

The Rlc Interface allows C programs to manipulate lists in the Reality environment.

Functions are provided to create lists, save and retrieve the created lists to/from files,

and use the lists to access data from a specified file.

The Rlc functions are described in detail in Chapter 7.

2.2.3.1 List handles

Note

Account handles only need to be saved for connections to multiple databases.

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 14 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A list can be created from the item-ids of an open file with the RlcMakeList function.

This returns a list handle. This list handle is used by all functions that perform operations

on lists.

2.2.4 Reality index sequential services

The Reality Index Sequential Services (Risc) Interface is a library of functions that allow a

C program to use an alternative interface to Reality files and indexes. This interface is

more in the style of C-ISAM, and will therefore be easier to use for programmers and

applications accustomed to C-ISAM and similar products.

This interface is not a direct replacement for C-ISAM – the intention is to simplify the task

of extending or converting existing programs which already use C-ISAM, to be able to use

Reality files and indexes. This interface may also prove more appealing to experienced C

programmers writing new applications to interface directly with a Reality database.

2.2.4.1 The C-ISAM view of Reality indexed files

The main aim of this interface is to hide the special nature of the Reality item-id from the

programmer. It works with records and keys and introduces the concept of a current

record.

A record consists of the Reality item-id and the item data, separated by an Attribute Mark

(0xFE). The item data consists of several variable length fields separated by

Attribute Marks. The Reality item-id appears as the first field in each record.

Although this interface makes the Reality item-id appear as part of the record data, it still

has special significance to the underlying Reality File System. It is still the identifier of

the record and as such must have a different value in every record (to use relational

database terminology, the item-id is always the primary key). A Reality file cannot

contain two different records with the same value in the first field.

A key is a Reality Key Value. In the simplest case where the file is indexed on a single

field with no special conversions, the key is just the appropriate field value. In an Index

defined on several fields (again with no special conversions) the key comprises the

appropriate field values separated by Attribute Marks.

With complex Indexes including English conversions, the relationship between the record

and the key value is less obvious.

2.2.5 Using IFA functions

IFA provides a large number of file access functions enabling a C program to perform a

wide variety of operations on a Reality file. However, it can also be very simple to use.

For example, to alter the contents of an attribute, a C program calls the following

functions:

IFA functions Description

RgcStartUpServices This is to initialise the interactive file access functions.

RfcConnect This is to connect to the Reality database.

RfcOpen This is to open the Reality file.

RfcRead This is to read the item.

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 15 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

IFA functions Description

RgcSetAttr This is to overwrite the attribute.

RfcWrite This is to write the item to the file.

RfcClose This is to close the file.

RfcDisconnect This is to disconnect from the Reality database.

RgcShutDownServices This is to close the interactive file access functions.

2.2.6 Type definitions

A number of type definitions are provided for use with the IFA functions (see below). The

way in which the various type definitions are used is described under the appropriate

function descriptions.

Type definitions are provided in the following include files, which must be #included in

every program which is to use Rfc, Rgc, Rlc or Risc as follows:

#include <ros/rfc.h> /* for Rfc services */

#include <ros/rlc.h> /* for Rlc services */

#include <ros/rgc.h> /* for Rgc services */

#include <ros/risc.h> /* for Risc services */

On Windows systems, to allow these files to be included as shown above, the following

should be added to the complier’s include path:

%REALROOT%\include

2.2.7 Compiling and linking your program

A number of type definitions are provided for use with the IFA functions (see below). The

way in which the various type definitions are used is described under the appropriate

function descriptions.

2.2.7.1 UNIX

When you compile and link a program that uses IFA, the requisite libraries must be

specified. The Reality (local) and UNIX-Connect (client-server) implementations of

Interactive File Access use different libraries, though the functions are identical and a

program written to use one implementation can be linked to use the other.

• A program using the Reality implementation must be linked to realc.a, reals.a and

the curses library.

• A program using the UNIX-Connect implementation must be linked to the IFA

library.

• All programs must be compiled and linked to use the following libraries: Reality

Communications Services (Rcs), X.25 (regardless of whether the system has an

X.25 connection or not), sockets and the transport layer interface (xti on AIX; nsl

otherwise).

Note

You need only include rfc.h, rlc.h and risc.h if the corresponding services (Rlc, Rfc or

Risc) are being used. You must, however, always include rgc.h.

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 16 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

So, for example, a program called ifa_eg.c would be compiled and linked on a UNIX

machine (except AIX) as follows:

For Reality IFA:

cc ifa_eg.c $REALROOT/lib/realc.a $REALROOT/lib/reals.a -lrcs

$REALROOT/lib/reals.a -lsx25 -lsocket -lnsl -lcurses

For UNIX-Connect IFA:

cc ifa_eg.c -lifa -lrcs -lsx25 -lsocket -lnsl

On AIX, replace the -lnsl parameter with -lxti.

On site linking:

On a UNIX system, to avoid having to re-compile application programs each time a new

version of UNIX-Connect or Reality is released, programs should be compiled and linked

separately.

So, for UNIX-Connect IFA, a program called ifa_eg.c would be compiled as follows:

cc -c ifa_eg.c

This generates the file ifa_eg.o, which must then be linked as follows:

cc ifa_eg.o -lifa -lrcs -lsx25 -lsocket -lnsl

On AIX, replace the -lnsl parameter with -lxti.

This means that if a new version of UNIX-Connect or Reality is released there is no need

to re-compile the program ifa_eg.c although it must be re-linked. This is known as

onsite linking.

2.2.7.2 Windows

On a Windows platform, you will probably develop applications in an Integrated

Development Environment (IDE) such as Microsoft’s Visual Studio. The IDE must be set

up to include the relevant header files and library files.

For accessing databases locally, the relevant file locations are:

%REALROOT%\lib\realc.dll
%REALROOT%\lib\realc.lib
%REALROOT%\include\ros\rlc.h
%REALROOT%\include\ros\rfc.h
%REALROOT%\include\ros\rgc.h
%REALROOT%\include\ros\risc.h

2.3 Inter-Process Communication (IPC)

The Reality IPC Interface enables an application running in the UNIX environment to

access the Reality environment via a Reality server, using low-level communications

function calls. A program can connect to another program, send and receive data, and

disconnect from the program using the NEC Distributed Data Access (DDA)

protocol.

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 17 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

When using IPC, the application must always use the client-server interface, whether the

Reality environment is local or remote.

Figure 2-3. Application Using IPC To Access Reality Remotely

Figure 2-3 shows an application accessing a Reality environment remotely. The

application communicates directly with the Reality IPC Interface by using C API functions.

The Reality IPC Interface makes calls to the UNIX–Connect Libraries. (UNIXConnect is

available from NEC as a separate product.) The operating system communicates with the

Reality environment remotely via a LAN.

2.3.1 Function libraries

The Reality IPC interface is provided by means of the Rcc library. This is provided as part

of the UNIX-Connect Reality Communications Service (Rcs). The relevant library

must be declared when the program is linked.

Function libraries Definition

/usr/lib/librcs.a Interprocess Communications library

/usr/lib/libsocket.a Socket Interface library

/usr/lib/libnsl.a Transport Layer Interface library on SV/88 systems

/usr/lib/libxti.a Transport Layer Interface library on AIX systems

/usr/lib/libsx25.a X.25 Interface library

2.3.2 DDA

Distributed Data Access (DDA) is the NEC proprietary protocol for the exchange of

messages between inter-connected systems. A DDA message consists of the following

fields:

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 18 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• A function code (2 bytes) – The meanings of function codes sent between user

written programs are defined by the programs themselves.

Note

Function codes greater than 0x3FFF are reserved for internal use and should not be used by user-

written programs.

• A reference number (1 byte) – The meanings of reference numbers sent between

user-written programs are defined by the programs themselves.

• Qualifier data (up to 255 bytes) – The use of qualifier data is defined by the

communicating programs.

• Qualifier length (1 byte) – Specifies the length of the qualifier data.

• Data – This is the main body of information sent to the other program.

• Data length (4 bytes) – Specifies the length of the data.

A DDA message is constructed my means of a Message Control Block (MCB). This is a

structure containing fields for each of the elements listed above. The MCB structure is

described in detail in Chapter 3.

Note

The function code, reference number and qualifier are all optional. If you are not using these

fields, you can use Simple functions (see below) that transfer data without using an MCB.

2.3.3 Data transfer functions

The Rcc library provides two types of data transfer function:

• Message functions

o RccSendMsg

o RccReceiveMsg

o RccRecWaitMsg

These allow a program to send and receive complete DDA messages using

a Message Control Block.

• Simple functions

o RccSend

o RccReceive

o RccRecWait

These allow the user to transfer data without having to explicitly set up an

MCB.

Note

Although, when you use RccSend, you do not provide values for the function code, reference

number and qualifier, the data is transferred in DDA format. The corresponding receive functions

(RccReceive and RccRecWait) discard any function code, reference number and qualifier included

in a DDA message.

2.3.4 Clients and servers

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 19 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A program may be either a client (initiates a connection) or a server (responds to a client

program).

Typically, a client application starts up a server and sends a command message, the

server actions the command and returns a response message. So, a typical client

program will execute the following commands:

Connect

Send

Receive

Disconnect

and a typical server program will execute the following commands:

Accept

Receive

Send

Disconnect

The send/receive sequences may loop as many times as necessary until a disconnect or

a timeout occurs.

Client and server programs can be written in C, to run in the UNIX environment, or in

DataBasic, to run in the Reality environment. Normally the client-server pair will

comprise one C and one DataBasic program but the Rcc functions can be used to enable

C programs to communicate as a client-server pair. In C programs, a client program calls

the RccConnect function to initiate a connection, and a server calls the RccAccept

function to respond to a client program.

2.3.5 Session references

Once a connection is established it is accessed by means of a session reference. A

session reference is simply a number used to indicate to underlying software (which

handles all program-to-program connections) which connection the program is accessing.

A client program passes a pointer to a session reference variable to RccConnect. The

session reference is returned by RccConnect and must be used in all subsequent function

calls that apply to the same connection.

Similarly, a server program written in C passes a pointer to a session reference variable

to RccAccept. The session reference is returned by RccAccept and must be used in all

subsequent function calls that apply to the same connection.

2.3.6 Using Rcc

The Rcc functions are held in the Reality Communications Library (/usr/lib/librcs.a).

2.3.6.1 Type definitions

In addition to the functions themselves a number of type definitions are provided for use

when calling the functions (for details refer to Chapter 3). Programs that use Rcc should

#include the appropriate header file as follows:

#include <ros/rcc.h>

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 20 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

To allow this file to be included as shown above, the following should be added to the

complier’s include path:

/usr/include

2.3.7 Compiling and linking your program

A program that uses Rcc functions must be compiled to use the Reality Communications

Services (Rcs) library. All programs written to use IPC must be compiled and linked to

use the transport layer interface library (xti on AIX; nsl otherwise) and the socket library.

You must also use the X.25 library if one is available (regardless of whether the system

has an X.25 connection or not).

For example, a program called client.c might be compiled as follows:

cc client.c -lrcs -lsx25 -lsocket -lnsl

Note

1. It is important that the libraries are linked in the order shown above.

2. If no X.25 library is available, omit the –lsx25 parameter.

3. On AIX, replace the -lnsl parameter with -lxti.

4. The exact libraries used when linking may vary according to the type of system. Your NEC

support representative will be able to tell you which libraries are required on your system.

2.3.6.2 On-site linking

To avoid having to re-compile application programs each time a new version of UNIX-

Connect is released, programs should be compiled and linked separately. So, a

program called client.c would be compiled as follows:

cc -c client.c

This generates the file client.o, which might then be linked as follows:

cc client.o -lrcs -lsx25 -lsocket -lnsl

This means that if a new version of UNIX-Connect is released there is no need to

recompile the program client.c, though it must be re-linked.

2.4 Error handling and return codes

Most Reality Interface functions return an integer, which is a numeric return code. This

return code will have a value of zero if the function call is successful. If the function call is

unsuccessful, the return code will have a non-zero value. A complete

list of return codes and their meanings is given in Appendix A.

Return code definitions are #defined in the following header files:

• ros/rfe.h

• ros/rge.h

• ros/rle.h

• ros/risc.h

• ros/rce.h

Section 2: Introduction to Reality interfaces

Reality v9.0 C API Reference Manual v0.1 Page 21 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

These can be included as needed in user-written C programs that use the Reality

Interface functions. To simplify the inclusion of these in your program, add one of the

following to your compiler’s include path:

System Path

UNIX system with Reality $REALROOT/include

Windows NT/2000 system with

Reality
$REALROOT/include

UNIX system without Reality /usr/include

2.4.1 Interactive file access

Textual messages associated with Interactive File Access and Interprocess

Communication return codes can be displayed using the RgcErrMsg function.

The RgcErrMsg function is passed a return code, which it uses as an index to the error

message file, and a pointer to a buffer. RgcErrMsg extracts the textual error message

and places it in the buffer.

2.4.1.1 Example

In the example below, the if clause is executed if RetCode does not equal SUCCESS. In

these circumstances, RgcErrMsg is called to read the associated error message into the

supplied buffer, ErrorString. The printf statement displays the contents of the buffer.

if ((RetCode = RfcOpenFile(FileName,&FileHandle)) != SUCCESS) {

ErrorString = RgcErrMsg(RetCode);

(void) printf("%s\n", ErrorString);

exit(2);

}

2.4.2 InterProcess communication

Textual messages associated with InterProcess Communication function return codes can

be displayed using the RccError function (if you are using Interactive File Access as

well, however, you must use RgcErrMsg).

The RccError function is passed a return code, which it uses as an index to the error

message file, and a pointer to a buffer. RccError extracts the textual error message and

places it in the buffer.

2.4.2.1 Example

In the example below, the if clause is executed if RetCode is not equal to SUCCESS. In

these circumstances RccError is called to read the associated error message into the

supplied buffer, ErrorStr. The printf statement displays the contents of the buffer.

if ((RetCode = RccSendMsg(Reference,&Msg)) != SUCCESS) {

RccError(RetCode, ErrorStr);

printf("RccSendMsg Error : %s\n", ErrorStr);

exit(1);

}

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 22 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 3: Reality Communications Interface functions
The Reality Communications Interface (Rcc) functions enable a C program in a UNIX

environment to communicate with a DataBasic program in a Reality environment or

another C program in a UNIX environment.

3.1 Rcc functions

The Reality Communications Interface for the C Language allows C programs running in a

UNIX environment to communicate with DataBasic programs running in a Reality

environment. In fact, Rcc is a library of C functions which allows a C program to connect

to another program, send and receive data and disconnect from the program using the

NEC Distributed Data Access (DDA) protocol.

A program may be either a client (initiates a connection) or a server (responds to a client

program). Typically, a client application starts up a server and sends a command

message, the server actions the command and returns a response message.

For further details of Interprocess Communication and how it works, refer to Chapter 2.

Rcc functions Definition

RccConnect Sets up a connection.

RccSetConnect

Options

Allows the default connection settings to

be altered.

RccAccept Accepts an incoming connection.

RccSetAcceptO

ptions

Allows the default acceptance settings to

be altered.

RccSend Sends a buffer of data.

RccSendMsg Sends a formatted DDA message.

RccReceive
Receives a buffer of data (returns

immediately).

RccReceiveMsg
Receives a formatted DDA message

(returns immediately).

RccRecWait Receives a buffer of data (waits for data).

RccRecWaitMsg
Receives a formatted DDA message (waits

for data).

RccDisconnect Terminates the connection.

RccError Reads an error message.

3.1.1 Message Control Block

The Rcc message mode functions (RccSendMsg, RccReceiveMsg and RccRecWaitMsg)

must be given a pointer to a DDA Message Control Block (MCB). This is a structure of

type RCS_MCB:

typedef struct mcb {

RCS_FUNCTION Function;

RCS_REF Reference;

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 23 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

int QualLength;

int DataLength;

unsigned char * QualBuffer;

unsigned char * DataBuffer;

int MaxQualLength;

int MaxDataLength;
} RCS_MCB;

3.1.1.1 RccSendMessage

When calling RccSendMsg you must set the elements of the MCB to the following:

MCB elements Definition

Mcb.Function The DDA function code.

Mcb.Reference The DDA reference number.

Mcb.QualBuffer
A pointer to a buffer containing the DDA qualifier. The length of the

qualifier must not exceed 255 bytes.

Mcb.QualLength The length of the DDA qualifier.

Mcb.DataBuffer A pointer to a buffer containing the DDA data.

Mcb.DataLength The length of the DDA data.

Mcb.MaxQualLength Unused

Mcb.MaxQualLength Unused

3.1.1.2 RccReceiveMsg and RccRecWaitMsg

When calling RccReceiveMsg or RccRecWaitMsg you must set the following elements of

the MCB:

MCB elements Definition

Mcb.QualBuffer A pointer to a buffer in which to return the DDA qualifier. The length

of this buffer must not exceed 255 bytes.

Mcb.DataBuffer A pointer to a buffer in which to return the DDA data.

Mcb.MaxQualLength The size of the qualifier buffer.

Mcb.MaxDataLength The size of the data buffer.

On return, the elements of the MCB will be set to the following:

Mcb.Function The DDA function code.

Mcb.Reference The DDA reference number.

Mcb.QualLength The number of bytes received in Mcb.QualBuffer.

Mcb.DataLength The number of bytes received in Mcb.DataBuffer.

Mcb.QualBuffer
The pointer to the qualifier buffer. The buffer will be filled with the

DDA qualifier data.

Mcb.DataBuffer
The pointer to the DDA data buffer. The buffer will be filled with the

DDA data.

Mcb.MaxQualLength Unchanged

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 24 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

MCB elements Definition

Mcb.MaxDataLength

Normally unchanged but see note below.

Note

If the length of the DDA data exceeds that of the data buffer, the function
will return the error RCE_MOREDATA or RCE_QUALTRUNC_MOREDATA. Under

these circumstances, the MaxDataLength element will be set to the total

length of the data sent. To receive the remaining data, save the data
received by the first call, and then call RccReceiveMsg or RccRecWaitMsg

(as appropriate) again with the same MCB, repeating as necessary until

you have received all the data.

3.2 RccAccept

Purpose The RccAccept function is called by a server program to accept an incoming

connection from a client program. The function will wait until connection is

established or the connection timeout (see RccSetAcceptOptions) has expired.

Note

RccAccept is only available on UNIX systems.

Synopsis int RccAccept(PtrShandle, Account, Server, ClientId, Plid)

RCS_PSREF PtrShandle;

char * Account;

char * Server;

char * ClientId;

char* Plid;

Parameters PtrShandle A pointer to a variable in which the session

reference will be returned. The session reference

uniquely identifies the connection established and

must be used with all subsequent function calls

that make use of this connection.

Account A pointer to a string that can contain the account

name if required. This must match the account

name specified by the client program. In most

cases, this can be set to a null string or a null

pointer.

Server A pointer to a string containing the server name.

This must match the server name specified by the

client program.

ClientId A pointer to a buffer (at least 51 bytes in length)

in which the client’s identification (system-

name*user-id) will be returned.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 25 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Plid A pointer to a buffer (at least 51 bytes in length)

in which the client’s PLId will be returned.

Return

value

The RccAccept function returns SUCCESS for successful completion, or one of the

return codes listed in Appendix A. The following are likely errors:

RCE_INSUFFMEM System error: insufficient memory.

RCE_PLID_LENGTH The PLId is too long for supplied buffer. The PLId

has been truncated to 50 characters, but

otherwise the function completed successfully.

RCE_SERVER Invalid server name.

RCE_SND_IPC_MSG Send IPC message failure.

RCE_TIMEOUT Operation timed out.

RCE_USERID Invalid user-id/password.

Remarks Client and server matching The account and server names specified in the call

to RccAccept are matched against the account and

server names specified by the client program.

Similarly, the user-id specified by the client

program is matched against the UNIX user-id

from which the server program that calls the

RccAccept function is being run.

Unless the client program specifies otherwise,

when a client program requests a connection, if

the required server program is not already

running, it will be started automatically by the

session manager. A server program started by the

Session Manager runs under the UNIX user-id

specified by the client in the CONNECT statement

or

RccConnect call; and stdin, stdout and stderr are

directed to /dev/null.

If the client program has specified that the server

program should not be started automatically and

no matching server is already running, the

connection request will be queued until either a

matching server is started or the connection

timeout expires.

Before starting, a server program the session

manager executes /etc/rcsprofile if it exists. If

it does not exist, /etc/profile is executed. If

$HOME/.rcsprofile exists it is also executed,

after /etc/rcsprofile or /etc/profile.

Server environment The environment variables set up by the session

manager are HOME, PATH, SHELL and MAIL.

HOME and SHELL are set up according to the

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 26 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UNIX password file entry. PATH is set to

$HOME/bin:/usr/bin and MAIL is set to

/usr/mail/UserId.

Session reference The value returned in the PtrShandle parameter is

a unique session reference number that is used to

identify subsequent transfers over the same

connection. The client’s

identification (system-name*user-id) and physical

location identifier (PLId) are also returned (in the

ClientId and Plid parameters respectively) – these

can be used for further security checking.

Example
#include <ros/rcc.h>

.

.

.

main() {

char Server[] = "abc"; /* The name of the server */

char Account[] = "xyz"; /* The name of the account */

char ClientId[51]; /* Buffer to receive client id */

char Plid[51]; /* Buffer to receive PLId */

RCS_SREF Shandle; /* To hold session reference */

RCS_PSREF PtrShandle; /* Pointer to session reference */

int RetCode; /* To hold returned value */

char ErrorStr[80]; /* Buffer to receive error description */

PtrShandle = &Shandle; /* Point to the session reference */

.

.

.

/* Tell the user what’s going on */

printf("Accepting...\n");

/* Wait for an incoming connection.

If an error occurred ... */

if ((RetCode = RccAccept(PtrShandle, Account, Server,

ClientId, Plid)) != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display it */

printf("RccAccept Error :%s\n", ErrorStr);

exit(); /* quit */

}

.

.

.

}

In this example a server program accepts a connection from a client specifying

account name ‘xyz’ and server name ‘abc’. Shandle is used to store the session

reference, ClientId the client-id and Plid the PLId.

See also RccSetAcceptOptions for details of setting a timeout.

3.3 RccConnect

Purpose The RccConnect function is called by a client program to initiate a connection to a

server.

Synopsis int RccConnect(PtrShandle, System, Userid, Account, Server)

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 27 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RCS_PSREF PtrShandle;

char * System;

char * Userid;

char * Account;

char * Server;

Parameters PtrShandle A pointer to a variable in which the session reference will be

returned. The session reference uniquely identifies the

connection established and must be used with all

subsequent function calls that make use of this connection.

System A pointer to a string which identifies the environment to

which a connection is required; that is, the name of an

entry in /etc/ROUTE-FILE. A null string specifies the local

environment.

User A pointer to a string containing the user-id or the user-id

and password, in the form:

UserId[,Password]

If Userid is null, the USERS-FILE entry for System under the

local user- or group-id is used.

Account A pointer to a string containing the account name or the

account name and password, in the form:

Account [,Password]

The Account parameter identifies the Reality account that

holds the server program. If the account points to a null

string or is a null pointer, it will match with any account

specified by the server.

Server A pointer to a string that identifies the server program on

the remote system.

Return

value

The RccConnect function returns SUCCESS for successful completion, or one of

the return codes listed in Appendix A. The following are likely errors:

RCE_PLID Invalid Physical Location Identifier.

RCE_SERVER Invalid server name.

RCE_SND_IPC_

MSG

Send IPC message failure.

RCE_SYSTEM Invalid system name.

RCE_THOSTDISC Transport: circuit disconnected.

RCE_TIMEOUT Operation timed out.

RCE_USERID Invalid user-id/password.

Example
#include <ros/rcc.h>

.

.

.

main()

{

char[] System = "MDIS"; /* Name of system to connect to */

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 28 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

char[] Userid = "ROSEMARY"; /* User ID */

char[] Account = "PROGS"; /* Account to connect to */

char[] Server = "PROGA"; /* Name of server program */

RCS_SREF Shandle; /* To hold session reference */

RCS_PSREF PtrShandle; /* Pointer to session reference */

int RetCode; /* To hold returned value */

char ErrorStr[80]; /* Buffer to receive error description */

PtrShandle = &Shandle; /* Point to the session reference */

.

.

.

/* Tell the user what’s going on */

printf ("Connecting\n");

/* Try to connect. If an error occurred ... */

if ((RetCode = RccConnect(PtrShandle, System, Userid, Account,

Server)) != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display it */

printf("RccConnect Error: %s\n", ErrorStr);

}

.

.

.

}

In the above example the client program makes a connection to Northgate with

a user-id of ROSEMARY and starts up a server program called PROGA in the

account PROGS. The session reference is placed in Shandle.

See also RccSetConnectOptions, RccDisconnect.

3.4 RccDisconnect

Purpose The RccDisconnect function terminates a connection established by RccAccept

or RccConnect.

Synopsis int RccDisconnect(Shandle)

RCS_SREF Shandle;

Parameters Shandle The session reference of the required connection,

returned by RccAccept or RccConnect.

Return

value

The RccDisconnect function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_SND_IPC_MSG Send IPC message failure.

Remarks To minimise the risk of losing data and achieve an orderly disconnect it is

recommended that the procedure below is followed:

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 29 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If RccRecWaitMsg or RccSendMsg returns the error code RCE_THOSTDISC, the

receiving program should also issue an RccDisconnect to clean up the

connection resources. If this is not done, and the process terminates, a

process has died message appears in the session log.

Alternatively, if you know that the underlying network will be TCP/IP, you can

set the environment variable UC_USE_ORDERLY_REL to 1 – this will ensure

that TCP orderly release is used and guarantee that all data is sent before

disconnection.

Example
#include <ros/rcc.h>

RCS_SREF Shandle; /* Holds the session reference */

int RetCode; /* To hold returned value */

char ErrorStr[80]; /* Buffer to receive error description */

.

.

.

/* Tell the user what’s going on */

printf("Disconnecting...\n");

/* Try to disconnect. If an error occurred ... */

if ((RetCode = RccDisconnect(Shandle)) != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display it */

printf("RccConnect Error: %s\n", ErrorStr);

exit(); /* quit */

}

See also RccAccept, RccConnect.

3.5 RccError

Purpose The RccError function returns the description associated with a specified error

number (return code). Each Rcc function returns SUCCESS for successful

completion – any other value indicates an error. For each error code, there is a

description of the error.

Synopsis int RccError(ErrorNumber, Message)

int ErrorNumber;

char * Message;

Parameters ErrorNumber The value returned by an Rcc function.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 30 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Message A pointer to a buffer (at least 80 bytes in length) in which

RccError will return the error description.

Return

value

The RccError function returns SUCCESS for successful completion, or one of the

return codes listed in Appendix A. The following are likely errors:

RCE_ERRNUM_R

EAD

Cannot read error number from ERRMSG-FILE.

RCE_ERRMSG_L

OCATE

Cannot locate error message in ERRMSG-FILE.

RCE_ERRMSG_R

EAD

Cannot read error message from ERRMSG-FILE.

Remarks Additional diagnostic information can be obtained from the global integers

TliReason, t_errno and errno, where:

TliReason It is the reason code for the most recent disconnect

received through the TLI (Transport Layer Interface).

TliReason is set to -1 if no disconnect has been received.

t_errno It is a TLI error number.

errno It is a standard UNIX error number.

 TliReason is declared in the file rcc.h, and t_errno and errno in errno.h

and tiuser.h. If these files are #included in your program, the variables need

not be explicitly declared.

These error numbers are not always relevant but may be useful if problems are

being caused by underlying transport errors – contact your NEC support

representative for details.

Example
#include <ros/rcc.h>

int RetCode; /* To hold returned value */

/* Global error variables */

extern int TliReason;

extern int t_errno;

extern int errno;

char ErrorStr[80]; /* Buffer to receive error description */

.

.

.

/* Try to do something. If an error occurred ... */

if ((RetCode = RccSend(Shandle, Buffer, Length)) != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display the error details */

printf("RccSend Error:%s\n TliReason:%d t_errno:%d

errno:%d\n", ErrorStr, TliReason, t_errno, errno);

}

In the above example, if the RccSend function call fails, RetCode is used to

access the associated error description. In addition, the settings of TliReason,

t_errno and errno are displayed.

3.6 RccReceive

Purpose The RccReceive function receives data from a remote environment. If no data

is available, the function returns immediately.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 31 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Synopsis int RccReceive(Shandle, Buffer, BufferLength, RcvLength)

RCS_SREF Shandle;

unsigned char * Buffer;

int BufferLength;
int * RcvLength;

Parameters Shandle The session reference of the required connection, returned

by RccAccept or RccConnect.

Buffer A pointer to a buffer in which RccReceive will return the

received data.

 BufferLength The size of the receive buffer in bytes.

 RcvLength A pointer to a variable in which the length of the data

returned in Buffer will be returned.

Return

value

The RccReceive function returns SUCCESS for successful completion, or one of

the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_MOREDATA The data received is longer than the size of the supplied

data buffer (see below).

RCE_NODATA No data is available.

 RCE_THOSTDISC Transport: circuit disconnected.

 RCE_TRCV Transport: receive failure.

Remarks The RccReceive function discards any function code, reference number and

qualifier included in a DDA message – see Chapter 2 for more details.

If the length of the DDA data exceeds that of the data buffer, RccReceive will

return the error RCE_MOREDATA. To receive the remaining data, save the data

received by the first call, and then call RccReceive again, repeating as

necessary until you have received all the data.

Example
#include <ros/rcc.h>

#define BUFSIZE 1024

.

.

.

main() {

.

.

.

unsigned char Buffer[BUFSIZE]; /* Receive buffer */

int BufferLength = BUFSIZE; /* Buffer length */

int Length; /* Length of received data */

int RetCode; /* To hold returned value */

char ErrorStr[ERRSIZE]; /* Buffer for error message */

.

.

.

/* Loop until there is data available... */

while ((RetCode = RccReceive(Shandle,

Buffer,

BufferLength,

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 32 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

&Length)) == RCE_NODATA) {

.

. /* Do something while waiting for the data */

.

}

/* If an error occurred... */

if (RetCode != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display an error message */

printf("RccReceiveMsg error:%s\n ", ErrorStr);

}

else {

.

. /* Do something with the data */

.

}

.

.

.

}

In the above example, the received data is placed in Buffer and the length of

the received data is placed in Length.

See also RccRecWait, RccSend.

3.7 RccReceiveMsg

Purpose The RccReceiveMsg function receives a DDA message. If no data is available,

the function returns immediately.

Synopsis int RccReceiveMsg(Shandle, Message)

RCS_SREF Shandle;

RCS_PMCB Message;

Parameters Shandle The session reference of the required connection, returned

by RccAccept or RccConnect.

Message A pointer to a message control block (MCB) into which

RccReceiveMsg will place the data received. For details of

the message control block, see page 3-2.

Return

value

The RccReceiveMsg function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_MOREDATA The data received is longer than the size of the supplied

data buffer (see below).

RCE_NODATA No data is available.

 RCE_QUALOVFL The qualifier buffer is longer than 255 bytes.

 RCE_QUALTRUN

C

The qualifier received is longer than the size of the supplied

qualifier buffer. The qualifier is truncated.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 33 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 RCE_QUALTRUN

C_MOREDATA

Neither the data buffer nor the qualifier buffer is large

enough for the returned data.

 RCE_THOSTDISC Transport: circuit disconnected.

 RCE_TRCV Transport: receive failure.

Remarks On return from RccReceiveMsg, the elements of the MCB will be set to the

following:

Mcb.Function The DDA function code.

Mcb.Reference The DDA reference number.

Mcb.QualBuffer The pointer to the qualifier buffer. The buffer will be filled

with the DDA qualifier data.

Mcb.QualLength The number of bytes received in Mcb.QualBuffer.

Mcb.MaxQualLength Unchanged.

Mcb.MaxQualLen

gth

Unchanged.

Mcb.DataBuffer The pointer to the DDA data buffer. The buffer will be filled

with the DDA data.

Mcb.DataLength The number of bytes received in Mcb.DataBuffer.

Mcb.MaxDataLen

gth

Normally unchanged but see below.

If the length of the DDA data exceeds that of the data buffer, RccReceiveMsg

will return the error RCE_MOREDATA or RCE_QUALTRUNC_MOREDATA. Under these

circumstances, the MaxDataLength element will be set to the total length of the

data sent. To receive the remaining data, save the data received by the first

call, and then call RccReceiveMsg again with the same MCB, repeating as

necessary until you have received all the data.

Once one byte of data has been received, RccReceiveMsg will wait until it has

filled the supplied buffer or the end of the message has been reached. This is

not normally a problem, but in exceptional circumstances, network problems

could cause the transfer to take longer than usual.

Example
#include <ros/rcc.h>

#define BUFSIZE 1024

#define QUALSIZE 255

#define ERRSIZE 128

.

.

.

main () {

.

.

.

unsigned char QualBuf[QUALSIZE]; /* Qualifier buffer */

unsigned char RcvBuf[BUFSIZE]; /* Data buffer */

RCS_MCB Msg; /* Message Control Block */

RCS_PMCB PtrMsg; /* Pointer to the MCB */

int RetCode; /* To hold returned value */

char ErrorStr[ERRSIZE]; /* Buffer for error message */

.

.

.

/* Initialise the MCB */

Msg.Function = 0; /* DDA function code */

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 34 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Msg.Reference = 0; /* DDA reference number */

Msg.QualLength = 0;

Msg.DataLength = 0;

Msg.QualBuffer = QualBuf; /* Pointer to qualifer buffer */

Msg.DataBuffer = RcvBuf; /* Pointer to data buffer */

/* Size of qualifier buffer */

Msg.MaxQualLength = sizeof(QualBuf);

/* Size of data buffer */

Msg.MaxDataLength = sizeof(RcvBuf);

PtrMsg = &Msg; /* Set a reference to the MCB */

.

.

.

/* Loop until there is data available... */

while ((RetCode = RccReceiveMsg(Shandle, PtrMsg))

== RCE_NODATA) {

.

. /* Do something while waiting for the data */

.

}

/* If an error occurred... */

if (RetCode != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display an error message */

printf("RccReceiveMsg error:%s\n ", ErrorStr);

}

else {

.

. /* Do something with the data */

.

}

}

In the above example, Msg is declared as a message control block and

initialised. A formatted DDA message will be returned in Msg by RccReceiveMsg.

See also RccRecWaitMsg, RccSendMsg.

3.8 RccRecWait

Purpose The RccRecWait function receives data from a remote environment. If no

data is available, the function waits.

Synopsis int RccRecWait(Shandle, Buffer, BufferLength, RcvLength)

RCS_SREF Shandle;

unsigned char * Buffer;

int BufferLength;

int * RcvLength;

Parameters Shandle The session reference of the required connection,

returned by RccAccept or RccConnect.

Buffer A pointer to a buffer in which RccRecWait will return the

received data.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 35 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 BufferLength An integer specifying the size of the receive buffer in

bytes.

 RcvLength A pointer to a variable in which the length of the data

returned in Buffer will be returned.

Return

value

The RccRecWait function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_MOREDATA The data received is longer than the size of the supplied

data buffer (see below).

RCE_THOSTDIS

C

Transport: circuit disconnected.

 RCE_TRCV Transport: receive failure.

Remarks If the length of the DDA data exceeds that of the data buffer, RccRecWait

will return the error RCE_MOREDATA. To receive the remaining data, save the

data received by the first call, and then call RccRecWait again, repeating as

necessary until you have received all the data.

Example
#include <ros/rcc.h>

#define BUFSIZE 80

.

.

.

main()

.

.

.

unsigned char Buffer[BUFSIZE];

int BufferLength = BUFSIZE;

int Length;

int RetCode; /* To hold returned value */

char ErrorStr[ERRSIZE]; /* Buffer for error message */

.

.

.

if ((RetCode = RccRecWait(Shandle, Buffer, BufferLength,

&Length)) != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display an error message */

printf("RccRecWait Error :%s\n", ErrorStr);

}

.

.

.

}

In the above example, the received data is placed in Buffer and the length

of the data is placed in Length.

See also RccReceive, RccSend.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 36 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.9 RccRecWaitMsg

Purpose The RccRecWaitMsg function receives a DDA message. If no data is

available, the function waits.

Synopsis int RccRecWaitMsg(Shandle, Message)

RCS_SREF Shandle;

RCS_PMCB Message;

Parameters Shandle The session reference of the required connection,

returned by RccAccept or RccConnect.

Message A pointer to a message control block (MCB) into which

RccRecWaitMsg will place the data received. For details of

the message control block, see page 3-2.

Return

value

The RccRecWaitMsg function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_MOREDATA The data received is longer than the size of the supplied

data buffer (see below).

RCE_QUALOVFL The qualifier buffer is longer than 255 bytes.

RCE_QUALTRUN

C

The qualifier received is longer than the size of the

supplied

qualifier buffer. The qualifier is truncated.

RCE_QUALTRUN

C_MOREDATA

Neither the data buffer nor the qualifier buffer is large

enough for the returned data.

RCE_THOSTDIS

C

Transport: circuit disconnected.

 RCE_TRCV Transport: receive failure.

Remarks On return from RccRecWaitMsg, the elements of the MCB will be set to the

following:

Mcb.Function The DDA function code.

Mcb.Reference The DDA reference number.

Mcb.QualLength The number of bytes received in Mcb.QualBuffer.

Mcb.DataLength The number of bytes received in Mcb.DataBuffer.

Mcb.QualBuffer The pointer to the qualifier buffer. The buffer will be filled

with the DDA qualifier data.

Mcb.DataBuffer The pointer to the DDA data buffer. The buffer will be

filled with the DDA data.

Mcb.MaxQualLen

gth

Unchanged.

Mcb.MaxDataLe

ngth

Normally unchanged but see below.

If the length of the DDA data exceeds that of the data buffer,

RccRecWaitMsg will return the error RCE_MOREDATA. Under these

circumstances, the MaxDataLength element will be set to the total length of

the data sent. To receive the remaining data, save the data received by the

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 37 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

first call, and then call RccRecWaitMsg again with the same MCB, repeating

as necessary until you have received all the data.

Example
#include <ros/rcc.h>

#define BUFSIZE 1024

#define QUALSIZE 255

#define ERRSIZE 128

.

.

.

main () {

.

.

.

unsigned char QualBuf[QUALSIZE]; /* Qualifier buffer */

unsigned char RcvBuf[BUFSIZE]; /* Data buffer */

RCS_MCB Msg; /* Message Control Block */

RCS_PMCB PtrMsg; /* Pointer to the MCB */

int RetCode; /* To hold returned value */

char ErrorStr[ERRSIZE]; /* Buffer for error message */

.

.

.

/* Initialise the MCB */

Msg.Function = 0; /* DDA function code */

Msg.Reference = 0; /* DDA reference number */

Msg.QualLength = 0;

Msg.DataLength = 0;

Msg.QualBuffer = QualBuf; /* Pointer to qualifer buffer */

Msg.DataBuffer = RcvBuf; /* Pointer to data buffer */

/* Size of qualifier buffer */

Msg.MaxQualLength = sizeof(QualBuf);

/* Size of data buffer. If we set this to 0, no data will

initially be returned, but Msg.MaxDataLength will be

returned set to the total length of the data. We can then

allocate a buffer of the correct size and call RccWaitMsg

again to fetch the data. */

Msg.MaxDataLength = 0;

PtrMsg = &Msg; /* Set a reference to the MCB */

.

.

.

/* Wait for data to become available */

RetCode = RccRecWaitMsg(Shandle, PtrMsg);

/* If there is data available... */

if (RetCode == RCE_MOREDATA

|| RetCode == RCE_QUALTRUNC_MOREDATA) {

/* Allocate a buffer to receive the data */

Msg.DataBuffer = (

unsigned char *)calloc(Msg.MaxDataLength,

sizeof(unsigned char));

/* Get the data */

RetCode = RccRecWaitMsg(Shandle, PtrMsg);

}

/* If an error occurred... */

if (RetCode != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display an error message */

printf("RccRecWaitMsg error:%s\n ", ErrorStr);

}

else {

.

. /* Do something with the data */

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 38 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

.

}

/* Free up the buffer memory. */

free(Msg.DataBuffer);

}

In the above example, Msg is declared as a message control block and

initialised. A formatted DDA message is placed in Msg by RccRecWaitMsg.

See also RccReceiveMsg, RccSendMsg.

3.10 RccSend

Purpose The RccSend function sends data to a remote host.

Synopsis int RccSend(Shandle, Buffer, Length)

RCS_SREF Shandle;

unsigned char * Buffer;

int Length;

Parameters Shandle The session reference of the required connection,

returned by RccAccept or RccConnect.

Buffer A pointer to a buffer containing the data to be sent.

 Length The number of bytes in the buffer.

Return

value

The RccSend function returns SUCCESS for successful completion, or one of

the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_THOSTDIS

C

Transport: circuit disconnected.

Remarks Although, when you use RccSend, you do not provide values for the function

code, reference number and qualifier, the data is transferred in DDA format.

Example
#include <ros/rcc.h>

#define BUFSIZE 1024

.

.

.

main()

.

.

.

unsigned char Buffer[BUFSIZE]; /* Data buffer */

int Length; /* Data length */

int RetCode; /* To hold returned value */

char ErrorStr[ERRSIZE]; /* Buffer for error message */

.

.

.

/* Prompt the user to enter some data */

printf("Enter a line of data : ");

/* Fetch the data */

fgets(Buffer, BUFSIZE, stdin);

Length = strlen(Buffer);

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 39 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

/* Send the data. If unsuccessful... */

if ((RetCode = RccSend(Shandle, Buffer, Length)) != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display an error message */

printf("RccSend Error :%s\n", ErrorStr);

}

.

.

.

}

In the above example, the data in Buffer (of length, Length) is sent across

the connection referenced by Shandle.

See also RccReceive, RccRecWait.

3.11 RccSendMsg

Purpose The RccSendMsg function sends a DDA message to a remote host.

Synopsis int RccSendMsg(Shandle, Message)

RCS_SREF Shandle;

RCS_PMCB Message;

Parameters Shandle The session reference of the required connection,

returned by RccAccept or RccConnect.

Message Pointer to a message control block (MCB) containing the

DDA message to send. For details of the message control

block, see page 3-2.

Return

value

The RccSendMsg function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RCE_ILLSREF Illegal session reference.

RCE_QUALOVFL The qualifier buffer is longer than 255 bytes.

RCE_THOSTDIS

C

Transport: circuit disconnected.

Example
#include <ros/rcc.h>

#define BUFSIZE 1024

#define QUALSIZE 255

#define ERRSIZE 128

.

.

.

main () {

.

.

.

unsigned char QualBuf[QUALSIZE]; /* Qualifier buffer */

unsigned char SndBuf[BUFSIZE]; /* Data buffer */

RCS_MCB Msg; /* Message Control Block */

RCS_PMCB PtrMsg; /* Pointer to the MCB */

int RetCode; /* To hold returned value */

char ErrorStr[ERRSIZE]; /* Buffer for error message */

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 40 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

.

.

.

/* Initialise the MCB */

/* We are sending only data, so the Function number,

Reference number and Qualifier length are all set

to zero */

Msg.Function = 0; /* DDA function code */

Msg.Reference = 0; /* DDA reference number */

Msg.QualLength = 0; /* Qualifier length */

Msg.QualBuffer = QualBuf; /* Pointer to qualifier buffer */

PtrMsg = &Msg; /* Set a reference to the MCB */

.

.

.

/* Prompt the user to enter some data */

printf("Enter a line of data: ");

fgets(SndBuf, BUFSIZE, stdin);

/* Set the pointer to data buffer */

Msg.DataBuffer = SndBuf;

/* Set the MCB data length */

Msg.DataLength = strlen(SndBuf);

/* Send the data */

RetCode = RccSendMsg(Shandle, PtrMsg);

/* If an error occurred... */

if (RetCode != SUCCESS) {

/* Get the error description */

RccError(RetCode, ErrorStr);

/* Display an error message */

printf("RccSendMsg error:%s\n ", ErrorStr);

}

.

.

.

}

In the above example, Msg is declared as a message control block and

initialised. Data is read from the terminal into SndBuf, the length of SndBuf

is calculated and written to Msg.DataLength and the pointer Msg.DataBuffer

is set to SndBuf. The formatted DDA message is then sent across the

connection referenced by Shandle.

See also RccReceiveMsg, RccRecWaitMsg.

3.12 RccSetAcceptOptions

Purpose The RccSetAcceptOptions function is called to change the default settings

of accept options.

Synopsis int RccSetAcceptOptions(Flags, Timeout)

RCS_FLAGS Flags;

RCS_TIMEOUT Timeout;

Parameters Flags Must be set to one of the following:

• 0: The Timeout parameter is interpreted as

minutes.

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 41 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• RCS_SECONDS: The Timeout parameter is

interpreted as seconds.

Timeout A value within the range 0 to 255 (see flags above) within

which a connection must be made, where 0 indicates that

control is returned immediately if a client program is not

awaiting this connection.

Return

value

The RccSetAcceptOptions function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A.

Remarks If changes to the default settings are required, RccSetAcceptOptions must be

called before calling the RccAccept function. The default condition is that

Flags and Timeout are set to 0.

If RccSetAcceptOptions is used to change the accept options, the new

settings become the default settings for all further accepts.

Example
#include <ros/rcc.h>

int RetCode; /* To hold returned value */

.

.

.

if ((RetCode = RccSetAcceptOptions(0, 5)) != SUCCESS) {

// Handle the error.

}

In the above example, the timeout is altered to 5 minutes.

See also RccAccept.

3.13 RccSetConnectOptions

Purpose The RccSetConnectOptions function changes the default setting of

connection options. The default condition is that Flags is set to 0 and

Timeout is set to 1.

Synopsis int RccSetConnectOptions(Flags, Timeout)

RCS_FLAGS Flags;

RCS_TIMEOUT Timeout;

Parameters Flags RCS_SERVER_NOSTART or 0.

Setting Flags to 0 indicates that the remote server

process will be started up automatically by the remote

session manager on receipt of a connect request.

Setting Flags to RCS_SERVER_NOSTART indicates that

the server which responds to this client is not to be

started up automatically by the session manager

following a connect request. In other words, it must

either be already running (and have performed an

RccAccept) or start running within the period specified by

Timeout

Section 3: Reality Communications Interface
functions

Reality v9.0 C API Reference Manual v0.1 Page 42 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Timeout A value within the range 0 to 255 (in units of one minute)

within which the server process must issue an

RccAccept. This timeout applies regardless of whether

the server is started automatically by the session

manager or not.

Setting timeout to 0 indicates that control is returned

immediately if the server program is not already running

(has been pre-started).

Return

value

The RccSetConnectOptions function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A.

Remarks If RccSetConnectOptions is used to change the connection options, the

new settings become the default settings for all further connections.

Example
#include <ros/rcc.h>

int RetCode; /* To hold returned value */

.

.

.

if ((RetCode = RccSetConnectOptions(RCS_SERVER_NOSTART, 0))

!= SUCCESS) {

// Handle the error.

}

.

.

.

In the above example, the connection options are set so that that the server

must be running.

See also RccConnect.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 43 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 4: Reality Filing Interface
The Reality Filing Interface (Rfc) enables a UNIX program to connect to a database and

subsequently create, delete, read and write to Reality files.

4.1 Rfc functions

The Rfc functions allow a C program to connect to a database and then create, delete,

clear, read from and write to Reality files.

The RgcStartUpServices macro which is part of the Rgc services must be called to

initialise the Rfc services.

4.1.1 Establishing and terminating connections

Term or

abbreviation

Definition

RfcConnect Establishes a connection between the

application program and a database.

RfcDisconnect
Terminates a connection established by

RfcConnect.

RfcGetAccount Saves the handle of the current account.

RfcSetAccount
Changes the account handle to that of a

previously saved connection.

4.1.2 File operations

Term or

abbreviation

Definition

RfcSetFileOpti

ons

Sets options for various filing operations.

RfcOpenFile Opens a file for reading and writing.

RfcClose Closes a previously opened file.

RfcCreateFile Creates a file.

RfcDeleteFile Deletes a file.

RfcClear Clears the contents of an open file.

RfcClearFile Clears the contents of a file.

RfcRenameFile Renames a file.

RfcSetRetUpdL

ocks

Sets retrieval and update locks for file

creation.

4.1.3 Item reading and writing

Term or

abbreviation

Definition

RfcRead Reads an item from a file.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 44 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Term or

abbreviation

Definition

RfcReadRest
Retrieves data which was too long to fit into

a receive buffer.

RfcReadAttr Reads an attribute from a file item.

RfcLockRead Locks and then reads an item from a file.

RfcLockReadAt

tr

Locks a file item and then reads an

attribute.

RfcGetHeader Returns the header from the last item read.

RfcWrite Writes data to a file item.

RfcWriteUnloc

k

Writes data to a file item. On completion,

unlock the item.

RfcInsert Inserts an item into a file.

RfcInsertUnloc

k

Inserts an item into a file. On completion,

unlock the item.

RfcWriteAppen

d
Appends data to a file item.

RfcWriteAttr Writes data to one attribute of a file item.

RfcWriteAttrUn

lock

Writes data to one attribute of a file item.

On completion, unlock the item.

RfcSetHeader Sets the header for the next item written.

RfcDelete Deletes an item from a file.

4.1.4 Locks

Term or

abbreviation

Definition

RfcUnlock Unlocks a file item.

RfcUnlockAll Unlocks all the items in a file.

RfcSetLockMod

e
Sets lock control flags.

4.2 Using the Rfc functions

4.2.1 Connecting to a database

The RfcConnect function connects to a specific account on a database. For a connection

to a Series 18/19 system, the database is the remote system name.

4.2.2 File handles

To open a file, the RfcOpenFile function must be called. The RfcOpenFile function is

passed a file name and returns a file handle. This file handle is then used by all functions

which perform operations on open files.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 45 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.2.3 File names

The file name parameter (used by RfcOpenFile and other functions) can take one of

three forms:

• ‘filename’: Specifies the default data section.

• ‘filename,dataname’: Specifies a particular data section.

• ‘DICT filename’: Specifies the dictionary section.

4.2.4 Account handles

Once connected to a database the account name can be saved to an account handle

using the RfcGetAccount function. Having saved the account handle it is possible to use

RfcConnect to connect to another database (or another account on the same database)

and, subsequently, return to the first by simply referencing the account handle (using

RfcSetAccount).

Note

Account handles are only required for multiple connections to databases. General rules for

connecting to multiple databases are provided in Appendix B.

The Rfc functions can be divided into logical groups.

4.3 RfcClear

Purpose Deletes all the items in an open Reality file.

Synopsis int RfcClear(FileHandle)

RFC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

Return

value

The RccSetConnectOptions function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A.

RFE_DONTKNO

W

An error occurred in the underlying operating system.

RFE_NOACCESS Insufficient access rights.

Remarks The file to be cleared must be open. To clear a file which is not open, use

RfcClearFile.

If the file handle references a dictionary, all items are deleted except for D

pointers and self-referencing Q pointers. If the file handle references a data

section, only the data section concerned will be cleared.

Note that item locks are not checked nor released.

See also RfcClearFile.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 46 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.4 RfcClearFile

Purpose Deletes all the items in a Reality file.

Synopsis int RfcClearFile(FileName)

char * FileName;

Parameters FileHandle A pointer to a string containing the file dictionary and/or

data names. The following forms of filename may be used

as required to clear dictionary or data sections, or both:

• DICT filename: Clear dictionary.

• [DATA] filename: Clear default data section.

• filename,dataname: Clear named data section.

Return

value

The RfcClearFile function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely errors:

RFE_INVDPTR Invalid 'D' pointer.

RFE_NOACCESS Insufficient access rights.

 RFE_NOACCOU

NT

No current account.

 RFE_NOFILE No file found.

Remarks The file to be cleared should not be open. To clear a file which is open, use

RfcClear.

If a dictionary is specified, all items are deleted except D pointers and self-

referencing Q pointers.

Note that any item locks that may be set are ignored.

See also RfcClear, RfcSetFileOptions.

4.5 RfcClose

Purpose Closes a previously opened Reality file.

Synopsis int RfcClose(FileHandle)

RFC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

Return

value

The RfcClose function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RFE_DONTKNO

W

An error occurred in the underlying operating system.

Remarks Any item locks held by the file server will be released.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 47 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcOpenFile, RfcSetFileOptions.

4.6 RfcClose

Purpose Closes a previously opened Reality file.

Synopsis int RfcClose(DatabaseName, User, UserPasswd, Account, AcctPasswd)

char * DatabaseName;

char * User;

char * UserPasswd;

char * Account;

char * AcctPasswd;

Parameter

s

DatabaseName A pointer to a string containing the name of the

database.

• For programs linked with the Reality libraries,

this must be the name of a RealityX entry in the

ROUTE-FILE or the full UNIX pathname of the

database.

• For programs linked with the UNIX-Connect or

PCSNI libraries, this must be the system name of

an outgoing entry in the ROUTE-FILE.

User A pointer to a string containing the user-id or the user-

id and

password, in the form:

UserId[,Password]

If this parameter is a null string, the UNIX user-id from

which the program is being run is used. For remote

connections, this user-id is used to access the USERS-

FILE and obtain the user-id to be used when logging on

to the remote database.

UserPasswd A pointer to a string containing the password for the

user-id specified in the User parameter. This parameter

must be a null pointer, or point to a null string in case of

the following criteria:

• The password is specified in the User parameter.

• The User parameter is null.

• The specified user-id does not have a password.

Account A pointer to a string containing the account name or the

account name and password, in the form:

Account [,Password]

If this parameter is a null string, the default account for

the specified user-id will be used.

AcctPasswd A pointer to a string containing the password for the

account specified in the Account parameter. This

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 48 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcDisconnect.

4.7 RfcCreateFile

parameter must be a null pointer, or point to a null

string in case of the following criteria:

• The password is specified in the Account

parameter.

• The Account parameter is null.

• The specified account does not have a password.

Return

value

The RfcConnect function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

RFE_ACCTACTI

VE

Account handle has not been saved.

RFE_DONTKNO

W

An error occurred in the underlying operating system.

 RFE_INVACCPA

SS

Invalid logon attempt.

 RFE_INVALID Invalid database name.

Remarks When you connect to a database, an account handle is assigned and

stored internally. If you need concurrent connections to two or more

databases (or to different accounts on the same database), you can fetch

the account handle for the current connection by calling RfcGetAccount

and store it for later use. You can then use RfcConnect to connect to

another database (or another account on the same database), without

losing your connection to the first.

If you subsequently need to access the first database, you can re-

establish the connection by calling the RfcSetAccount function, specifying

the saved account handle.

In a program that will establish connections to two or more databases,

the first connection must be a dummy outer connection. RfcGetAccount

is used to fetch the account handle for this outer connection, which must

be kept open until all subsequent connections have been closed. A more

detailed description of connecting to multiple databases is provided in

Appendix B.

Purpose Creates a Reality file in the current account.

Synopsis int RfcCreateFile(FileType, Options, FileName, CreateString)

RFC_FILE_TYPE FileType;

RFC_CREATE_OPTS Options;

char * FileName;

char * CreateString;

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 49 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Parameter

s

FileType Specifies the file type – currently only

RFC_DEFAULT_FILE is supported.

Options This is a bit-significant parameter that must be set to a

combination of the following:

• RFC_OPT_DICT: See FileName.

• RFC_OPT_NOT_LOGGED: Inhibits transaction

logging.

• RFC_OPT_MOD_SEP: Modulo/separation.

Currently RFC_OPT_MOD_SEP must be selected – the

modulo and separation values are specified in the

CreateString parameter.

FileName Points to a string containing the file dictionary and/or

data names. The following forms of filename may be

used as required to create dictionary or data sections,

or both:

• filename: Create dictionary and/or default data

section.

o If RFC_OPT_DICT is not selected in the

Options parameter, specifying the

filename in this format creates the

dictionary section of filename if it does

not already exist and then creates the

default data section. An error occurs if the

default data section already exists.

o If RFC_OPT_DICT is selected in the

Options parameter, specifying the

filename in this format creates the

dictionary section of filename. An error

occurs if the dictionary already exists.

• filename,dataname: Creates the named data section,

provided the dictionary section filename exists.

• DICT filename: Creates the dictionary for the file

filename. An error occurs if the dictionary

already exists.

CreateString A pointer to a string containing the modulo and

separation for the file in the form Modulo,Separation . If

both dictionary and data sections are created, the

dictionary is created with modulo and separation both

set to 1.

Return

value

The RfcCreateFile function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DONTKNO

W

An error occurred in the underlying operating system.

RFE_NOACCESS Unable to create Reality file.

 RFE_NOACCOU

NT

No current account.

 RFE_NOFILE Dictionary file does not exist.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 50 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcDeleteFile, RfcSetFileOptions, RfcSetRetUpdLocks.

4.8 RfcDelete

See also RfcInsert, RfcInsertUnlock, RfcWrite, RfcWriteAppend, RfcWriteAttr,

RfcWriteAttrUnlock, RfcWriteUnlock.

4.9 RfcDeleteFile

 RFE_SECTEXIS

TS

Dictionary or data section already exists.

Purpose Deletes an item from a Reality file.

Synopsis int RfcDelete(FileHandle, ItemId, ItemIdLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

Parameter

s

FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

Itemid Points to a buffer containing the item-id of the item to

be deleted.

ItemIdLen The length of the item-id.

Return

value

The RfcDelete function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RFE_DONTKNO

W

An error occurred in the underlying operating system.

RFE_IDEXCEED Item-id too long.

 RFE_NOITEM Item not found.

Purpose Deletes all or part of a Reality file.

Synopsis int RfcDeleteFile(FileName)

char * FileName;

Parameter

s

FileName Points to a string containing the file dictionary and/or

data names. The following forms of filename may be

used as required to delete dictionary or data sections, or

both:

• filename: Delete all data sections including the

default.

• DICT filename: Delete dictionary (fails if there

are any data sections).

• filename,dataname: Delete specified data

section.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 51 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcCreateFile, RfcSetFileOptions.

4.10 RfcDisconnect

See also RfcConnect.

4.11 RfcGetAccount

Return

value

The RfcDeleteFile function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DATA_EXI

STS

Attempt to delete dictionary while data sections.

RFE_INVDPTR Invalid 'D' pointer.

 RFE_NOACCESS Insufficient access rights.

 RFE_NOACCOU

NT

No current account.

 RFE_NOFILE No file found.

Purpose Closes any open files and terminates the current connection.

Synopsis int RfcDisconnect()

Return

value

The RfcDisconnect function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

RFE_NODATABASE There is no current database.

Remarks You should always close all connections before terminating your program.

Note that if you have multiple concurrent connections, you must use

RfcSetAccount to make a connection the current connection before you

can close it.

At the end of a program that has made connections to multiple databases,

the final RfcDisconnect is used to close the dummy outer connection

(see Appendix B).

Purpose Returns the current account handle.

Synopsis int RfcGetAccount(AccountHandle)

RFC_ACCOUNT * AccountHandle;

Parameter

s

AccountHandle A pointer to a variable in which to return the

account handle.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 52 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcConnect, RfcSetAccount.

4.12 RfcGetHeader

Return

value

The RfcGetAccount function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

RFE_NOACCOUNT Not logged on to an account.

Remarks When you connect to a database, an account handle is assigned and

stored internally. If you need concurrent connections to two or more

databases (or to different accounts on the same database), you can

fetch the account handle for the current connection by calling

RfcGetAccount and store it for later use. You can then use RfcConnect

to connect to another database (or another account on the same

database), without losing your connection to the first.

If you subsequently need to access the first database, you can re-

establish the connection by calling the RfcSetAccount function,

specifying the saved account handle. If you save the account handle for

each connection you make, you can switch between connections as

necessary.

You should always close all connections (with RfcDisconnect) before

terminating your program.

Note

You should always save a connection’s account handle before making

another connection. If you do not, you will be unable to return to it to

disconnect.

In a program that will establish connections to two or more databases,

RfcGetAccount must always be used to save the account handle for the

dummy outer connection (see Appendix B).

Purpose Returns the date and flags information from the header of the last item

read.

Synopsis void RfcGetHeader(Flags, Date)

RFC_IFLAGS * Flags;

RGC_DATE * Date;

Parameters Flags A variable in which to return the flags setting. The

value returned will be one of the following:

• RFC_IFLAG_DPTR: The item is a D pointer.

• RFC_IFLAG_BINARY: The item is a binary

item.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 53 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcSetHeader.

4.13 RfcInsert

See also RfcDelete, RfcInsertUnlock, RfcWrite, RfcWriteAppend, RfcWriteAttr,

RfcWriteAttrUnlock, RfcWriteUnlock.

Date A variable in which to return the item date. The date

will be in internal Reality format.

Purpose Inserts an item into a Reality file.

Synopsis int RfcInsert(FileHandle, ItemId, ItemIdLen, Item, ItemLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

char * Item;

int ItemLen;

Parameters FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

ItemId A pointer to a buffer containing the item-id of the

item to be inserted.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to be stored

in the inserted item.

ItemLen The length of the item data.

Return

value

The RfcInsert function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

 RFE_DONTKNOW An error occurred in the underlying operating system.

 RFE_IDEXCEED Item-id too long.

 RFE_IEXISTS The item already exists.

Remarks RfcInsert does not change the states of any item locks – if the item is

locked when the function is called, on completion it will remain locked.

Items are normally written as standard Reality textual items. Other types of

items may be written by calling the RfcSetHeader function to set the

appropriate header flags before calling RfcInsert.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 54 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.14 RfcInsertUnlock

See also RfcDelete, RfcInsert, RfcWrite, RfcWriteAppend, RfcWriteAttr,

RfcWriteAttrUnlock, RfcWriteUnlock.

4.15 RfcLockRead

Purpose Inserts an item into a Reality file. On completion, the item is unlocked (cf.

RfcInsert).

Synopsis int RfcInsertUnlock(FileHandle, ItemId, ItemIdLen, Item, ItemLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

char * Item;

int ItemLen;

Parameters FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

ItemId A pointer to a buffer containing the item-id of the

item to be inserted.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to be stored

in the inserted item.

ItemLen The length of the item data.

Return

value

The RfcInsertUnlock function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

 RFE_DONTKNOW An error occurred in the underlying operating system.

 RFE_IDEXCEED Item-id too long.

 RFE_IEXISTS The item already exists.

Remarks Items are normally written as standard Reality textual items. Other types of

items may be written by calling the RfcSetHeader function to set the

appropriate header flags before calling RfcInsertUnlock.

Purpose Locks an item in a Reality file and then returns the contents.

Synopsis int RfcLockRead(FileHandle, ItemId, ItemIdLen, Item, ItemMaxLen,

ItemLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

char * Item;

int ItemMaxLen;

int ItemLen;

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 55 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcLockReadAttr, RfcRead, RfcReadRest, RfcSetLockMode.

4.16 RfcLockReadAttr

Parameters FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

ItemId A pointer to a buffer containing the item-id of the

item to be inserted.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to be stored

in the inserted item.

ItemMaxLen The length of the Item buffer.

ItemLen A pointer to a variable in which the length of the item

data will be returned. If the complete item was too

long to fit into the buffer, this variable will be

returned set to the total length of the item if known,

or to zero.

Return

value

The RfcLockRead function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely errors:

RFE_DONTKNOW An error occurred in the underlying operating system.

RFE_IDEXCEED Item-id too long.

RFE_LOCKED Item is locked.

RFE_NOITEM Item not found.

RFE_READEXCEED Item too long for buffer (see below).

Remarks The operation of RfcLockRead depends on the flags set with the

RfcSetLockMode function.

• If the lock mode has not been set, or is set to RFC_OPT_NONE,

RfcLockRead will wait for a locked item to be released and will not

lock a non-existent item.

• If the RFC_OPT_NO_WAIT option is set, if the item is locked,

RfcLockRead will return immediately with the error RFE_LOCKED.

• If the RFC_OPT_HOLD option is set and the item does not exist,

RfcLockRead will set an item lock.

If the length of the item is greater than the length of the Item buffer, the

data is truncated and the error RFE_READEXCEED is returned. The

RfcReadRest function must then be called to read the remainder of the

item.

Purpose Locks an item in a Reality file and then returns the contents of a specified

attribute.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 56 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Synopsis int RfcLockReadAttr(FileHandle, ItemId, ItemIdLen, AttrNum, Attr,

AttrMaxLen, AttrLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

int AttrNum;

char * Attr;

int AttrMaxLen;

int * AttrLen;

Parameters FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

ItemId A pointer to a buffer containing the item-id of the

item to be inserted.

ItemIdLen The length of the item-id in ItemId.

AttrNum The number of the required attribute.

Attr A pointer to a buffer in which the contents of the

attribute will be returned.

AttrMaxLen The length of the Attr buffer.

AttrLen A pointer to a variable in which the length of the

attribute data will be returned. If the complete

attribute was too long to fit into the buffer, the value

returned in this variable will be undefined.

Return

value

The RfcLockReadAttr function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DONTKNOW An error occurred in the underlying operating system.

RFE_IDEXCEED Item-id too long.

RFE_LOCKED Item is locked.

RFE_NOITEM Item not found.

RFE_READEXCEED Item too long for buffer (see below).

Remarks The operation of RfcLockReadAttr depends on the flags set with the

RfcSetLockMode function.

• If the lock mode has not been set, or is set to RFC_OPT_NONE,

RfcLockReadAttr will wait for a locked item to be released and will

not lock a non-existent item.

• If the RFC_OPT_NO_WAIT option is set, if the item is locked,

RfcLockReadAttr will return immediately with the error RFE_LOCKED.

• If the RFC_OPT_HOLD option is set and the item does not exist,

RfcLockReadAttr will set an item lock.

If the length of the item is greater than the length of the Item buffer, the

data is truncated and the error RFE_READEXCEED is returned. The

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 57 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcLockRead, RfcReadAttr, RfcReadRest, RfcSetLockMode.

4.17 RfcOpenFile

See also RfcClose, RfcSetFileOptions.

4.18 RfcRead

RfcReadRest function must then be called to read the remainder of the

item.

Purpose Opens a Reality file in the current account and returns a file handle.

Synopsis int RfcOpenFile(FileName, FileHandle)

char * FileName;

RFC_FILE * FileHandle;

Parameters FileName A pointer to a string containing the file dictionary

and/or data names. The following forms of filename

may be used as required to open dictionary or data

sections:

• DICT filename: Open dictionary.

• filename: Open default data section.

• filename,dataname: Open named data section.

• FileHandle: A pointer to a variable in which to

return the handle of the open file.

Return

value

The RfcOpenFile function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely errors:

RFE_DONTKNOW Invalid options or invalid file name.

RFE_INVDPTR Invalid 'D' pointer.

RFE_NOACCESS Insufficient access rights.

RFE_NOACCOUNT No current account.

RFE_NOFILE No file found.

Remarks The file handle returned must be used for all subsequent references to the

file.

By default, a file is opened with item overwrite enabled. To prevent

overwriting of items, use RfcSetFileOptions to set the

RFC_OPT_NO_OVERWRITE option before opening the file.

Purpose Returns the contents of an item from a Reality file.

Synopsis int RfcRead(FileHandle, ItemId, ItemIdlen, Item, ItemMaxLen, ItemLen)

RFC_FILE FileHandle;

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 58 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcLockRead, RfcReadAttr, RfcReadRest, RfcGetHeader.

4.19 RfcReadAttr

char * ItemId;

int ItemIdLen;

char * Item;

int ItemMaxLen;

int * ItemLen;

Parameter

s

FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

ItemId A pointer to a buffer containing the item-id.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to be

stored in the inserted item.

ItemMaxLen The length of the Item buffer.

ItemLen A pointer to a variable in which the length of the

item data will be returned. If the complete item

was too long to fit into the buffer, this variable will

be returned set to the total length of the item if

known, or to zero.

Return

value

The RfcRead function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

RFE_DONTKNOW An error occurred in the underlying operating

system.

RFE_IDEXCEED Item-id too long.

RFE_NOITEM Item not found.

RFE_READEXCEED Item too long for buffer (see below).

Remarks If the length of the item is greater than the length of the buffer, the data

is truncated and the error RFE_READEXCEED is returned. The RfcReadRest

function must then be called to read the remainder of the item.

The header flags and Reality date for the item can be obtained by calling

RfcGetHeader. Note, however, that this must be done before any other

file operation is performed.

Purpose Returns the contents of a specified attribute from a Reality file item.

Synopsis int RfcReadAttr(FileHandle, ItemId, ItemIdlen, AttrNum, Attr,

AttrMaxLen, AttrLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

int AttrNum;

char * Attr;

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 59 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcRead, RfcLockReadAttr.

4.20 RfcReadRest

int AttrMaxLen;

int * AttrLen;

Parameter

s

FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

ItemId A pointer to a buffer containing the item-id of the

item to be inserted.

ItemIdLen The length of the item-id in ItemId.

AttrNum The number of the required attribute.

Attr A pointer to a buffer in which the contents of the

attribute will be returned.

AttrMaxLen The length of the Attr buffer.

 AttrLen A pointer to a variable in which the length of the

attribute data will be returned. If the complete

attribute was too long to fit into the buffer, the

value returned in this variable will be undefined.

Return

value

The RfcReadAttr function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DONTKNOW An error occurred in the underlying operating

system.

RFE_IDEXCEED Item-id too long.

RFE_NOITEM Item not found.

RFE_READEXCEED Item too long for buffer (see below).

Remarks If the length of the attribute is greater than the length of the buffer, the

data is truncated and the error RFE_READEXCEED is returned. Note that

the only way to read the remainder of the attribute is to try again with a

larger buffer – the RfcReadRest function cannot be used.

Purpose Retrieves successive blocks of data as a continuation of the data

returned from a previous function call.

Synopsis int RfcReadRest(FileHandle, Item, ItemMaxLen, DataLen)

RFC_FILE FileHandle;

char * Item;

int ItemMaxLen;

int * DataLen;

Parameter

s

FileHandle The handle of the required Reality file, returned by

RfcOpenFile.

Item A pointer to a buffer in which the item data will be

returned.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 60 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcLockRead, RfcRead.

4.21 RfcRenameFile

ItemMaxLen The length of the Item buffer.

DataLen A pointer to a variable in which the length of the

item data will be returned. If the complete item

was too long to fit into the buffer, this variable will

be returned set to the total length of the item if

known, or to zero.

Return

value

The RfcReadRest function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DONTKNOW An error occurred in the underlying operating

system.

RFE_NOREAD Call not preceded by an RFE_READEXCEED error.

RFE_READEXCEED Item too long for buffer (see below).

Remarks If a file item-reading function (RfcLockRead or RfcRead) completes with

the code RFE_READEXCEED, this indicates that the supplied buffer was not

large enough to hold the item. RfcReadRestshould be used as many

times as is necessary to fetch the rest of the item.

If, on completion, there is still more data to come, RfcReadRest will

return the code RFE_READEXCEED. The end of the data is indicated by the

completion code SUCCESS (0).

If there is no more data to come (that is, the last RfcReadRest call

returned SUCCESS), the error RFE_NOREAD will be returned.

Purpose Renames a file or part of a file.

Synopsis int RfcRenameFile(OldName, NewName)

char * OldName;

char * NewName;

Parameters OldName A pointer to a string containing the file

name.

NewName A pointer to a string containing the new file

name.

Return value The RfcRenameFile function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

RFE_NOFILE The file OldName does not exist.

RFE_IEXISTS The item NewName already exists in

dictionary, either in MD or in OldName

dictionary, as data section file.

RFE_INVDPTR Invalid D pointer.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 61 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcCreateFile, RfcSetFileOptions.

4.22 RfcSetAccount

 RFE_NOACCESS Insufficient access rights.

 RFE_NOACCOUNT No current account.

Remarks The OldName and NewName parameters must have the same format,

which must be one of the following:

filename The dictionary and default data section are

renamed.

filename,dataname The specified data section is renamed.

Purpose Sets the current account handle.

Synopsis int RfcSetAccount(AccountHandle)

RFC_ACCOUNT AccountHandle;

Parameters AccountHandle The handle of the account that is to be made

the current account.

Return value The RfcSetAccount function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

RFE_ACCTACTIVE The current handle has not been saved.

Remarks When you connect to a database, an account handle is assigned and

stored internally. If you need concurrent connections to two or more

databases (or to different accounts on the same database), you can

fetch the account handle for the current connection by calling

RfcGetAccount and store it for later use. You can then use

RfcConnect to connect to another database (or another account on the

same database), without losing your connection to the first.

If you subsequently need to access the first database, you can re-

establish the connection by calling RfcSetAccount, specifying the

saved account handle. If you save the account handle for each

connection you make, you can switch between connections as

necessary.

You should always close all connections (with RfcDisconnect) before

terminating your program.

You should always save a connection’s account handle before making

another connection. If you do not, you will be unable to return to it to

disconnect.

If you attempt to switch to an old account without first saving the

current account, the error code RFE_ACCTACTIVE is returned.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 62 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcConnect, RfcGetAccount.

4.23 RfcSetFileOptions

See also RfcOpenFile, RfcWrite, RfcWriteAppend, RfcWriteAttr,
RfcWriteAttrUnlock, RfcWriteUnlock.

4.24 RfcSetHeader

At the end of a program that has established connections to two or

more databases, RfcSetAccount is used to restore the dummy outer

connection so that this outer connection can be closed (see Appendix

B).

Purpose The RfcSetFileOptions function sets the file options for the next call

to RfcOpenFile.

Synopsis void RfcSetFileOptions(Options)

RFC_FILE_OPTS Options;

Parameters Options A combination of the following bit-significant

options:

• RFC_OPT_DICT: Open the

dictionary section of the file.

• RFC_OPT_NO_OVERWRITE: Inhibit

overwriting of existing items.

• RFC_OPT_NOT_LOGGED: Inhibit

transaction logging on this file.

Remarks With the default setting, the data section of the file is opened (unless

specified otherwise), existing items can be overwritten and transaction

logging is enabled. The file options are reset to the default values after

each call to RfcOpenFile.

Purpose Sets the item header flags for the next item to be written.

Synopsis void RfcSetHeader(Flags)

RFC_IFLAGS Flags;

Parameters Flags One of the following options:

• RFC_IFLAG_BINARY: Binary item.

• RFC_IFLAG_DPTR: D pointer.

Remarks The flags are reset after the item is written; the next write will

therefore use the default setting (normal text item) unless

RfcSetHeader is called again.

The write item flags are not affected by reading an item.

To duplicate an item, do the following:

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 63 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcGetHeader, RfcInsert, RfcInsertUnlock, RfcWrite, RfcWriteUnlock.

4.25 RfcSetLockMode

See also RfcLockRead, RfcLockReadAttr.

4.26 RfcSetRetUpdLocks

1. Read the item using RfcRead or RfcLockRead.

2. Then read the item’s flags using RfcGetHeader.

3. Set the flags for the new item using RfcSetHeader.

4. Write the new item using RfcInsert or RfcWrite.

Purpose Sets the lock control flag for calls to the lock and read functions

(RfcLockRead and RfcLockReadAttr).

Synopsis void RfcSetLockMode(Flags)

RFC_LOCK_OPTS Flags;

Parameters Flags A combination of the following bit-significant

options:

• RFC_OPT_NONE: The lock and read

functions wait for locked items to be

released, and do not lock non-

existent items.

• RFC_OPT_NO_WAIT: If the item is

locked, the lock and read functions

return immediately with the error

RFE_LOCKED.

• RFC_OPT_HOLD: If the item does

not exist, the lock and read functions

set an item lock.

Purpose Sets the retrieval and update locks for the next file to be created using

RfcCreateFile.

Synopsis void RfcSetRetUpdLocks(RetLocks, UpdLocks)

char * RetLocks;

char * UpdLocks;

Parameters RetLocks A pointer to a string containing the required

retrieval locks. Multiple retrieval locks must

be separated by commas.

UpdLocks A pointer to a string containing the required

update locks. Multiple update locks must be

separated by commas.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 64 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcCreateFile.

4.27 RfcUnlock

See also RfcLockRead, RfcLockReadAttr, RfcUnlockAll.

4.28 RfcUnlockAll

See also RfcLockRead, RfcLockReadAttr, RfcUnlock.

Remarks The retrieval and update locks are stored as attributes 5 and 6 of the

D-pointers created using RfcCreateFile.

RfcCreateFile uses the default retrieval and update security codes for

the current account, unless specifically changed with

RfcSetRetUpdLocks. Note, however, that RfcSetRetUpdLocks affects

only the next call to RfcCreateFile – subsequent calls revert to the

default settings.

Purpose Unlocks an item in a Reality file.

Synopsis void RfcUnlock(FileHandle, ItemId, ItemIdLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

Parameters FileHandle The handle of the required Reality file,

returned by RfcOpenFile.

ItemId A pointer to a buffer containing the item-id.

 ItemIdLen The length of the item-id.

Return value The RfcUnlock function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A.

Purpose Unlocks all locked items in a Reality file.

Synopsis void RfcUnlockAll(FileHandle)

RFC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file,

returned by RfcOpenFile.

Return value The RfcUnlockAll function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 65 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.29 RfcWrite

See also RfcInsert, RfcWriteAppend, RfcWriteAttr, RfcWriteUnlock.

4.30 RfcWriteAppend

Purpose Writes data to an item in a Reality file.

Synopsis int RfcWrite(FileHandle, ItemId, ItemIdLen, Item, ItemLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

char * Item;

int ItemLen;

Parameters FiletHandle The handle of the required Reality file,

returned by RfcOpenFile.

ItemId A pointer to a buffer containing the item-id

of the item to be written.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to

be stored in the item.

ItemLen The length of the item data.

Return value The RfcWrite function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DONTKNOW An error occurred in the underlying

operating system.

 RFE_IDEXCEED Item-id too long.

 RFE_IEXISTS Item already exists and overwrite flag not

set.

Remarks RfcWrite does not change the states of any item locks – if the item is

locked when the function is called, on completion it will remain locked.

Items are normally written as standard Reality textual items. Other

types of items may be written by calling the RfcSetHeader function to

set the appropriate header flags before calling RfcWrite.

If required, overwriting can be disabled for the next write operation, by

using RfcSetFileOptions to set the RFC_OPT_NO_OVERWRITE option. If

this has been done, and the specified item already exists, RfcWrite

will fail and return the error RFE_IEXISTS.

Purpose Appends data to an existing Reality item.

Synopsis int RfcWriteAppend(FileHandle, ItemId, ItemIdLen, Item, ItemLen)

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 66 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcInsert, RfcInsertUnlock, RfcWrite, RfcWriteAttr,
RfcWriteAttrUnlock, RfcWriteUnlock.

4.31 RfcWriteAttr

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

char * Item;

int ItemLen;

Parameters FiletHandle The handle of the required Reality file,

returned by RfcOpenFile.

ItemId A pointer to a buffer containing the item-id

of the item to be written.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to

be stored in the item.

ItemLen The length of the item data.

Return value The RfcWriteAppend function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

RFE_DONTKNOW An error occurred in the underlying

operating system.

 RFE_IDEXCEED Item-id too long.

 RFE_IEXISTS Item already exists and overwrite flag not

set.

 RFE_NOITEM Item not found.

Remarks RfcWriteAppend does not change the states of any item locks – if the

item is locked when RfcWriteAppend is called, on completion it will

remain locked.

If required, overwriting can be disabled for the next write operation, by

using RfcSetFileOptions to set the RFC_OPT_NO_OVERWRITE option. If

this has been done, and the specified item already exists,

RfcWriteAppend will fail and return the error RFE_IEXISTS.

Purpose Writes data to one attribute of an item in a Reality file.

Synopsis int RfcWriteAttr(FileHandle, ItemId, ItemIdLen, AttrNum, Attr,

AttrLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

int AttrNum;

char * Attr;

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 67 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcInsert, RfcWrite, RfcWriteAppend, RfcWriteAttrUnlock.

4.32 RfcWriteAttrUnlock

int AttrLen;

Parameters FiletHandle The handle of the required Reality file,

returned by RfcOpenFile.

ItemId A pointer to a buffer containing the item-id

of the item to be written.

ItemIdLen The length of the item-id in ItemId.

AttrNum The attribute number.

Attr A pointer to a buffer containing the data to

be stored in the attribute.

 AttrLen The length of the attribute data.

Return value The RfcWriteAttr function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

RFE_DONTKNOW An error occurred in the underlying

operating system.

 RFE_IDEXCEED Item-id too long.

 RFE_IEXISTS Item already exists and overwrite flag not

set.

 RFE_NOITEM Item does not exist.

Remarks RfcWrite does not change the states of any item locks – if the item is

locked when RfcWrite is called, on completion it will remain locked.

If required, overwriting can be disabled for the next write operation, by

using RfcSetFileOptions to set the RFC_OPT_NO_OVERWRITE option. If

this has been done, and the specified item already exists,

RfcWriteAttr will fail and return the error RFE_IEXISTS.

Purpose Writes data to one attribute of an item in a Reality file. On completion,

the item is unlocked (cf. RfcWriteAttr).

Synopsis int RfcWriteAttrUnlock(FileHandle, ItemId, ItemIdLen, AttrNum,

Attr, AttrLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

int AttrNum;

char * Attr;

int AttrLen;

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 68 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcInsertUnlock, RfcWriteAttr, RfcWriteUnlock.

4.33 RfcWriteUnlock

Parameters FiletHandle The handle of the required Reality file,

returned by RfcOpenFile.

ItemId A pointer to a buffer containing the item-id

of the item to be written.

ItemIdLen The length of the item-id in ItemId.

AttrNum The attribute number.

Attr A pointer to a buffer containing the data to

be stored in the attribute.

 AttrLen The length of the attribute data.

Return value The RfcWriteAttrUnlock function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

RFE_DONTKNOW An error occurred in the underlying

operating system.

 RFE_IDEXCEED Item-id too long.

 RFE_IEXISTS Item already exists and overwrite flag not

set.

 RFE_NOITEM Item does not exist.

Remarks If required, overwriting can be disabled for the next write operation, by

using RfcSetFileOptions to set the RFC_OPT_NO_OVERWRITE option. If

this has been done, and the specified item already exists,

RfcWriteAttrUnlock will fail and return the error RFE_IEXISTS.

Purpose Writes data to one attribute of an item in a Reality file. On completion,

the item is unlocked (cf. RfcWrite).

Synopsis int RfcWriteUnlock(FileHandle, ItemId, ItemIdLen, Item, ItemLen)

RFC_FILE FileHandle;

char * ItemId;

int ItemIdLen;

char * Item;

int ItemLen;

Parameters FiletHandle The handle of the required Reality file,

returned by RfcOpenFile.

ItemId A pointer to a buffer containing the item-id

of the item to be written.

ItemIdLen The length of the item-id in ItemId.

Item A pointer to a buffer containing the data to

be stored in the item.

Section 4: Reality Filing Interface

Reality v9.0 C API Reference Manual v0.1 Page 69 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RfcInsertUnlock, RfcWrite, RfcWriteAttrUnlock.

ItemLen The length of the item data.

Return value The RfcWriteUnlock function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

RFE_DONTKNOW An error occurred in the underlying

operating system.

 RFE_IEXISTS Item already exists and overwrite flag not

set.

 RFE_IDEXCEED Item-id too long.

Remarks Items are normally written as standard Reality textual items. Other

types of item may be written by calling the RfcSetHeader function to

set the appropriate header flags before calling RfcWriteUnlock.

If required, overwriting can be disabled for the next write operation, by

using RfcSetFileOptions to set the RFC_OPT_NO_OVERWRITE option. If

this has been done, and the specified item already exists,

RfcWriteUnlock will fail and return the error RFE_IEXISTS.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 70 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 5: Reality General Service Interface
The Reality General Services Interface (Rgc) functions enable a C program to manipulate

the elements of a Reality database: items, attributes, values and subvalues.

5.1 Reality General Services Interface Functions

The Reality General Services Interface functions provide a means of manipulating the

elements of a Reality database, that is, items, attributes, values and subvalues.

Caution

None of these functions operate directly on a database. They operate on local data that has

typically been read from a database with the Rfc functions (RfcRead, and so on....).

There are also functions for starting up and shutting down the Interactive File Access

(IFA) services, for reporting errors and for retrieving the time and date in Reality format.

The Rgc functions are listed below.

5.1.1 Services

Services Definition

RgcStartUpSer

vices

Initializes the Interactive File Access

services.

RgcShutDownS

ervices

Shuts down all active Interactive File

Access services.

RgcErrMsg
Retrieve the error message that

corresponds to a return code.

RgcPerror Displays an error message.

5.1.2 String manipulation

Services Definition

RgcDeleteAttr Deletes an attribute.

RgcDeleteSubV

alue
Deletes a subvalue.

RgcDeleteValu

e
Deletes a value.

RgcFindAttr
Finds the location of an attribute within an

item.

RgcFindValue
Finds the location of a value within an

attribute.

RgcFindSubVal

ue

Finds the location of a subvalue within a

value.

RgcGetAttr Extracts an attribute from an item.

RgcGetNumAtt

r
Converts an attribute to a numeric value.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 71 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Services Definition

RgcGetSubVal

ue
Extracts a subvalue from an item.

RgcGetValue Extracts a value from an item.

RgcInsertAttr Inserts an attribute into an item.

RgcInsertNum

Attr

Converts a numeric value to a string and

inserts the result into an item as an

attribute.

RgcInsertNum

SubValue

Converts a numeric value to a string and

inserts the result into an item as a

subvalue.

RgcInsertNum

Value

Converts a numeric value to a string and

inserts the result into an item as a value.

RgcInsertSubV

alue
Inserts a subvalue into an item.

RgcInsertValu

e
Inserts a value into an item.

RgcSetAttr Sets the contents of an attribute.

RgcSetNumAtt

r
Sets an attribute to a numeric value.

RgcSetNumSu

bValue
Sets a subvalue to a numeric value.

RgcSetNumVal

ue
Sets a value to a numeric value.

RgcSetSubValu

e
Sets the contents of a subvalue.

RgcSetValue Sets the contents of a value.

5.1.3 Time and data

Services Definition

RgcGetTimeDa

te

Gets the time and date in internal Reality

format.

5.2 RgcDeleteAttr

Purpose RgcDeleteAttr deletes an attribute from a file item.

Synopsis int RgcDeleteAttr(Item , ItemLen, AttrNo, NewItemLen)

char * Item;

int ItemLen;

int AttrNo;

int * NewItemLen;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 72 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcDeleteSubValue, RgcDeleteValue.

5.3 RgcDeleteSubValue

See also RgcDeleteAttr, RgcDeleteValue.

5.4 RgcDeleteValue

Parameters Item A pointer to a buffer containing the item

from which the attribute is to be deleted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute to delete.

NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcDeleteAttr function always returns SUCCESS. It is not

considered an error if the specified attribute could not be found.

Purpose RgcDeleteSubValue deletes a subvalue from a specified attribute and

value in a file item.

Synopsis int RgcDeleteSubValue(Item , ItemLen, AttrNo, ValueNo, SubValueNo,

NewItemLen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item

from which the attribute is to be deleted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute containing the

subvalue to delete.

ValueNo The number of the value containing the

subvalue to delete.

 SubValueNo The number of the subvalue to delete.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcDeleteSubValue function always returns SUCCESS. It is not

considered an error if the specified subvalue could not be found.

Purpose RgcDeleteSubValue deletes a value from a specified attribute and

value in a file item.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 73 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcDeleteAttr, RgcDeleteSubValue.

5.5 RgcErrMsg

See also RgcPerror.

5.6 RgcFindAttr

Synopsis int RgcDeleteValue(Item , ItemLen, AttrNo, ValueNo, NewItemLen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item

from which the attribute is to be deleted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute containing the

value to delete.

ValueNo The number of the value to delete.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcDeleteValue function always returns SUCCESS. It is not

considered an error if the specified value could not be found.

Purpose Retrieve the error description that corresponds to a return code.

Synopsis char * RgcErrMsg(ErrorCode)

int ErrorCode;

Parameters ErrorCode A status code returned by a function.

Return value The RgcErrMsg function returns a pointer to a buffer holding the

corresponding error description. The description is null terminated.

Remarks Subsequent calls to this function will use the same buffer.

Purpose RgcFindAttr finds the location of a specified attribute within an item.

Synopsis char * RgcFindAttr(Item, ItemLen, AttrNo, Length)

char * Item;

int ItemLen;

int AttrNo;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 74 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcFindSubValue, RgcFindValue.

5.7 RgcFindSubValue

int * Length;

Parameters Item A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the required attribute.

Length A pointer to a variable in which the length of

the specified attribute will be returned.

Return value The RgcFindAttr function returns a pointer to start of the specified

attribute. If the specified attribute is not found, the function returns a

null pointer and the Length parameter is set to zero.

Remarks Subsequent calls to this function will use the same buffer.

Purpose RgcFindSubValue finds the location of a specified subvalue within an

item.

Synopsis char * RgcFindSubValue(Item, ItemLen, AttrNo, ValueNo,

SubValueNo, Length)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

int * Length;

Parameters Item A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute containing the

required subvalue.

ValueNo The number of the value containing the

required subvalue.

SubValueNo The number of the required subvalue.

Length A pointer to a variable in which the length of

the specified attribute will be returned.

Return value The RgcFindSubValue function returns a pointer to start of the

specified subvalue. If the specified subvalue is not found, the function

returns a null pointer and the Length parameter is set to zero.

Remarks Subsequent calls to this function will use the same buffer.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 75 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcFindAttr, RgcFindValue.

5.8 RgcFindValue

See also RgcFindAttr, RgcFindSubValue.

5.9 RgcGetAttr

Purpose RgcFindValue finds the location of a specified value within an item.

Synopsis char * RgcFindValue(Item, ItemLen, AttrNo, ValueNo, Length)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int * Length;

Parameters Item A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute containing the

required value.

ValueNo The number the required value.

Length A pointer to a variable in which the length of

the specified attribute will be returned.

Return value The RgcFindValue function returns a pointer to start of the specified

value. If the specified value is not found, the function returns a null

pointer and the Length parameter is set to zero.

Purpose RgcGetAttr extracts an attribute from an item.

Synopsis char * RgcGetAttr(Item, ItemLen, AttrNo, Data, DataLen)

char * Item;

int ItemLen;

int AttrNo;

char * Data;

int * DataLen;

Parameters Item A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the required attribute.

Data A pointer to a buffer in which the contents of

the attribute will be returned. If this pointer

is null, the function allocates a buffer using

the malloc() function.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 76 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcGetNumAttr, RgcGetSubValue, RgcGetValue.

5.10 RgcGetNumAttr

See also RgcGetAttr, RgcGetNumValue, RgcGetNumSubValue.

5.11 RgcGetSubValue

DataLen A pointer to a variable in which the length of

the specified attribute will be returned.

Return value The RgcGetAttr function returns a pointer to the buffer containing the

required attribute. If the specified attribute is not found, the function

returns a null pointer and the DataLen parameter is set to zero.

Remarks The user is responsible for freeing any buffers allocated by this

function.

If you supply a buffer in which to return the data, you must ensure

that it is large enough. You can do this by first calling RgcFindAttr to

obtain the length of the data.

Purpose RgcGetNumAttr converts an attribute to a numeric value.

Synopsis int RgcGetNumAttr(ItemPtr, ItemLen, AttrNo, Number)

char * ItemPtr;

int ItemLen;

int AttrNo;

long * Number;

Parameters ItemPtr A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the required attribute.

Number A pointer to a variable in which the value of

the attribute will be returned.

Return value The RgcGetNumAttr function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOTNUM: The attribute did not contain a valid number.

Remarks For an attribute to be recognised as a number it must contain only the

characters '+', '-' and '0' to '9'. Leading white space is permitted but

ignored. There must be no space between the sign (if any) and the

first digit.

Purpose RgcGetSubValue extracts a subvalue from an item.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 77 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcGetAttr, RgcGetNumAttr, RgcGetValue.

5.12 RgcGetTimeDate

Synopsis char * RgcGetSubValue(Item, ItemLen, AttrNo, ValueNo, SubValueNo,

Data, DataLen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

char * Data;

int * DataLen;

Parameters Item A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute containing the

required subvalue.

ValueNo The number of the value containing the

required subvalue.

SubValueNo The number of the required subvalue.

 Data A pointer to a buffer in which the contents of

the subvalue will be returned. If this pointer

is null, the function allocates a buffer using

the malloc() function.

 DataLen A pointer to a variable in which the length of

the specified subvalue will be returned.

Return value The RgcGetSubValue function returns a pointer to the buffer containing

the required subvalue. If the specified subvalue is not found, the

function returns a null pointer and the DataLen parameter is set to

zero.

Remarks The user is responsible for freeing any buffers allocated by this

function.

If you supply a buffer in which to return the data, you must ensure

that it is large enough. You can do this by first calling

RgcFindSubValue to obtain the length of the data.

Purpose Gets the time and date in internal Reality format.

Synopsis void RgcGetTimeDate(Time, Date)

long * Time;

long * Date;

Parameters Item A pointer to a buffer containing the item.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 78 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.13 RgcGetValue

See also RgcGetAttr, RgcGetNumAttr, RgcGetSubValue.

5.14 RgcInsertAttr

Time A pointer to a variable in which the time will

be returned. The value returned is the

number of milliseconds since midnight.

Date A pointer to a variable in which the date will

be returned. The value returned is the

number of days since 31st December 1967.

Purpose RgcGetValue extracts a value from an item.

Synopsis char * RgcGetValue(Item, ItemLen, AttrNo, ValueNo, Data, DataLen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

char * Data;

int * DataLen;

Parameters Item A pointer to a buffer containing the item.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute containing the

required subvalue.

ValueNo The number of the value containing the

required value.

 Data A pointer to a buffer in which the contents of

the value will be returned. If this pointer is

null, the function allocates a buffer using the

malloc() function.

 DataLen A pointer to a variable in which the length of

the specified value will be returned.

Return value The RgcGetValue function returns a pointer to the buffer containing

the required value. If the specified value is not found, the function

returns a null pointer and the DataLen parameter is set to zero.

Remarks The user is responsible for freeing any buffers allocated by this

function.

If you supply a buffer in which to return the data, you must ensure

that it is large enough. You can do this by first calling RgcFindValue to

obtain the length of the data.

Purpose RgcInsertAttr inserts an attribute into an item.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 79 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertNumAttr, RgcInsertValue, RgcInsertSubValue, RgcSetAttr.

5.15 RgcInsertNumAttr

Synopsis int RgcInsertAttr(Item, ItemLen, AttrNo, Data, DataLen,

ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

char * Data;

int DataLen;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute before which the

new attribute will be inserted.

 Data A pointer to the data to be inserted.

 DataLen The length of the data to be inserted.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcInsertAttr function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified is greater than the number of existing

attributes, a new attribute is appended to the item. If necessary, the

item is extended with null attributes, so that the new attribute will

have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

Purpose RgcInsertNumAttr converts a numeric value to a string and inserts

the result into an item as an attribute.

Synopsis int RgcInsertNumAttr(Item, ItemLen, AttrNo, Number, DataLen,

ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 80 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertAttr, RgcInsertNumSubValue, RgcInsertNumValue,
RgcSetNumAttr.

5.16 RgcInsertNumSubValue

long Number;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute before which the

new attribute will be inserted.

 Number The numeric value to be inserted.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcInsertNumAttr function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified is greater than the number of existing

attributes, a new attribute is appended to the item. If necessary, the

item is extended with null attributes, so that the new attribute will

have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

Purpose RgcInsertNumSubValue converts a numeric value to a string and

inserts the result into an item as a subvalue.

Synopsis int RgcInsertNumSubValue(Item, ItemLen, AttrNo, ValueNo,

SubValueNo, Number, ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

long Number;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

ItemLen The length of the item in the Item buffer.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 81 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertNumAttr, RgcInsertNumValue, RgcInsertSubValue,
RgcSetNumSubValue.

5.17 RgcInsertNumValue

AttrNo The number of the attribute in which the

new subvalue will be inserted.

 ValueNo The number, within the specified attribute,

of the value in which the new subvalue will

be inserted.

 SubValueNo The number, within the specified value, of

the subvalue before which the new subvalue

will be inserted.

 Number The numeric value to be inserted.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcInsertNumSubValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo and SubValueNo parameters.

Purpose RgcInsertNumValue converts a numeric value to a string and inserts

the result into an item as a subvalue.

Synopsis int RgcInsertNumSubValue(Item, ItemLen, AttrNo, ValueNo, Number,

ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

long Number;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 82 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertNumAttr, RgcInsertNumSubValue, RgcInsertValue,
RgcSetNumValue.

5.18 RgcInsertSubValue

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute in which the

new value will be inserted.

 ValueNo The number, within the specified attribute,

of the value in which the new value will be

inserted.

 Number The numeric value to be inserted.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcInsertNumValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo parameter.

Purpose RgcInsertSubValue inserts data into an item as a subvalue.

Synopsis int RgcInsertSubValue(Item, ItemLen, AttrNo, ValueNo, SubValueNo,

Data, DataLen, ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

char * Data;

int DataLen;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 83 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertAttr, RgcInsertNumSubValue, RgcInsertValue, RgcSetValue.

5.19 RgcInsertValue

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute in which the

new subvalue will be inserted.

 ValueNo The number, within the specified attribute,

of the value into which the new subvalue will

be inserted.

 SubValueNo The number, within the specified value, of

the subvalue before which the new subvalue

will be inserted.

 Data A pointer to the data to be inserted.

 DataLen The length of the data to be inserted.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcInsertSubValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo and SubValueNo parameters.

Purpose RgcInsertSubValue inserts data into an item as a value.

Synopsis int RgcInsertValue(Item, ItemLen, AttrNo, ValueNo, Data, DataLen,

ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

char * Data;

int DataLen;

int ItemMaxLen;

int * NewItemLen;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 84 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertAttr, RgcInsertNumValue, RgcInsertSubValue, RgcSetValue.

5.20 RgcPerror

See also RgcErrMsg.

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute in which the

new value will be inserted.

 ValueNo The number within the specified attribute of

the value into which the new value will be

inserted.

 Data A pointer to the data to be inserted.

 DataLen The length of the data to be inserted.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcInsertValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo parameter.

Purpose Displays the error description that corresponds to a specified return

code, prefixed with the name of a function.

Synopsis void RgcPerror(FuncName, ErrorCode)

char * FuncName;

int ErrorCode;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

ItemLen The length of the item in the Item buffer.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 85 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.21 RgcSetAttr

See only RgcInsertAttr, RgcInsertSubValue, RgcInsertValue.

5.22 RgcSetNumAttr

Purpose RgcSetAttr writes data to an item as an attribute.

Synopsis int RgcSetAttr(Item, ItemLen, AttrNo, Data, DataLen, ItemMaxLen,

NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

char * Data;

int DataLen;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the data is to be inserted.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute to be written.

 Data A pointer to the data to be written.

 DataLen The length of the data to be written.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcSetAttr function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following is the most

likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified is greater than the number of existing

attributes, a new attribute is appended to the item. If necessary, the

item is extended with null attributes, so that the new attribute will

have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

Purpose RgcSetAttr writes data to an item as an attribute.

Synopsis int RgcSetNumAttr(Item, ItemLen, AttrNo, Number, ItemMaxLen,

NewItemlen)

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 86 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertAttr, RgcInsertNumAttr, RgcSetNumSubValue, RgcSetNumValue.

5.23 RgcSetNumSubValue

char * Item;

int ItemLen;

int AttrNo;

long Number;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the attribute is to be written.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute to be written.

 Number The numeric value to be written.

 ItemMaxLen The maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcSetNumAttr function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

• RGE_MALLOC: Cannot allocate memory.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

Purpose RgcSetNumSubValue converts a numeric value to a string and writes

the result to an item as a subvalue.

Synopsis int RgcSetNumSubValue (Item, ItemLen, AttrNo, ValueNo, SubValueNo,

Number, ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

long Number;

int ItemMaxLen;

int * NewItemLen;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 87 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertNumSubValue, RgcInsertSubValue, RgcSetNumAttr,

RgcSetNumValue, RgcSetSubValue.

5.24 RgcSetNumValue

Parameters Item A pointer to a buffer containing the item into

which the attribute is to be written.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute to be written.

 ValueNo The number of the value to be written.

 SubValueNo The number of the subvalue to be written.

 Number The numeric value to be written.

 ItemMaxLen Maximum length of buffer available.

 NewItemLen Pointer to an integer, returned with the new

length of the item.

Return value The RgcSetNumSubValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

• RGE_MALLOC: Cannot allocate memory.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo and SubValueNo parameters.

Purpose RgcSetNumValue converts a numeric value to a string and writes the

result to an item as a value.

Synopsis int RgcSetNumValue (Item, ItemLen, AttrNo, ValueNo, SubValueNo,

Number, ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

long Number;

int ItemMaxLen;

int * NewItemLen;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 88 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertNumValue, RgcSetNumAttr, RgcSetNumSubValue, RgcSetValue.

5.25 RgcSetSubValue

Parameters Item A pointer to a buffer containing the item into

which the attribute is to be written.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute to be written.

 ValueNo The number of the value to be written.

 Number The numeric value to be written.

 ItemMaxLen Maximum length of buffer available.

 NewItemLen Pointer to an integer, returned with the new

length of the item.

Return value The RgcSetNumValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

• RGE_MALLOC: Cannot allocate memory.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo parameter.

Purpose RgcSetSubValue writes data to an item as a subvalue.

Synopsis int RgcSetSubValue (Item, ItemLen, AttrNo, ValueNo, SubValueNo,

Data, DataLen, ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

int SubValueNo;

char * Data;

int DataLen;

int ItemMaxLen;

int * NewItemLen;

Parameters Item A pointer to a buffer containing the item into

which the attribute is to be written.

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 89 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See only RgcInsertSubValue, RgcSetAttr, RgcSetNumSubValue, RgcSetValue.

5.26 RgcSetValue

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute in which the

new subvalue will be written.

 ValueNo The number within the specified attribute of

the value in which the new subvalue will be

written.

 SubValueNo The number within the specified value of the

subvalue to be written.

 Data A pointer to the data to be written.

 DataLen The length of the data to be written.

 ItemMaxLen Maximum length of buffer available.

 NewItemLen Pointer to an integer, returned with the new

length of the item.

Return value The RgcSetSubValue function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following is the most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo and SubValueNo parameters.

Purpose RgcSetValue writes data to an item as a value.

Synopsis int RgcSetValue (Item, ItemLen, AttrNo, ValueNo, Data, DataLen,

ItemMaxLen, NewItemlen)

char * Item;

int ItemLen;

int AttrNo;

int ValueNo;

char * Data;

int DataLen;

int ItemMaxLen;

int * NewItemLen;

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 90 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcInsertNumValue, RgcInsertValue, RgcSetAttr, RgcSetSubValue.

5.27 RgcShutDownServices

See also RgcStartUpServices.

5.28 RgcStartUpServices

Parameters Item A pointer to a buffer containing the item into

which the attribute is to be written.

ItemLen The length of the item in the Item buffer.

AttrNo The number of the attribute in which the

new value will be written.

 ValueNo The number within the specified attribute of

the value to be written.

 Data A pointer to the data to be written.

 DataLen The length of the data to be written.

 ItemMaxLen Maximum length of the Item buffer.

 NewItemLen A pointer to a variable in which the length of

the modified item will be returned.

Return value The RgcSetValue function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following is the

most likely error:

• RGE_NOSPACE: The data was too long to fit in the Item

buffer.

Remarks If the attribute number specified in the AttrNo parameter is greater

than the number of existing attributes, a new attribute is appended to

the item. If necessary, the item is extended with null attributes, so

that the new attribute will have the specified attribute number.

If you specify an attribute number of -1, the new attribute will be

appended to the end of the item.

The above also applies to the ValueNo parameter.

Purpose Shuts down all active Interactive File Access (IFA) services (Rgc, Rfc

and Rlc).

Synopsis void RgcShutDownServices()

Purpose Initializes the Interactive File Access (IFA) services (Rfc, Rgc and Rlc).

Note that RgcStartUpServices is a macro, rather than a function.

Synopsis void RgcStartUpServices(Result)

Section 5: Reality General Service Interface

Reality v9.0 C API Reference Manual v0.1 Page 91 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RgcShutDownServices.

int Result;

Parameters Result A variable in which the result of the macro

will be returned.

Note

This parameter must be a variable, not a

pointer to a variable.

Remarks RgcStartUpServices must be called from the main() function, before

any other Interactive File Access service functions are called.

The macro initializes only those services that are being used; that is,

those for which header files have been included in the main module.

Note

The rgc.h header file must always be included.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 92 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 6: Reality Index Sequential Services Interface
The Reality Index Sequential Services Interface (Risc) provides an alternative to the

Reality Filing Interface for connecting to a local database and accessing Reality files.

6.1 Introduction

This interface provides an alternative method of connecting to a local Reality database

and accessing Reality files. The main aim of this interface is to hide the special nature of

the Reality item-id from the programmer. It works with records and index keys and

introduces the concept of a current record (see below).

A Record is made up from the Reality item-id and item data, separated by an attribute

mark (0xFE). Each record is made up from several variable length fields separated by

attribute marks. The Reality item-id appears as the first field in each record.

Although this interface makes the Reality item-id appear as part of the record data, it still

has special significance to the underlying Reality File System. It is still the identifier of

the record and as such must have a different value in every record. A Reality file cannot

contain two different records with the same value in the first field (item-id).

Note

The Reality Index Sequential Services Interface can only be used to access local Reality

databases.

6.1.1 Index key

An Index Key is a Reality Key Value. In the simplest case where the file is indexed on a

single field with no special conversions, the Key is just the appropriate field value. In an

Index defined on several fields (again with no special conversions), the Key comprises

the appropriate field values separated by Attribute Marks (0xFE).

With complex Indexes that include English conversions, the relationship between the

Record and the Key value is less obvious.

6.1.2 Record locking

At most one record (the current record) may be locked at a time on a single RISC_FILE

handle. Any read operation that changes the current position causes the previous record

to be unlocked.

Record locks are implemented using Reality Item locks. Records are identified by their

item-ids for the purpose of these locks and this imposes certain limitations on the use of

locks by this interface.

6.1.3 Accessing a Reality file

To access a Reality file using the C-ISAM Indexed Access Layer, you will need to do the

following:

1. Call RgcStartUpServices to start the Interactive File Access (IFA) services.

2. Connect to the required Reality database using RiscConnect.

3. Open the required Reality file using RiscOpen.

4. Either use RiscSelect to associate an existing index with this file, or

RiscCreateIndex to create a new index and associate it with this file.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 93 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5. Carry out the required processing on the file.

6. Close the Reality file with RiscClose.

7. Disconnect from the database with RiscDisconnect.

8. Use RgcShutDownServices to shut down any active Interactive File Access

services.

For example,

RISC_FILE FileHandle;

int StartUpResult;

RgcStartUpServices(StartUpResult);

if (StartUpResult == SUCCESS) {

if (RiscConnect("SPI-22",

"SYSPROG",

"KEY1",

"ODESSA",

"OMEGA") == SUCCESS) {

if (RiscOpen("TESTFILE", &FileHandle) == SUCCESS) {

if (RiscSelect(FileHandle, "TESTINDEX") == SUCCESS) {

/* Process the index. */

}

else {

/* handle the select error. */

}

RiscClose(FileHandle);

}

else {

/* handle the file open error. */

}

RiscDisconnect();

}

else {

/* handle the connect error. */

}

RgcShutDownServices();

}

else {

/* handle the startup error. */

}

In this example, connection is made to the ODESSA account on the database

SPI-22, using the user-id SYSPROG. The password for the SYSPROG user is

KEY1 and that for the ODESSA account is OMEGA. If the connection is

successful, the file TESTFILE is opened and, if this file is opened successfully, the

index TESTINDEX is opened for processing.

6.1.4 The current record

The C-ISAM Indexed Access Layer uses the concept of the current record to determine

which record in the index is currently accessible. At any given time, only one record is

the current record.

6.1.4.1 Moving to the next or previous record

Note

The Reality Index Sequential Services Interface can only be used to access local Reality

databases.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 94 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Calling the RiscRead function with its Direction parameter set to RISC_NEXT makes the

next record in the index current. Generally, this is used to step through the records in an

index to extract data on a record-by-record basis.

If the current record is either the first or last record of the index, any attempt to move

further towards the beginning or end will return RIXE_EOL. You will then no longer have a

valid current record.

For example,

char KeyBuf[KEYBUFLEN + 1];

char RecBuf[RECBUFLEN + 1];

int RecLen;

int KeyLen;

int Result;

.

.

.

while ((Result = RiscRead(FileHandle,

RISC_NEXT,

RISC_LOCK_NOWAIT,

KeyBuf, KEYBUFLEN, &KeyLen,

RecBuf, RECBUFLEN, &RecLen))

== SUCCESS) {

/* Code to work with the current record... */

}

if (Result != RIXE_EOL) {

/* handle any error */

}

At the end of the loop, the current record pointer is invalid.

To move to the previous record, call the RiscRead function with its Direction parameter

set to RISC_PREV. Note, however, that you cannot move to the previous record if physical

sequential order has been selected.

6.1.4.2 Moving to the next or previous record

To move to the beginning or end of the index, call the RiscPosition function with its

Position parameter set to RISS_BEG or RISS_END respectively. For example,

RiscPosition(FileHandle, RISS_BEG, KeyBuf, KeyLen);

moves to the beginning of the index.

Note, however, that using RiscPosition in this way does not select the first or last record.

Rather, the position is set to just before the beginning, or just after the end of the index,

and using RiscRead to read the current record will fail. To read the first or last record, call

RiscRead to read the next or previous record respectively. For example,

char KeyBuf[KEYBUFLEN + 1];

int KeyLen;

char RecBuf[RECBUFLEN + 1];

Note

The example above assumes that none of the records is longer than the record buffer.

The example on page 6-6 shows a method of handling records that are too long for the

buffer.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 95 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

int RecLen;

.

.

.

RiscPosition(FileHandle, RISS_END, KeyBuf, KEYBUFLEN);

RiscRead(FileHandle,

RISC_PREV,

RISC_LOCK_NOWAIT,

KeyBuf, KEYBUFLEN, &KeyLen,

RecBuf, RECBUFLEN, &RecLen);

selects the last record.

6.1.4.3 Other ways of moving through an index

In addition to the methods described above, you can move to a specific record by using

the RiscReadByKey function or the RiscPosition function with its Direction parameter set

to RISS_EQ or RISS_GE.

6.1.5 Reading records

There are two ways of reading the contents of a record. They are:

• The RiscRead function allows you to read the current record, or the next or

previous record in the index as described above.

• The RiscReadByKey function allows you to read a specified record. You must

specify the value of the index key for the required record. For example,

char RecBuf[BUFLEN + 1];

int RecLen;

.

.

.

if (RiscReadByKey(FileHandle,

RISC_LOCK_NOWAIT,

"UM70006812", 10,

RecBuff, RECBUFLEN, &RecLen) == SUCCESS) {

RecBuff[RecLen] = '\0';

/* do something with the record. */

}

else {

/ handle the error.

}

One reason the RiscRead and RiscReadByKey functions might fail is if the record buffer

supplied is too short. Under these circumstances, the first part of the record is returned

in the buffer and the function returns the error RFE_READEXCEED. The remainder of the

record can then be retrieved by calling the RiscReadRest function as many times as

necessary. For example,

char KeyBuf[KEYBUFLEN + 1];

int KeyLen;

char RecBuf[RECBUFLEN + 1];

int RecLen;

char *DataBuf;

int DataBufSize;

int Result;

.

.

.

/* Attempt to read the record. */

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 96 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Result = RiscRead(FileHandle,

RISC_PREV,

RISC_LOCK_NOWAIT,

KeyBuf, KEYBUFLEN, &KeyLen,

RecBuf, RECBUFLEN, &RecLen);

/* Allocate a buffer for the record. */

DataBufSize = RECBUFLEN + 1;

DataBuf = (char *)calloc(DataBufSize, sizeof(char));

/* Null terminate the data. */

if (Result == SUCCESS)

RecBuf[RecLen] = '\0';

else

RecBuf[RECBUFLEN] = '\0';

/* Copy the record data into the data buffer. */

strcpy(DataBuf, RecBuf);

/* While there is more data to come... */

while (Result == RFE_READEXCEED) {

/* Get more data. */

Result = RiscReadRest(FileHandle,

RecBuf, RECBUFLEN, &RecLen)

/* Calculate the size of the data received so far. */

DataBufSize += RecLen;

/* Make the record buffer bigger. */

DataBuf = (char *)realloc(DataBuf, DataBufSize);

/* Null terminate the record buffer. */

RecBuf[RecLen] = '\0';

/* Append the new data to the old. */

strcat(DataBuf, RecBuf);

}

/* Do something with the record. */

/* Free up the buffer memory. */

free(DataBuf);

6.1.6 Writing records

There are three functions you can use to write records to a Reality file:

Item-id Definition

RiscInsert Inserts an item into a Reality file. If an item

with the specified item-id already exists,

the function will fail.

RiscUpdate

Updates the current record.

Caution

Any part of the record, including the item-

id, can be changed. If the resulting record

has the same item-id as another record,

that record will be overwritten.

RiscWrite

Writes data to an item in a Reality file. If an

item with the specified item-id already

exists, it will be overwritten; otherwise, a

new item will be created.

In all cases, you must supply a file handle, a buffer containing the record data and the

length of the data. For example:

char RecBuf[RECBUFLEN + 1];

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 97 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

int RecLen;

strcpy(RecBuf, "221816\0xFEWebster\0xFEMartin")

RiscWrite(FileHandle, RecBuf, strlen(RecBuf));

Note that the first attribute in the record is always the Reality item-id.

6.1.7 Indexes

6.1.7.1 Selecting an index

Before the items in a Reality file can be accessed using the C-ISAM Indexed Access

Layer, an index must be opened. This is done using the RiscSelect function, specifying

the name of the index required. For example,

if (RiscSelect(FileHandle, "TESTINDEX") == SUCCESS) {

/* Process the index. */

}

else {

/* handle any select error. */

}

Note that a file can also be accessed in physical sequential order. To do this, call

RiscSelect as above but pass a null pointer instead of an index name. For example,

RiscSelect(FileHandle, (char *) 0)

6.1.7.2 Creating a new index

A new index can be created with the RiscCreateIndex function. The index is defined by

creating an array of Index Description structures (see for details). For example,

RISC_DESC IndexDesc[3];

.

.

.

/* Define the index. */

/* Ascending numeric index on the third field. */

IndexDesc[0].Field = 2;

IndexDesc[0].Type = RISC_NUM;

IndexDesc[0].UpDown = RISC_UP;

IndexDesc[0].Op = 0;

/* Ascending string index on second subfield in field 6. */

IndexDesc[1].Field = 6;

IndexDesc[1].Type = RISC_STR;

IndexDesc[1].UpDown = RISC_UP;

IndexDesc[1].Op = RISC_GRP;

IndexDesc[1].Arg1 = '*';

IndexDesc[1].Arg2 = 2;

/* Descending string index on field 8. */

IndexDesc[2].Field = 8;

IndexDesc[2].Type = RISC_STR;

IndexDesc[2].UpDown = RISC_DOWN;

IndexDesc[2].Op = 0;

/* Create the index. */

if (RiscCreateIndex("TESTFILE",

"TESTINDEX",

3, IndexDesc) == SUCCESS) {

/* Do something with the new index. */

}

else {

/* Handle any error. */

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 98 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

}

6.1.7.3 Using an existing index

As an alternative to defining a new index from scratch, you can copy or modify an

existing index. Use the RiscDescribeIndex function to fetch the details of the existing

index. Then modify the Index Description structures as required and create the new

index with RiscCreateIndex.

Note

1. If you are modifying the existing index, rather than creating a new one, you must delete
the original (with RiscDeleteIndex) before calling RiscCreateIndex (see below).

2. When using RiscDescribeIndex, the file containing the index must have been opened

using RiscOpen. The example below assumes that this has been done.

RISC_DESC IndexDesc[8];

int NumParts;

.

.

.

if (RiscDescribeIndex(FileHandle,

"TESTINDEX",

MaxParts, &NumParts, IndexDesc) == SUCCESS) {

/* Modify the index. */

/* Make the index in element 0 descending. */

IndexDesc[0].UpDown = RISC_DOWN;

/* Make the index in element 1 use the third multivalue. */

IndexDesc[1].Arg2 = 3;

/* Delete the original index */

RiscDeleteIndex("TESTFILE", "TESTINDEX")

/* Create the new index. */

if (RiscCreateIndex("TESTFILE",

"TESTINDEX",

3, IndexDesc) == SUCCESS) {

/* Do something with the new index. */

}

else {

/* Handle any error. */

}

}

else {

/* Handle any error. */

}

6.2 Index description structure

This structure is used in the RiscCreateIndex and RiscDescribeIndex functions to describe

a simple index key or part of a complex key. A typical index description consists of an

array of RISC_DESC structures.

typedef struct RiscDesc RISC_DESC;

struct RiscDesc

{

int Field;

RISC_FTYPE Type;

RISC_SDIR UpDown;

RISC_OP Op;

int Arg1;

int Arg2;

};

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 99 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Index items Definition

Field Field number (Field 0 = Item Id).

Type

Field type – one of the following:

• RISC_STR: string;

• RISC_NUM: numeric.

UpDown

Sort direction – one of the following:

• RISC_UP: ascending;

• RISC_DOWN: descending.

Op Operation code (see below).

Arg1 First argument to the operation code.

Arg2 Second argument to the operation code.

The Op, Arg1 and Arg2 members define an optional operation to perform on the basic

value of the field identified by Field.

The Op member may have the following values:

Values Definition

0 No additional operation is performed. Arg1

and Arg2 are ignored.

RISC_SUB

Extract substring:

• Arg1: start column;

• Arg2: length.

RISC_GRP

Extract substring:

• Arg1: delimiter;

• Arg2: field number (1 based).

These additional operations are equivalent to English correlatives T (Text Extraction)

and G (Group Extraction).

6.3 RiscClear

Purpose Deletes all the items in an open Reality file.

Synopsis int RiscClear (FileHandle)

RISC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Return value The RiscClear function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_NOACCESS: Insufficient access rights.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 100 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscDelCurr, RiscDelete.

6.4 RiscClose

See also RiscOpen.

6.5 RiscConnect

Remarks The file to be cleared must be open.

If the file handle references a dictionary, all items are deleted except

for D pointers and self-referencing Q pointers. If the file handle

references a data section, only the data section concerned will be

cleared.

Note that item locks are not checked nor released.

Purpose Closes a previously opened Reality file.

Synopsis int RiscClose (FileHandle)

RISC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Return value The RiscClose function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_NOACCESS: Insufficient access rights.

Remarks If necessary, RiscClose will also close a previously opened index or

list.

Any item locks held by the file server will be released.

Purpose The RiscConnect function establishes a connection to a database and

logs on under the specified user-id to the named account.

Synopsis int RiscConnect (DatabaseName, User, UserPasswd, Account,

AcctPasswd)

char* DatabaseName;

char* User;

char* UserPasswd;

char* Account;

char* AcctPasswd;

Parameters DatabaseName A pointer to a string containing the name of

the database. This must be the name of a

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 101 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RealityX entry in the ROUTE-FILE or the full

UNIX pathname of the database.

 User A pointer to a string containing the user-id

or the user-id and password, in the form:

UserId[,Password]

If this parameter is a null string, the UNIX

user-id from which the program is being run

is used. For remote connections this user-id

is used to access the USERS-FILE and obtain

the user-id to be used when logging on to

the remote database.

 UserPasswd A pointer to a string containing the password

for the user-id specified in the User

parameter. This parameter must be a null

pointer, or point to a null string if:

• The password is specified in the User

parameter;

• The User parameter is null;

• The specified user-id does not have a

password.

 Account A pointer to a string containing the account

name or the account name and password, in

the form:

Account [,Password]

If this parameter is a null string, the default

account for the specified user-id will be

used.

 AcctPasswd A pointer to a string containing the password

for the account specified in the Account

parameter. This parameter must be a null

pointer, or point to a null string if:

The password is specified in the Account

parameter:

• The Account parameter is null;

• The specified account does not have a

password.

Return value The RiscConnect function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_ACCTACTIVE: There is already a current connection.

• RFE_INVACCPASS: Invalid account or password.

• RFE_INVALID: Invalid database name.

• RFE_INVDBASEDIR: Invalid database.

• RFE_NOACCESS: Insufficient access rights.

• RFE_REMOTE: Cannot connect to a remote database.

Remarks This function must be called to establish a connection to a database

and account before calling RiscOpen or any other Risc functions.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 102 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscDisconnect.

6.6 RiscCreateFile

It is not possible to connect to more than one database (or more than

one account on the same database) at any one time using this

interface. It is an error to attempt to connect to a new database (or

account) without first disconnecting from the current database.

Where a program is going to connect to multiple databases in turn, a

dummy outer connection must be made before the first RiscConnect

and this outer connection must not be closed until after the final

RiscDisconnect. The dummy connection must be made using

RfcConnect so that RfcGetAccount and RfcSetAccount can be used

to store and retrieve the account handle for the connection.

RfcConnect, RfcGetAccount and RfcSetAccount are described in

detail in Chapter 4. General rules for connecting to multiple databases

are provided in Appendix B.

Purpose Creates a Reality file in the current account.

Synopsis int RiscCreateFile (FileName, RecSize, NumRecs)

char* FileName;

int RecSize;

int NumRecs;

Parameters FileName Points to a string containing the file

dictionary and/or data names.

The following forms of filename may be used

as required to create dictionary or data

sections, or both:

• filename: Create dictionary and/or

default data section.

o If the file does not exist, it is

created with a dictionary and

default data section.

o If the specified file exists, but

does not have a default data

section, a default data section

is created.

o If the default data section

already exists, an error

occurs.

• filename,dataname: Creates the

named data section, provided the

dictionary section filename exists.

• DICT filename: Creates a dictionary

section only. The size information

specified in the RecSize and NumRecs

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 103 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscDeleteFile.

6.7 RiscCreateIndex

parameters is used to size the

dictionary.

 RecSize The expected average record size.

 NumRecs The expected number of records in file.

Return value The RiscCreateFile function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_NOACCESS: Unable to create Reality file.

• RFE_NOACCOUNT: No current connection.

• RFE_NOFILE: Dictionary file does not exist.

• RFE_SECTEXISTS: Dictionary or data section already exists.

Remarks The size of the file created depends on the values of the NumRecs and

RecSize parameters.

Purpose Creates a new index.

Synopsis int RiscCreateIndex (FileName, IndexName, NumParts, IndexDesc)

char* FileName;

char* IndexName;

int NumParts;

RISC_DESC* IndexDesc;

Parameters FileName The name of the data file. FileName may

take any of the following forms:

• dictname: Creates an index on the

default data section.

• dictname,dataname: creates index on

specified section.

Note

The DICT filename form is not

valid, because only

data sections can be indexed.

IndexName The name for the new index.

NumParts The number of RISC_DESC structures in

IndexDesc.

IndexDesc The address of an array of RISC_DESC

structures describing the index.

Return value The RiscCreateIndex function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 104 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscDeleteIndex.

6.8 RiscDelCurr

See also RiscDelete.

6.9 RiscDelete

• RFE_NOFILE: File does not exist.

• RFE_SECTEXISTS: Data section does not exist.

Remarks Creates a new index as defined by the structures pointed to by

IndexDesc.

Purpose Deletes the current record from the specified file.

Synopsis int RiscDelCurr (FileHandle)

RISC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Return value The RiscDelCurr function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_NOLOCK: Current record not locked.

• RFE_NOREAD: No current record.

Remarks The current record must previously have been locked. On completion,

the lock is released.

Purpose Deletes the current record from the specified file.

Synopsis int RiscDelete(FileHandle, KeyVal, KeyLen)

RISC_FILE FileHandle;

char* KeyVal;

int KeyLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

KeyVal A pointer to a key value.

KeyLen The length of the key value.

Return value The RiscDelete function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RIXE_NOT_FOUND: No such key.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 105 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscDelCurr.

6.10 RiscDeleteFile

See also RiscCreateFile.

6.11 RiscDeleteIndex

Remarks RiscDelete deletes the first record with key equal to KeyVal, from the

open file specified by FileHandle.

Purpose Deletes all or part of a Reality file.

Synopsis int RiscDeleteFile(FileName)

char* FileName;

Parameters FileHandle Points to a string containing the file

dictionary and/or data names.

The following forms of filename may be used

as required to delete dictionary or data

sections, or both:

• filename: Delete all data sections

including the default.

• DICT filename: Delete dictionary

(fails if there are any data sections).

• filename,dataname: Delete specified

data section.

Return value The RiscDeleteFile function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_DATA_EXISTS: Attempt to delete dictionary while data

sections still present.

• RFE_INVDPTR: Invalid D pointer.

• RFE_NOACCESS: Insufficient access rights.

• RFE_NOACCOUNT: No current account.

• RFE_NOFILE: No file found.

Purpose Deletes the named index.

Synopsis int RiscDeleteIndex(Filename, IndexName)

char* FileName;

char* IndexName;

Parameters FileName Points to a string containing the file

dictionary and/or data names.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 106 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscCreateIndex, RiscDescribeIndex.

6.12 RiscDescribeIndex

The following forms of filename may be used

as required to delete dictionary or data

sections, or both:

• filename: Delete all data sections

including the default.

• filename,dataname: Delete specified

data section.

Note

The DICT filename form is not

valid, because only

data sections can be indexed.

IndexName The name of the index to be deleted.

Return value The RiscDeleteIndex function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_NOFILE: File does not exist.

• RFE_NOSECT: Data section does not exist.

• RIXE_NOT_FOUND: Index specified does not exist.

Purpose Reads the description of an index.

Synopsis int RiscDescribeIndex(FileHandle, IndexName, MaxParts, NumParts,

IndexDesc)

RISC_FILE FileHandle;

char* IndexName;

int MaxParts;

int* NumParts;

RISC_DESC* IndexDesc;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

IndexName The name of the index.

 MaxParts The number of RISC_DESC structures

available in IndexDesc.

 NumParts A pointer to a variable in which the number

of RISC_DESC structures returned in

IndexDesc will be returned.

 IndexDesc A pointer to an array of RISC_DESC

structures to receive the index description.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 107 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscCreateIndex.

6.13 RiscDisconnect

See also RiscConnect.

6.14 RiscGetMultiValues

Return value The RiscDeleteIndex function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RIXE_NOT_FOUND: Index specified does not exist.

Purpose RiscDisconnect closes any open files and terminates the current

connection.

Synopsis int RiscDisconnect()

Return value The RiscDisconnect function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_NODATABASE: No current connection.

Remarks You should always close all connections before terminating your

program. At the end of a program that has connected to several

databases in turn, the dummy outer connection must be closed using

RfcDisconnect following the final RiscDisconnect. RfcSetAccount is

used to retrieve the account handle for this outer connection.

RfcDisconnect, RfcGetAccount and RfcSetAccount are described in

detail in Section 4. General rules for connecting to multiple databases

are provided in Appendix B.

Purpose Gets the value and subvalue numbers for the current key.

Synopsis void RiscGetMultiValues(FileHandle, ValNum, SubValNum)

RISC_FILE FileHandle,

Int* ValNum,

Int* SubValNum

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

ValNum A pointer to a variable in which the current

value number will be returned.

 SubValNum A pointer to a variable in which the current

subvalue number will be returned.

Remarks RiscGetMultiValues gets the numbers of the value and subvalue

associated with the current key. This function should normally be used

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 108 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.15 RiscInsert

See also RiscDelCurr, RiscDelete, RiscUpdate, RiscWrite.

6.16 RiscOpen

when the key is from an exploding index. If used with a non-exploding

index, both ValNum and SubValNum are returned set to 0.

Purpose Inserts an item into a Reality file.

Synopsis int RiscInsert(FileHandle, RecBuff, RecLen)

RISC_FILE FileHandle;

char* RecBuff;

int RecLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

RecBuff A pointer to a buffer containing the record to

be inserted.

The record must have the following format:

ItemId 0xFE ItemData

 RecLen The length of the record in the buffer.

Return value RiscDeleteIndex function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_IDEXCEED: Item-id too long.

• RFE_IEXISTS: Item already exists.

Remarks If an item with the same item-id already exists in the file, the function

will fail with error RFE_IEXISTS.

The current index position is not changed by this function.

Purpose Opens a Reality file in the current account and returns a file handle.

Synopsis int RiscOpen(Filename, FileHandle)

char * FileName;

RISC_FILE * FileHandle;

Parameters FileHandle A pointer to a string containing the file

dictionary and/or data names. The following

forms of filename may be used as required

to open dictionary or data sections:

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 109 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscClose.

6.17 RiscPosition

• DICT filename: Open dictionary.

• filename: Open default data section.

• filename,dataname: Open named

data section.

• FileHandle: A pointer to a variable in

which to return the handle of the

open file.

Return value RiscOpen function returns SUCCESS for successful completion, or one of

the return codes listed in Appendix A. The following are likely errors:

• RFE_INVDPTR: Invalid D pointer.

• RFE_NOACCESS: Insufficient access rights.

• RFE_NOACCOUNT: No current connection.

• RFE_NODATABASE: No current connection.

• RFE_NOFILE: No file found.

Remarks The file handle returned must be used for all subsequent references to

the file.

Purpose Sets the current position to the beginning or end of the index or to a

specified key value.

Synopsis int RiscPosition(FileHandle, Position, KeyVal, KeyLen)

RISC_FILE FileHandle;

RISC_POS Position;

char* KeyVal;

int KeyLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Position One of the following:

• RISS_BEG: The current position is

set before the first record in index

order, so that reading the next item

will read the record with the earliest

key value.

• RISS_END: The current position is

set after the last record in index

order, so that reading the previous

item will read the record with the

highest key value.

• RISS_EQ: The current position is set

immediately before the earliest

record with key value equal to or

greater than KeyVal. If the specified

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 110 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscDelCur, RiscRead.

6.18 RiscRead

key does not exist return

RIXE_NOT_FOUND.

• RISS_GE: The current position is set

immediately before the earliest

record with key value equal to or

greater than KeyVal. If the specified

key does not exist, return 0

(success).

KeyVal A pointer to the key value. Ignored unless

Position is RISS_EQ or RISS_GE.

KeyLen The length of the key value pointed to by

KeyVal.

Return value RiscPosition function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_INVPARAM: Invalid Position parameter or request invalid

in physical sequential mode.

• RIXE_NOT_FOUND: RISC_EQ was specified and no such key

exists.

Remarks If physical sequential order has been selected, positioning by key value

is invalid.

Purpose Reads an item and its index key value from a Reality file.

Synopsis int RiscRead(FileHandle, Direction, LockOpts, KeyBuff, MaxKeyLen

KeyLen, RecBuff, MaxRecLen, RecLen)

RISC_FILE FileHandle;

RISC_DIR Direction;

RISC_OPT LockOpts;

char * KeyBuff;

int MaxKeyLen;

int * KeyLen;

char * RecBuff;

int MaxRecLen;

int * RecLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Direction One of the following:

• RISC_NEXT: Read the next record in

index order from the current position.

• RISC_PREV: Read the previous

record in Index order from the

current position.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 111 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• RISC_CURR: Re-read the current

record.

LockOpts One of the following:

• RISC_LOCK_NONE: Do not lock the

record.

• RISC_LOCK_WAIT: Lock the record.

Wait if currently locked by another

process.

• RISC_LOCK_NOWAIT: Lock the

record if available or return

RFE_LOCKED if the record is

currently locked by another process.

KeyBuff The address of a buffer in which the index

key value will be returned.

 MaxKeyLen The length of KeyBuff.

 KeyLen A pointer to a variable in which the length of

the key value will be returned.

 RecBuff The address of a buffer in which the record

will be returned.

 MaxRecLen The size of the RecBuff buffer.

 RecLen A pointer to a variable in which the length of

the record will be returned.

Return value RiscRead function returns SUCCESS for successful completion, or one of

the return codes listed in Appendix A. The following are likely errors:

• RFE_INVPARAM: Invalid Direction or LockOpts parameter or

request invalid in physical sequential mode.

• RFE_LOCKED: Record is locked by another process.

• RFE_NOREAD: No current record.

• RFE_READEXCEED: Record too long for RecBuff.

• RIXE_EOL: At beginning or end of index.

• RIXE_KEY_TOO_BIG: Key too long for KeyBuff.

• RIXE_NOT_FOUND: No such key exists.

Remarks This function reads a record and its associated key value into the

specified buffers. The record to be read is specified by the Direction

parameter – RISS_NEXT and RISS_PREV respectively specify the

next and previous record in index order relative to the current position,

and RISS_CURR re-reads the current record. In all cases, the record

read becomes the current record. Note that RISS_PREV is not valid

if physical sequential order has been selected.

If FileHandle points to a file that has been associated (using

RiscSelect) with an exploding index, RiscRead will repeatedly return

the same item ID for each multi- and/or sub-value.

If the length of the record to be read is greater than the size of the

buffer supplied, the data is truncated and the error

RFE_READEXCEED is returned. If the total size of the item is known

then RecLen will be set to this size; otherwise, RecLen will be set to

zero. RiscReadRest can then be called to read the rest of the item.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 112 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscReadByKey, RiscReadRest.

6.19 RiscReadByKey

If the length of the key to be returned is greater than the size of the

key buffer the error RFE_IDEXCEED will be returned and the actual

key size will be returned in KeyLen. The read may be repeated by

supplying a larger buffer and specifying a Direction of RISS_CURR.

Purpose Read a specified item from a Reality file.

Synopsis int RiscReadByKey(FileHandle, LockOpts, KeyVal, KeyLen, RecBuff,

MaxRecLen, RecLen)

RISC_FILE FileHandle;

RISC_OPT LockOpts;

char* KeyVal;

int KeyLen;

char* RecBuff;

int MaxRecLen;

int* RecLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

LockOpts One of the following:

• RISC_LOCK_NONE: Do not lock the

record.

• RISC_LOCK_WAIT: Lock the record.

Wait if currently locked by another

process.

• RISC_LOCK_NOWAIT: Lock the

record if available or return

RFE_LOCKED if the record is

currently locked by another process.

LockOpts One of the following:

• RISC_LOCK_NONE: Do not lock the

record.

• RISC_LOCK_WAIT: Lock the record.

Wait if currently locked by another

process.

• RISC_LOCK_NOWAIT: Lock the

record if available or return

RFE_LOCKED if the record is

currently locked by another process.

KeyVal A pointer to a key value. The length of the

key value must not exceed 104 characters.

 KeyLen The length of the key value.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 113 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscRead, RiscReadRest.

6.20 RiscReadRest

 RecBuff The address of a buffer in which the record

will be returned.

 MaxRecLen The size of the RecBuff buffer.

 RecLen A pointer to a variable in which the length of

the record will be returned.

Return value RiscReadByKey function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_INVPARAM: Invalid LockOpts parameter or request

invalid in physical sequential mode.

• RFE_LOCKED: Record is locked by another process.

• RFE_NOREAD: No current record.

• RFE_READEXCEED: Record too long for RecBuff.

• RIXE_EOL: At end of index.

• RIXE_KEY_TOO_BIG: Key too long.

• RIXE_NOT_FOUND: No such key.

Remarks This function reads the specified record and its associated key value

into the specified buffers. It reads the first record with key equal to

that specified in KeyVal. This record becomes the current record.

The current position is always updated even if the requested record

does not exist (RIXE_NOT_FOUND). In this case a subsequent call to

RiscRead specifying RISC_NEXT will return the first record with key

value greater than the key specified in RiscReadByKey.

If the length of the record to be read is greater than the size of the

buffer supplied, the data is truncated and the error

RFE_READEXCEED is returned. If the total size of the item is known

then RecLen will be set to this size; otherwise, RecLen will be set to

zero. RiscReadRest can then be called to read the rest of the item.

If physical sequential order has been selected this function can be used

to read by item-id. However, in this case the record read does not

affect the current position as seen by RiscRead.

Purpose Read the remainder of a partially read record.

Synopsis int RiscReadRest(FileHandle, DataBuff, MaxDataLen, DataLen)

RISC_FILE FileHandle;

char* DataBuff;

int MaxDataLen;

int* DataLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 114 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscRead, RiscReadByKey.

6.21 RiscSelect

DataBuff The address of a buffer in which the

remaining data will be returned.

 MaxDataLen The size of the DataBuff buffer.

 DataLen A pointer to a variable in which the length of

the data placed in DataBuff will be returned.

Return value RiscReadRest function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_NOREAD: Call not preceded by an RFE_READEXCEED

error.

• RFE_READEXCEED: Data too long for DataBuff.

Remarks This function is used after an attempt to read a record returned the

error RFE_READEXCEED, to read the rest of the record.

RiscReadRest can only be used immediately after the failed RiscRead,

RiscReadByKey or RiscReadRest call. If any other items are read from

or written to the file, RiscReadRest will return the error

RFE_NOREAD. Note that RiscReadRest can also return the error

RFE_READEXCEED and may therefore be called again to get more of

the item.

Purpose Either associate a specified index with an open file and initialise it for

sequential access in index order or initialise the file for access in

physical sequential (group) order.

Synopsis int RiscSelect(FileHandle, DataBuff, MaxDataLen, DataLen)

RISC_FILE FileHandle;

char* IndexName;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

IndexName A pointer to a string containing the name of

the index. If IndexName is a null pointer, the

file is initialised for physical sequential

access.

Return value RiscSelect function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

• RIXE_NO_INDEX: Specified index does not exist.

Remarks Any previously selected index is closed.

On successful completion, the current position is set before the first

record in index order, so that reading the next item will read the

record with the earliest key value.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 115 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RiscCreateIndex, RiscRead.

6.22 RiscUnlock

See also RiscPosition, RiscRead, RiscReadByKey.

6.23 RiscUpdate

See also RiscInsert, RiscWrite.

Purpose Unlocks the current record in the specified open file.

Synopsis int RiscUnlock(FileHandle)

RISC_FILE FileHandle;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

Return value RiscSelect function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A.

Remarks If the current record is not locked, this function does nothing.

Purpose Updates the current record.

Synopsis int RiscUpdate(FileHandle, RecBuff, RecLen)

RISC_FILE FileHandle;

char* RecBuff;

int RecLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

RecBuff A pointer to a buffer containing the updated

record.

RecLen The length of the record in RecBuff.

Return value RiscUpdate function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

• RFE_IDEXCEED: Item-id too long.

• RFE_NOLOCK: Current record not locked.

• RFE_NOREAD: No current record.

Remarks Any part of the current record may be changed including the item-id. If

the item-id is changed and another item exists with that Id it will be

overwritten with the updated record and the old item deleted.

The current record must be locked before calling this function. The lock

will be released when this function completes.

Section 6: Reality Index Sequential Services
Interface

Reality v9.0 C API Reference Manual v0.1 Page 116 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.24 RiscWrite

See also RiscInsert, RiscUpdate.

Purpose Writes data to an item in a Reality file.

Synopsis int RiscWrite(FileHandle, RecBuff, RecLen)

RISC_FILE FileHandle;

char* RecBuff;

int RecLen;

Parameters FileHandle The handle of the required Reality file,

returned by RiscOpen.

RecBuff A pointer to a buffer containing the updated

record.

The record must have the following format:

ItemId 0xFE ItemData

RecLen The length of the record in RecBuff.

Return value RiscWrite function returns SUCCESS for successful completion, or one

of the return codes listed in Appendix A. The following are likely errors:

• RFE_IDEXCEED: Item-id (field 1) too long.

Remarks If an item with the same item-id (the first attribute in RecBuff) already

exists, it will be overwritten.

The current index position is not altered by this function.

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 117 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 7: Reality List Services Interface
The Reality List Services Interface functions allow user written UNIX programs to create

and manipulate Reality lists.

7.1 Rlc functions

The Reality List Services Interface (Rlc) is a library of C functions which allows a UNIX

program to use Reality list handling features. Lists allow the sequential processing of

files.

The RgcStartUpServices macro which is part of the Rgc services (see Chapter 5) must

be called to initialise the Rlc services.

Reality lists are lists of item-ids created by list-generating English verbs. A list can be

saved in a file item: this can be in POINTER-FILE or another specified file. Alternatively,

a list can be dynamically created from the item-ids of an open file. For further details on

lists, see English Reference Manual.

Rlc allows user-written C programs to manipulate lists in the Reality environment.

Functions are provided to create lists, save and retrieve the created lists to/from files,

and use the lists to access data from a specified file.

7.1.1 List handles

A list can be created from the item-ids of an open file with the RlcMakeList function.

This returns a list handle. This list handle is used by all functions which perform

operations on lists.

7.1.2 Rlc functions

The Rlc functions are listed as follows:

Functions Definition

RlcCloseList Closes an open list.

RlcDeleteList Deletes a named list.

RlcGetList Opens a previously saved list.

RlcLockReadNex

tItem

Obtains the next item-id from the specified

list. It then locks the corresponding item in

the specified file and returns the contents

of that item.

RlcMakeList
Constructs a list of item-ids from an open

file.

RlcNext Reads the next item-id from an open list.

RlcReadNextIte

m

Obtains the next item-id from the specified

list. It then reads the corresponding item in

the specified file and returns the contents

of that item.

RlcSaveList Save an open list to a file item.

RlcSelect
Creates a list of item-ids selected from a

Reality file.

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 118 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

7.2 RlcCloseList

See also RlcGetList, RlcMakeList, RlcSelect.

7.3 RlcDeleteList

See also RlcMakeList, RlcSelect.

7.4 RlcGetList

Purpose Closes an open list.

Synopsis int RlcCloseList(ListHandle)

RLC_LIST ListHandle;

Parameters ListHandle The handle of an open list, returned by

RlcGetList, RlcMakeList or RlcSelect.

Return value The RlcCloseList function always returns SUCCESS.

Purpose Deletes a named list.

Synopsis int RlcDeleteList(FileName, ListName)

char * FileName;

char * ListName;

Parameters FileName A pointer to a string containing the name of

the file that contains the list. If Filename is a

null pointer, the list is deleted from the

POINTER-FILE.

ListName A pointer to a string containing the name of

the list.

Return value The RlcDeleteList function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_DONTKNOW: Undefined error.

• RFE_IDEXCEED: Item id length too long/buffer too small.

• RFE_INVDPTR: Bad D/pointer.

• RFE_INVPARAM: Invalid parameters to function.

• RFE_NOACCESS: No access.

• RFE_NOACCOUNT: Not logged on.

• RFE_NOFILE: File does not exist.

Purpose Opens a previously saved list.

Synopsis int RlcGetList(FileName, ListName, ListHandle)

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 119 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RlcMakeList, RlcSaveList, RlcSelect.

7.5 RlcGetMultiValues

char * FileName;

char * ListName;

RLC_LIST * ListHandle;

Parameters FileName A pointer to a string containing the name of

the file that contains the list. If Filename is a

null pointer, the list is deleted from the

POINTER-FILE.

ListName A pointer to a string containing the name of

the list.

 ListHandle A pointer to a variable in which to return the

handle of the open list.

Return value The RlcGetList function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_DONTKNOW: Undefined error.

• RFE_IDEXCEED: Item id length too long/buffer too small.

• RFE_INVDPTR: Bad D/pointer.

• RFE_INVPARAM: Invalid parameters to function.

• RFE_NOACCESS: No access.

• RFE_NOACCOUNT: Not logged on.

• RFE_NOFILE: File does not exist.

• RFE_NOSPACE: Unable to allocate more memory.

Purpose Gets the value and sub-value numbers for the current element.

Synopsis void RlcGetMultiValues(ListHandle, ValNum, SubValNum)

RLC_LIST ListHandle,

Int* ValNum,

Int* SubValNum

Parameters ListHandle A pointer to a variable in which the current

sub-value number will be returned.

ValNum A pointer to a variable in which the current

value number will be returned.

 SubValNum A pointer to a variable in which the current

sub-value number will be returned.

Remarks RlcGetMultiValues gets the numbers of the value and sub-value

associated with the current element. This function should normally be

used when the element is from an exploding index. If used with a non-

exploding index, both ValNum and SubValNum are returned set to 1.

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 120 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

7.6 RlcLockReadNextItem

Purpose Obtains the next item-id from the specified list. It then locks the

corresponding item in the specified file and returns the contents of that

item.

Synopsis int RlcLockReadnextItem(ListHandle, FileHandle, ItemId, ItemIdLen,

Item, ItemMaxLen, ItemLen)

RLC_LIST ListHandle;

RFC_FILE FileHandle;

char * ItemId;

int * ItemIdLen;

char * Item;

int ItemMaxLen;

int * ItemLen;

Parameters ListHandle The handle of an open list, returned by

RlcGetList, RlcMakeList or RlcSelect.

FileHandle The handle of the required Reality file,

returned by RfcOpenFile.

 ItemId A pointer to a buffer (at least

RFE_MAX_ID_SIZE bytes in length) in

which the item-id will be returned.

 ItemIdLen A pointer to a variable in which the length of

the item-id will be returned.

 Item A pointer to a buffer in which the item data

will be returned.

 ItemMaxLen The length of the Item buffer.

 ItemLen A pointer to a variable in which the length of

the item data will be returned. If the

complete item was too long to fit into the

buffer, this variable will be returned set to

the total length of the item if known, or to

zero.

Return value The RlcLockReadNextItem function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_DONTKNOW: Undefined error.

• RFE_LOCKED: The item is locked.

• RFE_NOITEM: Item does not exist.

• RFE_READEXCEED: The item is longer than the Item buffer –

the data has been truncated. Use the RfcReadRest function to

read the remainder of the item.

• RLE_ENDOFLIST: The end of the list has been reached –the

list is no longer available.

• RFE_NOFILE: Unable to open scratch file.

• RFE_NOSPACE: Unable to allocate more memory.

• RLE_RESIZEBUFF: Item-id buffer too small.

Remarks This function is identical to RlcReadNextItem, except that the item is

locked first. The operation of RlcLockReadNextItem depends on the

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 121 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RlcNext, RlcReadNextItem.

7.7 RlcMakeList

See also RlcGetList, RlcSaveList, RlcSelect.

7.8 RlcNext

flags set with the RfcSetLockMode function.

• If the lock mode has not been set, or is set to

RFC_OPT_NONE, RlcLockReadNextItem will wait for a locked

item to be released and will not lock a non-existent item.

• If the RFC_OPT_NO_WAIT option is set, if the item is locked,

RlcLockReadNextItem will return immediately with the error

RFE_LOCKED.

• If the RFC_OPT_HOLD option is set and the item does not

exist, RlcLockReadNextItem will set an item lock.

If the length of the item-id is greater than RFE_MAX_ID_SIZE, the

error RLE_RESIZEBUFF is returned.

Purpose Constructs a list of item-ids from an open file.

Synopsis int RlcMakeList(FileHandle, ListHandle)

RFC_FILE FileHandle;

RLC_LIST * ListHandle;

Parameters FileHandle The handle of the required Reality file,

returned by RfcOpenFile.

ListHandle A pointer to a variable in which to return the

handle of the open list.

Return value The RlcMakeList function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_NOFILE: Unable to open scratch file.

• RFE_NOSPACE: Unable to allocate more memory.

Remarks The file must remain open while reading the list – closing the file

before closing the list will cause subsequent list accesses to fail. If the

length of the item-id is greater than RFE_MAX_ID_SIZE, the error

RLE_RESIZEBUFF is returned.

Purpose Reads the next item-id from an open list.

Synopsis int RlcNext(ListHandle, Element, ElementMaxLen, ElementLen)

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 122 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RlcLockReadNextItem, RlcReadNextItem, RiscGetMultiValues.

7.9 RlcReadNextItem

RLC_LIST ListHandle;

char * Element;

int ElementMaxLen;

int * ElementLen;

Parameters ListHandle The handle of an open list, returned by

RlcGetList, RlcMakeList or RlcSelect.

Element A pointer to a buffer in which the item-id will

be returned.

 ElementMaxLen The length of the Element buffer.

 ElementLen A pointer to a variable in which the length of

the item-id will be returned.

Return value The RlcNext function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RLE_ENDOFLIST: The end of the list has been reached – the

list is no longer available.

• RLE_INVALIDOP: Invalid operation on this list (list not

opened in elemental mode).

Remarks If the item-id is too long to fit in the Element buffer, it will be

truncated.

If ListHandle points to a list that was generated from an exploding

index, RlcNext will repeatedly return the same item ID for each multi-

and/or sub-value.

Purpose Obtains the next item-id from the specified list. It then reads the

corresponding item in the specified file and returns the contents of that

item.

Synopsis int RlcReadNextItem(ListHandle, FileHandle, ItemId, ItemIdLen, Item,

ItemMaxLen, ItemLen)

RLC_LIST ListHandle;

RFC_FILE FileHandle;

char * ItemId;

int * ItemIdLen;

char * Item;

int ItemMaxLen;

int * ItemLen;

Parameters ListHandle The handle of an open list, returned by

RlcGetList, RlcMakeList or RlcSelect.

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 123 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RlcLockReadNextItem, RlcReadNextItem, RiscGetMultiValues.

7.10 RlcSaveList

FileHandle The handle of the required Reality file,

returned by RfcOpenFile.

 ItemId A pointer to a buffer in which the item-id will

be returned.

 ItemIdLen A pointer to a variable in which the length of

the item-id will be returned.

 Item A pointer to a buffer in which the item data

will be returned.

 ItemMaxLen The length of the Item buffer.

 ItemLen A pointer to a variable in which the length of

the item data will be returned. If the

complete item was too long to fit into the

buffer, this variable will be returned set to

the total length of the item if known, or to

zero.

Return value The RlcReadNextItem function returns SUCCESS for successful

completion, or one of the return codes listed in Appendix A. The

following are likely errors:

• RFE_DONTKNOW: Undefined error.

• RFE_NOITEM: Item does not exist.

• RFE_READEXCEED: The item is longer than the Item buffer –

the data has been truncated. Use the RfcReadRest function to

read the remainder of the item.

• RLE_ENDOFLIST: The end of the list has been reached – the

list is no longer available.

• RLE_NOFILE: Unable to open scratch file.

• RLE_NOSPACE: Unable to allocate more memory.

• RLE_RESIZEBUFF: Item-id buffer too small.

Remarks If the length of the item-id is greater than RFE_MAX_ID_SIZE, the

error RLE_RESIZEBUFF is returned.

If ListHandle points to a list that was generated from an exploding

index, RlcNext will repeatedly return the same item ID for each multi-

and/or sub-value.

Purpose Save an open list to a file item.

Synopsis int RlcSaveList(ListHandle, FileHandle, ListName)

RLC_LIST ListHandle;

char * FileName;

char * ListName;

Parameters ListHandle The handle of an open list, returned by

RlcGetList, RlcMakeList or RlcSelect.

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 124 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RlcDeleteList, RlcGetList, RlcLockReadNextItem, RlcMakeList,
RlcNext, RlcReadNextItem, RlcSelect.

7.11 RlcSelect

FileName A pointer to a string containing the name of

the file in which to save the list. If Filename

is a null pointer, the list is saved in the

POINTER-FILE.

 ListName A pointer to a string containing the name of

the item in which to save the list. If the item

already exists, it is overwritten.

Return value The RlcSaveList function returns SUCCESS for successful completion,

or one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_DONTKNOW: Undefined error.

• RFE_IDEXCEED: Item id length too long/buffer too small.

• RFE_INVDPTR: Bad D/pointer.

• RFE_INVPARAM: Invalid parameters to function.

• RFE_NOACCESS: No access.

• RFE_NOACCOUNT: Not logged on.

• RFE_NOFILE: File not found.

• RLE_ENDOFLIST: The end of the list has been reached –the

list is no longer available.

• RLE_NOSPACE: Unable to allocate more memory.

Remarks On completion, RlcSaveList closes the list. It can be reopened with

the RlcGetList function.

The list will be saved starting from the current item-id. If the list has

been partially read, therefore, only the unread portion is saved.

Purpose Creates a list of item-ids selected from a Reality file.

Synopsis int RlcSelect(QueryType, Filename, Criteria, ListHandle)

RLC_QUERY_TYPE QueryType;

char * FileName;

char * Criteria;

RLC_LIST * ListHandle;

Parameters QueryType The type of Query. This must be one of the

following:

• RLC_QT_ENGLISH_SELECT: Select

only.

• RLC_QT_ENGLISH_SSELECT:

Select and sort.

FileName A pointer to a string containing the name of

the file from which to make the selection.

 Criteria Points to a string containing the select

criteria. These must be in the

Section 7: Reality List Services Interface

Reality v9.0 C API Reference Manual v0.1 Page 125 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also RlcMakeList, RlcGetList, RlcSaveList.

same form as in an English command line;

for example,

WITH AGE < "30"

will select all items in which the attribute

AGE is less than 30. Refer to the English

Programming Reference Manual for full

details. If there are no select criteria, Criteria

must point to a null string.

 ListHandle A pointer to a variable in which to return the

handle of the new list.

Return value The RlcSelect function returns SUCCESS for successful completion, or

one of the return codes listed in Appendix A. The following are likely

errors:

• RFE_DONTKNOW: Undefined error.

• RFE_INVDPTR: Bad D/pointer.

• RFE_INVPARAM: Invalid parameters to function.

• RFE_NOACCESS: No access.

• RFE_NOFILE: File not found.

• RLE_NOSPACE: Unable to allocate more memory.

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 126 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: Appendix A – Error Return Codes
This appendix lists the values returned by the Reality C API functions. The constants

defined in the header files are listed in alphabetical order.

8.1 Introduction

Most Reality Interface functions return an integer that is numeric return code. This return

code will have a value of zero if the function call is successful. If

the function call is unsuccessful, the return code will have a non-zero value.

Return code definitions are #defined in the header files,

• ros/rfc.h

• ros/rgc.h

• ros/rlc.h

• ros/rcc.h

These can be included as needed in user-written C programs which use the Reality

Interface functions.

Note

To allow these files to be included, the following should be added to the complier’s include path:

Windows systems: %REALROOT%\include

UNIX systems: /usr/include.

If a function call results in a non-zero return code, an associated textual error message

may be displayed by the program.

Textual messages associated with Interactive File Access and Interprocess

Communication return codes can be displayed using the RgcErrMsg function. The

RgcErrMsg function is passed a return code, which it uses as an index to the error

message file, and a pointer to a buffer. RgcErrMsg extracts the textual error message

and places it in the buffer.

8.1.1 Example

In the example below the if clause is executed if RetCode does not equal SUCCESS. In

these circumstances, RgcErrMsg is called to read the associated error message into the

supplied buffer, ErrorString. The printf function displays the contents of the buffer.

if ((RetCode = RfcOpenFile(FileName,&FileHandle) != SUCCESS))

{

ErrorString = RgcErrMsg(RetCode);

(void) printf("%s\n", ErrorString);

exit (2);

}

Textual messages associated with InterProcess Communication function return codes can

be displayed using the RccError function (if you are using Interactive File Access as well,

however, you must use RgcErrMsg).

8.1.2 List of error definitions

The following list is of Reality errors:

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 127 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

EACCOUNT Invalid Account/Password on Remote

System

ECONREF
Connection Refused by Remote System

(unspecified reason)

ELENGTH
Qualifier/Data Length too long on Remote

Systems

ENOCHAN No Channels Available on Remote System

ENOPRC No Process Available on Remote System

ENOVP
No Virtual Ports Available on Remote

System

EPROTOCOL Protocol Error

EPROTSUP Protocol Not Supported on Remote System

ESERVER Invalid Server Name on Remote System

ETIMEOUT Timeout Error on Remote System

The following is a list of Reality Communications Interface errors:

Definition Meaning

RCE_ACCESS System error: Access

RCE_ACI_ENT

RY

The ROUTE-FILE entry is for ACI

connections

only

RCE_ADDR_FO

RMAT
Invalid Address Format in ROUTE-FILE

RCE_CHARMO

DE_NOT_SUPP

System Error: Character Mode Circuit Not

Supported

RCE_CIRCUIT_

ABORT
Remote: Circuit Aborted

RCE_CLIENT_N

OT_TO
Client Request has not Timed Out

RCE_COMMAN

D
Remote: Illegal Command

RCE_CONEXCE

ED
Exceeded maximum number of connections

RCE_CONNECT

ION_REFUSED
Connection refused by remote system

RCE_CONNECT

ION_REJ
Connection rejected by remote server

RCE_CREATE_I

PCQ
Create IPC Message Queue Failure

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 128 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

RCE_CWD_NO

T_FOUND
Cannot Find Current Working Directory

RCE_DDA_ACI

_REPLUG
Remote: DDA to ACI Replug Not Supported

RCE_DELETE_I

PCQ
Delete IPC Message Queue Failure

RCE_DETACH_

FAIL
System Error: Session Manager Detach Fail

RCE_ENCPLID

_LENGTH
PLId environment variable too long

RCE_ENVIRON System error: Get Environment

RCE_ERRMSG_

FILE
Cannot Open ERRMSG-FILE

RCE_ERRMSG_

LOCATE

Cannot locate error message in ERRMSG-

FILE

RCE_ERRMSG_

READ

Cannot Read Error Message From

ERRMSGFILE

RCE_ERRNUM_

READ

Cannot Read Error Number From ERRMSG-

FILE

RCE_EVENT_L

OG_OPEN

Failed to Open Session Manager Event Log

File

RCE_EXEC System Error: Exec

RCE_EXPEDITE

D
Expedited Data Received

RCE_FCNTL System Error: File Control

RCE_FORK System Error: Fork

RCE_FREE_SYS

CON
System Connection Release Error

RCE_FSTAT System Error: File Stats

RCE_ILLSREF Illegal Session Reference

RCE_INCOMPA

T_IPC_MSG

Incompatible rcs library and session

manager

RCE_INSUFFM

EM
System Error: Insufficient Memory

RCE_INTERRU

PT
Interrupted System Call

RCE_INV_SMA

NAGERQ
Invalid SMANAGERQ Environment Variable

RCE_INVALID_

DBASE
Invalid Database Name

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 129 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

RCE_INVALID_

FORMAT
Invalid Session Message Format

RCE_INVALID_

INT_ACTION
Invalid Interrupt Action

RCE_INVALID_

PROTOCOL
Invalid Session Connect Protocol

RCE_INVALID_

SCONNECT
Invalid Session Connect String

RCE_INVALID_

TIMEOUT
Invalid Timeout

RCE_INVARG Invalid argument

RCE_INVDBUF Invalid Data Buffer

RCE_IOCTL System Error: IO Control

RCE_KILL System Error: Kill

RCE_LENGTH_

OVFL
Qualifier or Data Length Overflow

RCE_MEMCPY System Error: Memory Copy

RCE_MOREDAT

A
More Data Available

RCE_NO_NET Network Option not Installed

RCE_NO_PLID

No PLId saved and not requested to

generate a

PLId

RCE_NO_PROC

ESS

Remote: No Process Available On Remote

System

RCE_NO_RCS_

MANAGER
Session Manager Not Running

RCE_NO_ROUT

EFILE
Cannot open ROUTE-FILE

RCE_NO_SYSC

ON
System Connections not licenced

RCE_NO_USER

SFILE
Cannot Open USERS-FILE

RCE_NODATA Data Not Yet Available

RCE_PATHEXC

EED
Path too long for supplied buffer

RCE_PLID Invalid Physical Location Identifier

RCE_PLID_LEN

GTH
PLId too long for supplied buffer

RCE_PLID_NU

LL
PLId is null string

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 130 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

RCE_POLL System Error: Poll

RCE_PROTOCO

L
Remote: Protocol Violation

RCE_PROTOCO

L_NOTSUPP
Remote: Protocol Not Supported

RCE_PSW Invalid Password

RCE_QUAL_DA

TA_OVFL
Remote: Qualifier or Data Overflow

RCE_QUALOVF

L
Qualifier Overflow

RCE_QUALTRU

NC
Qualifier Truncation

RCE_QUALTRU

NC_EXPEDITE

D

Qualifier Truncation and Expedited Data

Received

RCE_QUALTRU

NC_MOREDAT

A

Qualifier Truncation and More Data

Available

RCE_RCV_IPC

_MSG
Receive IPC Message Failure

RCE_Reality_S

ERVER
Start Reality Server Failure

RCE_REALPLID Cannot set REALPLId environment variable

RCE_REMOTE Entry for remote system

RCE_ROUTEFIL

E
Invalid ROUTE_FILE format

RCE_SERVER Invalid Server Name

RCE_SERVER_

NOT_EXEC
Invalid server name: not EXECUTABLE.

RCE_SERVER_

NOT_TO
Server Request has not Timed Out

RCE_SESSION

_LOG_OPEN

Failed to Open Session Manager Session

Log

File

RCE_SIGNAL System Error: Signal

RCE_SND_IPC

_MSG
Send IPC Message Failure

RCE_SYSCON_

EXCEED
System Connection Limit Exceeded

RCE_SYSTEM Invalid System Name

RCE_TACCEPT Transport: Accept Connection Failure

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 131 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

RCE_TALLOC Transport: Allocation Failure

RCE_TBIND Transport: Address Bind Failure

RCE_TCLOSE Transport: Close Device Failure

RCE_TCONNEC

T
Transport: Connection Refused

RCE_TDEQUEU

E
Service Request Timer Dequeue Failure

RCE_TENDPT
Transport: Exceeded maximum listening

endpoints

RCE_TEVENT
Transport: Unexpected Event Received on

Listening Endpoint

RCE_TEVENT_

CANCEL

Transport: connection event cancelled by

disconnection event

RCE_THOSTDI

SC
Transport: Circuit Disconnected

RCE_TIMEOUT Operation Timed Out

RCE_TLISTEN Transport: Listen for Connection Failure

RCE_TLOOK Transport: State Enquiry (Look) Failure

RCE_TO_COMP

LETION
Service Request Completion Routine Failure

RCE_TOPENDE

V
Transport: Open Device Failure

RCE_TPEXPOV

FL
Expedited Data Overflow

RCE_TRACE_L

OG_OPEN

Failed to Open Session Manager Trace Log

File

RCE_TRCV Transport: Receive Failure

RCE_TRCVDIS Transport: Receive Disconnect Failure

RCE_TRCVREL Transport: Receive Orderly Release Failure

RCE_TSND Transport: Send Failure

RCE_TSNDDIS Transport: Send Disconnect Failure

RCE_TSNDREL Transport: Send Orderly Release Failure

RCE_TSYNC Transport: Process Synchronisation Failure

RCE_UNKNOW

N_MSGTYPE
Unknown IPC Message Type Received

RCE_USERID Invalid Userid/Password

RCE_USERSFIL

E
Invalid USERS-FILE Format

RCE_WAITEVE

NT
System Error: Wait for Event

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 132 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

RCSE_GETUCB System error: insufficient memory.

The following is a list of Reality Filing Interface errors:

Definition Meaning

RFE_ACCTACTI

VE

Account handle has not been saved

RFE_DELETED Deleted item — BS private

RFE_DISKFULL File system full

RFE_DONTKNO

W
Undefined error

RFE_EOF End of file reached

RFE_EXDBASE Not allowed across databases

RFE_FILMAX Max number of files already open

RFE_FLSOPEN File still open

RFE_GFE Group Format Error

RFE_IDEXCEED Item id length too long/buffer too small

RFE_IEXISTS Item already exists, no overwrite allowed

RFE_INVACCP

ASS
Invalid logon attempt

RFE_INVALID Invalid database name

RFE_INVDBAS

EDIR
Bad directory for database

RFE_INVDPTR Bad D/pointer

RFE_INVEVEN

T
Bad call to event handler

RFE_INVLEVEL Invalid file level

RFE_INVNAME Bad item name

RFE_INVOFFSE

T
Invalid offset

RFE_INVPARA

M
Invalid parameters to function

RFE_INVUPDA

TE
Invalid D/pointer update

RFE_LOCKCLE

ARED
Lock found and cleared

RFE_LOCKED Lock is taken

RFE_NOACCES

S
No access

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 133 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Definition Meaning

RFE_NOACCOU

NT
Not logged on

RFE_NOATTR Attribute does not exist

RFE_NODATAB

ASE
Not connected to a database

RFE_NODEL Delete failed

RFE_NODICT No DICT for DATA

RFE_NOFILE File does not exist

RFE_NOHANDL

E
Handle not valid

RFE_NOILOCK

S
Item lock table full

RFE_NOITEM Item does not exist

RFE_NOLOCK Lock does not exist

RFE_NONAME Name not supplied

RFE_NONUNIQ

UE
Non-unique name

RFE_NOREAD No outstanding read

RFE_NOSECT File section does not exist

RFE_NOSEQAC

CESS
No RfsSetupSeqAccess called

RFE_NOSPACE Unable to allocate more memory

RFE_NOSUPPO

RT
Operation not supported

RFE_NOTOPEN File not open on this reference

RFE_OPENMOD

E
Inconsistent with file open mode

RFE_PRIV Insufficient privilege level

RFE_READEXC

EED
Read too big for buffer

RFE_READONL

Y
File is read-only

RFE_REMOTE Remote database

RFE_RETPRO Retrieval lock set

RFE_REUSE Handle being reused

RFE_SECTEXIS

TS
File section already exists

RFE_TOOBIG File or item is too big

RFE_UPDPRO File is update protected

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 134 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The following is a list of Reality General Services Interface errors:

Definition Meaning

RGE_ABORT ABORT

RGE_BAD_CB Invalid control block

RGE_BAD_MO

DULE
Bad module number

RGE_BAD_MSG Bad message received

RGE_BUFFER_

TOO_SMALL
Buffer too small for operation

RGE_DUMPED Core Dumped

RGE_DUMPSUP

P
Core Dump Suppressed by REALDUMP=0

RGE_ENDMSG Located mark is a segment mark

RGE_ENOEXTR

ACT

Could not extract the attribute from the

string

RGE_LAYER_O

VFL
Vector table overflow

RGE_MALLOC Cannot allocate memory

RGE_MIDMSG Located mark isn’t segment mark

RGE_NO_MSG_

BUF
No buffer for received message

RGE_NOATTR Attribute does not exist

RGE_NODELET

E
Mark being deleted does not exist

RGE_NODUMP Core Dump Failed

RGE_NOHAND

LE
Invalid Database Handle

RGE_NOMARK Mark does not exist

RGE_NOPRESE

NTRY
No Process Resource Table Entry

RGE_NOSHMH

ANDLE
Invalid shared memory address

RGE_NOSPACE Allocated buffer too small

RGE_NOT_SUP

PORTED
Operation not supported

RGE_NOTNUM String does not convert to a number

RGE_NOVALUE Value does not exist

RGE_RUNNING Running

RGE_SERVICE

_TABLE_FULL
Notification service table full

Section 8: Appendix A – Error Return Codes

Reality v9.0 C API Reference Manual v0.1 Page 135 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The following is a list of C-ISAM Indexed Access Layer errors:

Definition Meaning

RIXE_EOL At beginning or end of index

RIXE_KEY_TO

O_BIG
Key too long for KeyBuff

RIXE_NO_IND

EX
Index specified does not exist

RIXE_NOT_FO

UND
No such key

The following is a list of Reality List Services Interface errors:

Definition Meaning

RLE_ENDOFLIS

T

Reached end of list

RLE_FAILURE Unknown error occurred

RLE_INVALID

OP
Invalid operation on this list

RLE_NO_CB No allocation of control block

RLE_NOCLOSE Could not close list file

RLE_NOFILE Scratch file open failed

RLE_NOLIST List does not exist

RLE_NOPOINT

ERFL
No pointer file

RLE_NOSPACE Unable to allocate more memory

RLE_OSERROR Unexpected error in underlying OS

RLE_READEXH

AUST
Reached end of list buffer

RLE_RESIZEBU

FF
Buffer too small

RLE_SELECT_C

RI
Selection criteria error

The following is a list of other completion codes:

Definition Meaning

SUCCESS Function completed successfully

Section 9: Appendix B – Connecting to
multiple databases

Reality v9.0 C API Reference Manual v0.1 Page 136 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 9: Appendix B – Connecting to multiple
databases
This appendix describes how to make connections to multiple Reality databases using the

Rfc and Risc interfaces.

9.1 Overview

The Reality Filing Services Interface (Rfc), described in Section 4, enables a C program to

connect to a Reality database to create, delete, read from and write to Reality files. The

Reality Indexed Access Interface, described in Section 6, provides the same facilities, but

works with records and keys, handling the Reality item-id as part of the record data.

When using either interface, before connecting to a database, the program must first call

the RgcStartUpServices macro to perform one-time initialisation operations.

If the program is then to make multiple connections to Reality databases, the first

connection must be a dummy outer connection, made via RfcConnect. This connection

must be kept open until all subsequent connections have been closed, that is the number

of open connections must always be at least one.

The second connection to a database is a real connection: the RfcConnect or

RiscConnect statement is followed by RfcOpenFile or RiscOpen and the program can

then manipulate data in the specified database file.

When the final real connection has been closed using RfcDisconnect or RiscDisconnect,

the outer dummy connection can be closed using RfcDisconnect. The program must

then call the RgcShutDownServices macro to close all active services.

9.2 Example

1. A C program that is to make connections to Reality databases must first call

RgcStartUpServices:

#define MAX_NAME_LEN 30

#define MAX_PASSWORD_LEN 10

char DatabaseName[MAX_NAME_LEN+1] = “dbase1”;

char UserName[MAX_NAME_LEN+1] = “user1”;

char UserPassword[MAX_PASSWORD_LEN+1] = “upswd1”;

char AccountName[MAX_NAME_LEN+1] = “account1”;

char AccountPassword[MAX_PASSWORD_LEN+1] = “apswd1”;

char DatabaseFilename[MAX_NAME_LEN+1] = “file1”;

int nResult = 0;

RFC_ACCOUNT ExtraAccountHandle = NULL;

RISC_FILE FileHandle = NULL;

RgcStartUpServices(nResult);

2. The program must now make the outer, dummy database connection.

RfcGetAccount is used to store the account handle for this session:

nResult = RfcConnect(DatabaseName,

UserName,

UserPassword,

AccountName,

AccountPassword);

nResult = RfcGetAccount(&ExtraAccountHandle);

Section 9: Appendix B – Connecting to
multiple databases

Reality v9.0 C API Reference Manual v0.1 Page 137 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3. The program can now make a real database connection:

nResult = RiscConnect(DatabaseName,

UserName,

UserPassword,

AccountName,

AccountPassword);

4. The required database file is opened:

nResult = RiscOpen(DatabaseFileName, &FileHandle);

5. When the program has completed the required operations on the data in the

specified file, the file can be closed:

nResult = RiscClose(FileHandle);

6. When work on the files in this database is complete, the connection to the

database is closed:

nResult = RiscDisconnect();

Steps 3 to 6 can now be repeated as many times as is necessary, carrying out

work on any number of files in any number of Reality databases. Where

connection is via the Rfc Interface, RfcGetAccount and RfcSetAccount can be used

to maintain concurrent connections to two or more databases.

7. When step 6 has been completed for the final time – that is, when all the real

database connections are closed - the outer, dummy database connection is

closed:

nResult = RfcSetAccount(ExtraAccountHandle);

nResult = RfcDisconnect();

8. Finally, the program must call RgcShutDownServices to close all active services:

RgcShutDownServices();

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 138 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 10: Appendix C – Example programs
This appendix contains four example C programs. The first uses the Rfc functions to

access a Reality file, while the second and third are a client and server program using the

Rcc functions to communicate with each other. The fourth illustrates the use of the Risc

interface in a multi-threaded environment.

10.1 File access

The following is an example C program which uses the Rfc functions.

This program is delivered with the UNIX-Connect product. It is held in the file

/usr/RCS/examples, and can be run as follows:

$ cd /usr/RCS/examples

$ make

$ ifa_eg

The program reads data from a specified item within a specified file on a Reality system.

/* This program reads an item of unknown length from a specified file in

a Reality account */

#include <stdio.h>

#include <ros/rfc.h>

#include <ros/rgc.h>

#define BUFSIZE 100

char DatabaseName[51]; /* name of the reality database */

char User[51]; /* user id on the database */

char UserPasswd[] = ""; /* user password */

char Account[51]; /* account name on the database */

char AcctPasswd[] = ""; /* account password */

char FileName[51]; /* name of file containing item to read */

char ItemId[99]; /* name of the item to be read */

int ItemIdLen; /* length of above item-id */

main()

{

RFC_FILE FileHandle; /* contains file handle to opened file */

char Item [256]; /* buffer used to store the item */

int ItemMaxLen = 256; /* length of above buffer */

char *ErrorString; /* pointer to error message text */

int i, RetCode, ItemLen, DataLen, Size;

/* start up services */

RgcStartUpServices (RetCode);

/* connect to the database and log on under the specified user id

to the named account */

/* request the database (system) to connect to */

printf("\n\n");

printf("Type in database to connect to ? ");

fgets(DatabaseName, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen(DatabaseName);

DatabaseName[Size-1] = NULL;

/* request the user-id to connect to */

printf("\n\n");

printf("Type in Userid to connect to ? ");

fgets(User, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen(User);

User[Size-1] = NULL;

/* request the account to connect to */

printf("\n\n");

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 139 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

printf("Type in account to connect to ? ");

fgets(Account, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen(Account);

Account[Size-1] = NULL;

/* request name of file to be read */

printf("\n\n");

printf("Type in name of file to be read ? ");

fgets(FileName, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen(FileName);

FileName[Size-1] = NULL;

/* request item-id to be read */

printf("\n\n");

printf("Type in Itemid to be read ? ");

fgets(ItemId, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen(ItemId);

ItemId[Size-1] = NULL;

ItemIdLen = strlen(ItemId);

/* connect to server */

printf("\n\nConnecting... \n");

if ((RetCode = RfcConnect(DatabaseName,

User,

UserPasswd,

Account,

AcctPasswd)) != SUCCESS)

{

/* if connect fails print error message and return */

ErrorString = RgcErrMsg (RetCode);

printf("%s\n", ErrorString);

exit(1);

}

/* open the file containing the item to be read */

if ((RetCode = RfcOpenFile(FileName, &FileHandle)) != SUCCESS)

{

/* if open fails print error message and return */

ErrorString = RgcErrMsg (RetCode);

printf("%s\n", ErrorString);

exit(2);

}

/* read the item */

printf("\nReading ...\n\n");

RetCode =

RfcRead(FileHandle,ItemId,ItemIdLen,Item,ItemMaxLen,&ItemLen);

if (RetCode != SUCCESS && RetCode != RFE_READEXCEED)

{

ErrorString = RgcErrMsg (RetCode);

printf("%s\n", ErrorString);

exit(3);

}

else if (RetCode == RFE_READEXCEED)

{

/* if the buffer used to store the item is full and there is still

more data to read print out the data in the buffer */

for (i=0; i<ItemMaxLen ; i++)

{

if (isascii(Item[i]))

printf("%c", Item[i]);

else

printf("\n"); /* Assume an attribute mark */

}

/* read the next batch of data until all has been read */

while (RetCode == RFE_READEXCEED)

{

RetCode = RfcReadRest(FileHandle, Item, ItemMaxLen, &DataLen);

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 140 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

if (RetCode != SUCCESS && RetCode != RFE_READEXCEED)

{

/* if read rest fails print error message and return */

ErrorString = RgcErrMsg(RetCode);

printf("%s\n", ErrorString);

exit(4);

}

else

{

for (i=0; i<DataLen ; i++)

{

if (isascii(Item[i]))

printf("%c", Item[i]);

else

printf("\n"); /* Assume an attribute mark */

}

printf("\n");

}

}

}

else

{

/* if buffer not full and no more data to be read */

for (i=0; i<ItemLen ; i++)

{

if (isascii(Item[i]))

printf("%c", Item[i]);

else

printf("\n"); /* Assume an attribute mark */

}

}

/* close the file containing the item */

if ((RetCode = RfcClose(FileHandle)) != SUCCESS)

{

/* if close fails print error message and return */

ErrorString = RgcErrMsg(RetCode);

printf("%s\n", ErrorString);

exit(5);

}

/* disconnect from the database and log off */

printf("\nDisconnecting ...\n\n");

if ((RetCode = RfcDisconnect()) != SUCCESS)

{

/* if disconnect fails print error message and return */

ErrorString = RgcErrMsg(RetCode);

printf("%s\n", ErrorString);

exit(6);

}

RgcShutDownServices();

exit(0);

}

10.2 Client and server

Two example programs are delivered with the UNIX-Connect product. They are held in

the usr/RCS/examples file on the UNIX environment.

The programs are a client and server which run back-to-back on the UNIX environment:

the client program prompts the user for an environment to connect to and having made

the connection, reads in a command typed on the user's keyboard and sends it to the

server. The server program executes the UNIX command and transmits the response

back to the client.

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 141 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

To run the client program, enter the following commands:

$ cd /usr/RCS/examples

$ make

$ client

The following prompts are displayed:

Type in system to connect to ?

Type in userid to connect to ?

Type in account to connect to ?

Type in server to connect to ?

Timeout ?

Terms Definition

system Enter the system name of the listening

entry with a network type of local loopback

in the ROUTE-FILE (see UNIX-Connect

System Administration Guide).

user-id

Enter a user-id which is valid on the local

UNIX system. If the user-id has a password

this must be entered, separated from the

user-id by a comma.

account Press Return.

server

Enter the name of the server program,

which for this example program is

/usr/RCS/examples/server.

timeout

Enter a value between 1 and 255 which

indicates (in minutes) the time within which

the connection must be made.

Once the connection is established the prompt Type in your command is displayed.

Any UNIX command can be entered. To terminate the programs, enter exit.

10.2.1 Client

The client program is displayed as follows:

/*

* Example UNIX-Connect client program

*

* Uses the Rcc API

*

* It can make a connect to a Reality DataBasic server program

* or a UNIX-Connect server program.

*

* It sends the supplied command to the server and displays the output.

* It deliberately receives the returned data in two chunks.

*

*/

#include <stdio.h>

#include <ros/rcc.h>

#define BUFSIZE 80

char ExitStr[] = "exit";

main()

{

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 142 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

int RetCode, Size;

RCS_SREF Reference;

RCS_MCB Msg;

unsigned char SndBuf [BUFSIZE];

unsigned char QualBuf [BUFSIZE];

unsigned char RcvBuf [20];

unsigned char *NewRcvBuf = NULL;

int LengthLeft;

int Timeout;

char SystemName [51];

char Userid [51];

char Account [51];

char Server [100];

char Tout [20];

char ErrorStr [100];

/* Request the system to connect to */

printf("\n\n");

printf("Type in system to connect to ? ");

fgets (SystemName, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen (SystemName);

SystemName [Size - 1] = NULL;

/* Request the user-id to connect to */

printf("\n\n");

printf("Type in Userid to connect to ? ");

fgets (Userid, BUFSIZE, stdin);

/* Discard <CR> from last character of string */

Size = strlen (Userid);

Userid [Size - 1] = NULL;

/* Request the account to be connected to */

printf("\n\n");

printf("Type in account to connect to ? ");

fgets (Account, BUFSIZE, stdin);

/* Discard <CR> from last character of string */

Size = strlen (Account);

Account [Size - 1] = NULL;

/* Request the server to be connected to */

printf("\n\n");

printf("Type in server to connect to ? ");

fgets (Server, BUFSIZE, stdin);

/* discard <CR> from last character of string */

Size = strlen (Server);

Server [Size - 1] = NULL;

/* Request the Timeout */

printf("\n\n");

printf("Connect Timeout in minutes ? ");

fgets (Tout, BUFSIZE, stdin);

if ((Timeout = atoi(Tout)) != 0)

{

printf("Setting the timeout to %d minutes\n", Timeout);

RccSetConnectOptions (0, Timeout);

}

/* Connect to server */

printf ("Connecting \n");

if ((RetCode = RccConnect (&Reference, SystemName, Userid, Account,

Server)) != SUCCESS)

{

RccError (RetCode, ErrorStr);

printf("RccConnect Error : %s\n", ErrorStr);

exit();

}

/* Initialise message structure */

Msg.Function = 0;

Msg.Reference = 0;

Msg.QualLength = 0;

Msg.DataLength = 0; /* initially */

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 143 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Msg.QualBuffer = QualBuf;

Msg.DataBuffer = SndBuf;

Msg.MaxQualLength = sizeof (QualBuf);

Msg.MaxDataLength = sizeof (SndBuf);

fflush (stdout);

while (fgets (SndBuf, BUFSIZE, stdin))

{

printf("\n");

/* check for termination condition */

if (!strncmp (SndBuf, ExitStr, 4))

break;

/* discard <CR> from last character of string */

Size = strlen (SndBuf);

SndBuf [Size - 1] = NULL;

/* send off typed in message */

printf ("Sending message with data : %s.\n", SndBuf);

Msg.DataLength = strlen (SndBuf);

Msg.DataBuffer = SndBuf;

if (RetCode = RccSendMsg (Reference, &Msg)) != SUCCESS)

{

RccError (RetCode, ErrorStr);

printf("RccSendMsg Error : %s\n", ErrorStr);

exit();

}

/* receive response */

Msg.DataBuffer = RcvBuf; /* set up larger buffer */

Msg.DataLength = 0; /* initially */

/* prime MaxDataLength with maximum size of buffer*/

Msg.MaxDataLength = sizeof(RcvBuf)-1;

printf ("Recwaiting message.\n");

/* must be able to cater for messages received which are

larger than the Message DataBuffer */

do

{

RetCode = RccRecWaitMsg (Reference, &Msg);

if (RetCode != SUCCESS)

if (RetCode != RCE_MOREDATA)

{

RccError (RetCode, ErrorStr);

printf ("RccRecWaitMsg Error : %s\n", ErrorStr);

exit();

}

/* print out results */

printf("The length of the data was %d.\n", Msg.DataLength);

Msg.DataBuffer[Msg.DataLength] = '\0';

printf("The data received was\n%s.\n", Msg.DataBuffer);

/* If we have more data then use NewRcvBuf */

if (RetCode == RCE_MOREDATA)

{

/* free off NewRcvBuf if necessary */

if (NewRcvBuf)

{

free (NewRcvBuf);

NewRcvBuf = NULL;

}

printf ("Length of data = %d.\n", Msg.MaxDataLength);

LengthLeft = Msg.MaxDataLength - Msg.DataLength;

printf ("The length left to read is %d.\n",

LengthLeft);

if (!(NewRcvBuf = (unsigned char *) malloc (LengthLeft

+ 1)))

{

printf ("Malloc() Failure\n");

exit();

}

/* Receive into new buffer */

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 144 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Msg.DataBuffer = NewRcvBuf;

Msg.MaxDataLength = LengthLeft;

}

} while (RetCode == RCE_MOREDATA);

printf ("Type in your command : ");

fflush (stdout);

memset (SndBuf, '\0', sizeof (SndBuf));

}

/* disconnect the circuit */

printf ("Disconnecting ...\n\n");

if ((RetCode = RccDisconnect (Reference)) != SUCCESS)

{

RccError (RetCode, ErrorStr);

printf("RccDisconnect Error : %s\n", ErrorStr);

exit();

}

}

10.2.2 Server

The example server program is displayed as follows:

/*

* Example UNIX-Connect server program

*

* Uses the Rcc API

*

* It can receive connects from a Reality DataBasic client program.

* or a UNIX-Connect client program.

*

* It runs the supplied command and returns any output to the client.

*

* It demonstrates a server that performs an RccAccept until

* the RccAccept fails with a timeout. This is a useful design pattern

* for server programs, to avoid the delays associated with starting

* a program but prevent them hanging around forever. The timeout is

* set by the RccSetAcceptOptions().

*

* The first time this runs can be in response to an incoming client

connect.

*/

#include <stdio.h>

#include <fcntl.h>

#include <ros/rcc.h>

#define DATASIZE 0x100000

#define BUFSIZE 100

#define TRUE 1

#define FALSE 0

#define ZERO 0

char Server[] = "server";

main()

{

int RetCode, TraceLevel;

int Fd, Fd2;

RCS_SREF Reference;

RCS_MCB Msg;

unsigned char QualBuf[BUFSIZE];

unsigned char DataBuf[DATASIZE];

int AsynchMode;

char Buf [BUFSIZE];

int MaxBuf = BUFSIZE;

char Reply [10];

char Cmd [BUFSIZE];

FILE *Ptr, *popen();

char ErrorStr [100];

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 145 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

char ClientId [50], Plid [50];

/* initialise message structure */

Msg.Function = ZERO;

Msg.Reference = ZERO;

Msg.QualLength = ZERO;

Msg.DataLength = ZERO; /* initially */

Msg.QualBuffer = QualBuf;

Msg.DataBuffer = DataBuf;

Msg.MaxQualLength = ZERO;

Msg.MaxDataLength = DATASIZE;

printf ("\n\nDo you want to operate in Asynchronous Receive Mode ?

");

fgets (Reply, BUFSIZE, stdin);

if ((Reply[0] == 'y') || (Reply[0] == 'Y'))

AsynchMode = TRUE;

else

AsynchMode = FALSE;

/* Accept connection from client */

RccSetAcceptOptions (RCS_SECONDS, 40); /* Timeout = 40 seconds */

printf ("Accepting\n");

while ((RetCode = RccAccept (&Reference, "", Server, ClientId,

Plid)) == SUCCESS)

{

printf ("Connected to ClientId : %s from PLId %s\n",

ClientId,Plid);

while (1)

{

/* receive the command:

* Two ways are given for receiving data:-

* Asynchronously where the program has other work to do

* if no data has arrived. In this example we just sleep.

*

* Synchronous receive waits until data has arrrived or the

* circuit has disconnected

*/

if (AsynchMode)

{

while ((RetCode = RccReceiveMsg(Reference, &Msg)) ==

RCE_NODATA)

{

printf ("sleeping before polling for a message\n");

sleep (2);

}

if (RetCode != SUCCESS)

{

/* disconnect the circuit */

RccError (RetCode, ErrorStr);

printf("Receive failed: %s\nDisconnecting ...\n\n",

ErrorStr);

if ((RetCode = RccDisconnect (Reference))

!= SUCCESS)

{

RccError (RetCode, ErrorStr);

printf("Disconnect failed: %s\n", ErrorStr);

}

break;

}

/* Have some data */

}

else

{

/* Normal synchronous recwait() */

printf ("Recwaiting message.\n");

if ((RetCode = RccRecWaitMsg (Reference, &Msg))

!= SUCCESS)

{

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 146 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RccError (RetCode, ErrorStr);

printf("Receive failed: %s\nDisconnecting ...

\n\n", ErrorStr);

if ((RetCode = RccDisconnect (Reference))

!= SUCCESS)

{

RccError (RetCode, ErrorStr);

printf("Disconnect failed: %s\n", ErrorStr);

}

break;

}

/* Have some data */

}

/* Data received, process it as a command */

strncpy (Cmd, Msg.DataBuffer, Msg.DataLength);

Cmd [Msg.DataLength] = NULL;

strcpy (Msg.DataBuffer, "");

printf("The Data Rcvd was : %s\n", Cmd);

/* Exec the command capturing data and send reply to client

*/

if ((Ptr = popen (Cmd, "r")) != NULL)

{

int ResponseLength;

for (ResponseLength=0;

((fgets(Buf, MaxBuf, Ptr)!=NULL)

&& (ResponseLength < DATASIZE));

ResponseLength += strlen (Buf))

{

strcat (Msg.DataBuffer, Buf);

}

Msg.DataLength = strlen (Msg.DataBuffer);

if ((RetCode = RccSendMsg (Reference, &Msg))

!= SUCCESS)

{

RccError (RetCode, ErrorStr);

printf("Send failed: %s\n", ErrorStr);

continue;

}

}

pclose (Ptr);

}

printf ("Accepting\n");

}

/* RccAccept failed. A timeout is acceptable */

if (RetCode != RCE_TIMEOUT)

{

RccError (RetCode, ErrorStr);

printf("RccAccept failed: %s\n", ErrorStr);

exit (1);

}

}

10.3 Using the Risc interface in multi-threaded applications

In multithreaded Windows NT/2000 applications, each thread must be treated as if it is a

total independent connection to the Reality database. When a thread that uses the Risc

Interface starts, it must call RgcStartUpServices(), which performs initialisation

operations and starts up an Asynchronous thread to handle messaging, followed by

RiscConnect() to connect to the database and RiscOpen() to open the required file. The

data in the file can then be manipulated using the functions provided in the Risc and

General Services interfaces.

When the thread terminates it must call RiscClose() to close the file, followed by

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 147 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RiscDisconnect() to disconnect from the database and finally RgcShutDownServices().

The example which follows starts just one user thread, but this then calls most of the

Risc functions to demonstrate the sequence in which an application might make

Risc function calls.

10.3.1 Creating a Reality data file and an index file

The test program requires a database containing a file called TEST, based on the error

message file from a standard Reality database. In addition, an index called BY-A1 must

be defined for the TEST file, indexing using attribute 1. To create such a data file and

index, proceed as follows:

1. Log on to the Sysman account by entering:

LOGTO SYSMAN

2. Then create the TEST file by entering:

CREATE-FILE TEST_FILE 1 1001

3. Copy the contents of the standard error message file to the newly created TEST

file by entering:

COPY errmsg *

4. Define an index on the TEST file by entering:

DEFINE-INDEX TEST BY A1

Where A1 is a reference to the second attribute in each data item, namely

attribute number 1.

5. At the TO: prompt type:

BY-A1

6. Finally, build the index by issuing the command:

CREATE-INDEX TEST BY-A1

To view the new file, enter:

SORT TEST BY 1 1 2 3 4.

10.3.2 Amending the example code

The source code for the test program must know the names of the database and user so

it must be changed as follows:

1. Change the #define statement for DATABASE_NAME to the name of your

database.

2. Change the #define statement for USER_NAME to the user logon name to be used

by the test program.

10.3.3 Example code

#include <process.h>

#include <risc.h>

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 148 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

#include <stdio.h>

#include <rfc.h>

#include <rgc.h>

#include <rlc.h>

#ifndef _INC_WINDOWS

#define WIN32_LEAN_AND_MEAN

#include <windows.h>

#endif

/******************* CONSTANT DEFINITIONS *****************************/

#define DATABASE_NAME "dbrog" // put your database name here (in quotes)

#define USER_NAME "rog" // put your logon name here (in quotes)

#define MAX_KEY_LENGTH 300

#define MAX_RECORD_LENGTH 500

#define MAX_PARTS 30

#define MAX_KEY_VAL_LENGTH 20

#define MAX_FILENAME_LENGTH 30

#define MAX_SMALL_RECORD_LENGTH 10

#define MAX_USERS 25

#define KEY_VALUE_ONE "400" // attribute 0 value that does NOT exist

#define KEY_VALUE_TWO "405" // atrribute 0 value that does exist

#define KEY_VALUE_THREE "L(1)" // attribute 1 value that does exist

#undef main

/******************* FUNCTION DECLARATIONS ******************************/

static int MainProgram1(UINT32 user_number);

/******************* MACRO DEFINITIONS

************************************/

#define USER_PROMPT { fprintf(stdout,"\n\nPress \"Enter\" to

continue...."); \

getchar(); }

/**

*/

void main()

{

// arrays specified to allow code to be modified to

// support mulitple concurrent users

HANDLE NewThreadHandle[MAX_USERS] = {'\0'};

DWORD NewThreadID [MAX_USERS] = {'\0'};

DWORD TreadExitCode [MAX_USERS] = {'\0'};

int NumberOfUsers = 1;

UINT32 user_number = 1;

fprintf(stdout,"\n RISC Interface Test Program\n\nAbout to start a new

thread for user %d.",user_number);

// start a new synchronous thread, in suspended mode, for the new user

if (!(NewThreadHandle[user_number-1] = (HANDLE)_beginthreadex(0,0,

(LPTHREAD_START_ROUTINE)MainProgram1,(LPVOID)(user_number),

CREATE_SUSPENDED,&NewThreadID[user_number-1])))

{

fprintf(stdout,"\n\nERROR #1 in primary thread -- Unable to create new

thread for user %d",

user_number);

goto Exit;

}

// start progress on the new thread running MainProgram1 to completion

ResumeThread(NewThreadHandle[user_number-1]);

// primary thread waits here until all user threads terminates

fprintf(stdout,

"\nThe primary thread will now wait for user thread to complete....");

WaitForMultipleObjects(NumberOfUsers,NewThreadHandle,TRUE,INFINITE);

// retreive the exit code for the terminated user thread

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 149 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

if (GetExitCodeThread(NewThreadHandle[user_number-

1],&TreadExitCode[user_number-1]) != TRUE)

{

fprintf(stdout,"\n\nERROR #2 in primary thread -- Bad call to

GetExitCodeThread for user %d",

user_number);

}

// check if the synchorous thread reported an error

if (TreadExitCode[user_number-1] != 0)

{

fprintf(stdout,"\n\nERROR #3 in primary thread -- \nSync thread for user %d

returned error_code %d ",

user_number,TreadExitCode[user_number-1]);

}

// dispose of the user thread handle

if (CloseHandle(NewThreadHandle[user_number-1]) != TRUE)

{

fprintf(stdout,"\n\nERROR #4 in primary thread -- Bad call to CloseHandle

for

user %d",user_number);

}

Exit:

fprintf(stdout,"\n\nThe primary thread is about to end\n");

USER_PROMPT

}

int MainProgram1(UINT32 user_number)

{

const char *this_name = "MainProgram1";

char DatabaseName[] = DATABASE_NAME;

char User[] = USER_NAME;

char UserPasswd[] = "";

char Account[] = "SYSMAN";

char AcctPasswd[] = "";

char FileName[] = "TEST"; // Test file based on error messages

char IndexName[] = "BY-A1"; // Index on Test using attribute 1

char KeyVal [MAX_KEY_VAL_LENGTH+1] = {'\0'};

char KeyBuff [MAX_KEY_LENGTH+1] = {'\0'};

char RecBuff [MAX_RECORD_LENGTH+1] = {'\0'};

char NewFileName [MAX_FILENAME_LENGTH+1] = {'\0'};

char NewIndexName [MAX_FILENAME_LENGTH+1] = {'\0'};

int NewRecSize = 50;

int NewNumRecs = 100;

int KeyValLen = 0; // must be set to strlen(KeyVal)

int KeyBuffLen = 0;

int Result = 0;

int RecLen = 0;

int NumParts = 10;

int StartUpResult = 0;

int CodeLevel = 0;

int i = 0;

BOOL IndexSelected = FALSE; // influences choice of value to search for in

database file

BOOL MoreToRead = FALSE; // used when reading with a very small buffer

RISC_FILE FileHandle = NULL;

RISC_FILE NewFileHandle = NULL;

RISC_POS Position = RISC_GE; // RISC_BEG, RISC_EQ, RISC_GE, RISC_END

RISC_DESC IndexDesc[MAX_PARTS] = {0}; // must be initialised before calling

RiscCreateIndex()

RISC_DIR Direction = RISC_CURR;

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 150 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RISC_OPT LockOpts = RISC_LOCK_NONE;// RISC_LOCK_NONE, RISC_LOCK_WAIT,

RISC_LOCK_NOWAIT, RISC_LOCK_HOLD

/**/

fprintf(stdout,"\nNew thread started for user %d to execute

%s",user_number,this_name);

USER_PROMPT

CodeLevel = 1;

RgcStartUpServices(StartUpResult);

if (StartUpResult != 0)

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RgcStartUpServices\"",CodeLevel);

CodeLevel = 2;

if (Result = RiscConnect(DatabaseName,User,UserPasswd,Account,AcctPasswd))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscConnect\"",CodeLevel);

CodeLevel = 3;

if (Result = RiscOpen(FileName,&FileHandle))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscOpen\"",CodeLevel);

CodeLevel = 4;

if (Result = RiscSelect(FileHandle,IndexName)) // selects an index table to

use for record accessing

goto Exit;

else

{

IndexSelected = TRUE;

fprintf(stdout,"\n%2d Good call made to \"RiscSelect\"",CodeLevel);

}

CodeLevel = 5;

_snprintf(KeyVal,sizeof(KeyVal)-1,"%s",KEY_VALUE_ONE);

// set search value (exact does not have to exist in file)

KeyValLen = strlen(KeyVal);

fprintf(stdout,"\n%2d KeyValue has been set to

\"%s\"",CodeLevel,KEY_VALUE_ONE);

CodeLevel = 6;

if (Result = RiscPosition(FileHandle,Position,KeyVal,KeyValLen))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscPosition\"",CodeLevel);

Direction = RISC_PREV; // read item previous to current position in indexed

table

LockOpts = RISC_LOCK_WAIT; // LOCK THE RECORD WHEN READ

CodeLevel = 7;

if (Result = RiscRead(FileHandle,Direction,LockOpts,KeyBuff,MAX_KEY_LENGTH,

&KeyBuffLen,RecBuff,MAX_RECORD_LENGTH,&RecLen))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscRead\"",CodeLevel);

RecBuff[RecLen] = '\0'; // NULL terminate the Record Buffer

KeyBuff[KeyBuffLen] = '\0'; // NULL terminate the Key Buffer

CodeLevel = 10;

if (Result = RiscUpdate(FileHandle,RecBuff,RecLen))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscUpdate\"",CodeLevel);

CodeLevel = 11;

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 151 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

if (IndexSelected == TRUE)

// using index BY-A1. Set search value to an attribute 1 value

_snprintf(KeyVal,sizeof(KeyVal)-1,"%s",KEY_VALUE_THREE);

else

// set search value to an attribute 0 value

_snprintf(KeyVal,sizeof(KeyVal)-1,"%s",KEY_VALUE_TWO);

KeyValLen = strlen(KeyVal);

LockOpts = RISC_LOCK_WAIT; // LOCK THE RECORD WHEN READ

fprintf(stdout,"\n%2d KeyValue has been set to \"%s\"",CodeLevel,KeyVal);

CodeLevel = 12;

if (Result =

RiscReadByKey(FileHandle,LockOpts,KeyVal,KeyValLen,RecBuff,MAX_RECORD_LENGT

H,&RecL

en))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscReadByKey\"",CodeLevel);

RecBuff[RecLen] = '\0'; // NULL terminate the Record Buffer

KeyBuff[KeyBuffLen] = '\0'; // NULL terminate the Key Buffer

USER_PROMPT

// READ A RECORD FROM DB WHERE ID IS REQUIRED VALUE, USING A VERY SMALL

BUFFER

CodeLevel = 13;

for (i=0; i<MAX_RECORD_LENGTH; i++)

{

RecBuff[i] = '\0'; // clear out the buffer

}

RecLen = 0;

LockOpts = RISC_LOCK_WAIT; // LOCK THE RECORD WHEN READ

Result = RiscRead(FileHandle,

Direction,

LockOpts,

KeyBuff,

MAX_KEY_LENGTH,

&KeyBuffLen,

RecBuff,

MAX_SMALL_RECORD_LENGTH, // SMALL BUFFER USED

&RecLen);

if (Result == RFE_READEXCEED)

{

RecLen = MAX_SMALL_RECORD_LENGTH; // RecLen returns size of item NOT buffer

occupency

MoreToRead = TRUE;

}

else if (Result != 0)

{

fprintf(stdout,"\n%2d -- Bad call made to \"RiscRead\" Result=%d \n\"%s\"

\n",

CodeLevel,Result,RgcErrMsg(Result));

fprintf(stdout,"\nKeyBuffLen=%d KeyBuff = \"%s\"\n",KeyBuffLen,KeyBuff);

goto Exit;

}

if ((Result == 0) || (Result == RFE_READEXCEED))

{

RecBuff[RecLen] = '\0'; // NULL terminate the Record Buffer

KeyBuff[KeyBuffLen] = '\0'; // NULL terminate the Key Buffer

fprintf(stdout,"\n%2d Good call made to \"RiscRead\"\nRecLen=%d RecBuff

contents =\"%s\"",

CodeLevel,RecLen,RecBuff);

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 152 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

fprintf(stdout,"\nKeyBuffLen=%d KeyBuff = \"%s\"

MoreToRead=%d\n",KeyBuffLen,KeyBuff,MoreToRead);

}

// READ REMAINDER OF RECORD

CodeLevel = 14;

while (MoreToRead == TRUE)

{

Result = RiscReadRest(FileHandle,

RecBuff,

MAX_SMALL_RECORD_LENGTH,

&RecLen); // this function returns ammount of data read, NOT item

size

if (Result != 0)

{

if (Result == RFE_READEXCEED)

MoreToRead = TRUE;

else

{

fprintf(stdout,"\n%2d -- Bad call made to \"RiscReadRest\" Result=%d

\n\"%s\"\n",

CodeLevel,Result,RgcErrMsg(Result));

goto Exit;

}

}

else

MoreToRead = FALSE;

RecBuff[RecLen] = '\0'; // NULL terminate the Record Buffer

KeyBuff[KeyBuffLen] = '\0'; // NULL terminate the Key Buffer

fprintf(stdout,"\n%2d Good call made to \"RiscReadRest\"\nRecLen=%d RecBuff

contents =\"%s\"",

CodeLevel,RecLen,RecBuff);

fprintf(stdout,"\nKeyBuffLen=%d KeyBuff = \"%s\"

MoreToRead=%d\n",KeyBuffLen,KeyBuff,MoreToRead);

}

USER_PROMPT

CodeLevel = 15;

if (Result = RiscUnlock(FileHandle))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscUnlock\"",CodeLevel);

_snprintf(RecBuff,sizeof(RecBuff)-1,"#00%d\376written by user %d during

MainProgram1",

user_number,user_number);

RecLen = strlen(RecBuff);

CodeLevel = 16;

if (Result = RiscWrite(FileHandle,RecBuff,RecLen))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscWrite\"",CodeLevel);

snprintf(NewFileName,sizeof(NewFileName)-1,"NEWFILE%d",user_number);

CodeLevel = 17;

if (Result = RiscCreateFile(NewFileName,NewRecSize,NewNumRecs))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscCreateFile\"",CodeLevel);

CodeLevel = 20;

if (Result = RiscOpen(NewFileName,&NewFileHandle))

goto Exit;

else

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 153 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

fprintf(stdout,"\n%2d Good call made to \"RiscOpen\"",CodeLevel);

_snprintf(RecBuff,sizeof(RecBuff)-1,"%03d\376item written by user

%d",user_number);

RecLen = strlen(RecBuff);

CodeLevel = 21;

if (Result = RiscInsert(NewFileHandle,RecBuff,RecLen))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscInsert\"",CodeLevel);

snprintf(NewIndexName,sizeof(NewIndexName)-1,"INDEX%02d",user_number);

CodeLevel = 22;

if (Result =

RiscDescribeIndex(FileHandle,IndexName,MAX_PARTS,&NumParts,IndexDesc))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscDescribeIndex\"",CodeLevel);

CodeLevel = 23;

if (Result = RiscCreateIndex(NewFileName,NewIndexName,NumParts,IndexDesc))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscCreateIndex\"",CodeLevel);

CodeLevel = 24;

if (Result = RiscDeleteIndex(NewFileName,NewIndexName))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscDeleteIndex\"",CodeLevel);

CodeLevel = 25;

if (Result = RiscClear(NewFileHandle))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscClear\"",CodeLevel);

CodeLevel = 26;

if (Result = RiscClose(NewFileHandle))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscClose\"",CodeLevel);

CodeLevel = 27;

if (Result = RiscDeleteFile(NewFileName))

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscDeleteFile\"",CodeLevel);

CodeLevel = 28;

if (Result = RiscDisconnect())

goto Exit;

else

fprintf(stdout,"\n%2d Good call made to \"RiscDisconnect\"",CodeLevel);

RgcShutDownServices();

Exit:

if (Result != 0)

{

fprintf(stdout,"\n\nError -- user_number %d code level %d return value=

%d\n\"%s\"\n",

user_number,CodeLevel,Result,RgcErrMsg(Result));

}

else

fprintf(stdout,"\n\nRISC Interface Test Program completed for \nuser %d

with

no errors detected\n",

user_number);

Section 10: Appendix C – Example
programs

Reality v9.0 C API Reference Manual v0.1 Page 154 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

_endthreadex(Result);

return (Result);

}

Section 11: Glossary

Reality v9.0 C API Reference Manual v0.1 Page 155 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 11: Glossary

Term or

abbreviation

Definition

Client A program that initiates a connection.

Client ID
Part of a DDA CONNECT message –

identifies the calling system and user.

CONNECT
A DataBasic statement used to initiate a

program-to-program connection.

DDA

Distributed Data Access – a simple

communications architecture designed for

the NEC family of products.

Handle

• Account: An account handle is used

to reference a database.

• File: A file handle is used to

reference an open file.

• List: A list handle is used to

reference a saved list.

• Session: See Session Reference.

IEEE 802.3 A Local Area Network standard.

IFA
Interactive File Access – a facility which

allows C programs to access Reality files.

IPC

Inter-process Communication – a Reality

facility which allows programs written by a

user to communicate.

LAN Local Area Network.

Library
A suite of related C functions providing a

particular service.

Listening entry

In the UNIX ROUTE-FILE, an entry which

describes the local system such that

session

manager can accept incoming calls. On

Windows, the registry entry NEC/ Reality/

Listening has the same function.

Logging

A file logging option is available when a file

is opened for systems equipped with

transaction logging.

Looping

A loopback connection is one that connects

back to itself rather than to a remote

entity.

MCB Message Control Block.

PLId
Physical Location Identifier – part of the

DDA CONNECT message.

Rcc

Reality Communications Interface for the C

language – a set of C library functions

which

Section 11: Glossary

Reality v9.0 C API Reference Manual v0.1 Page 156 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Term or

abbreviation

Definition

enable a C program to communicate with a

DataBasic program on a Reality system.

Rcs Reality Communications Service.

Rfc Reality Filing Interface for C Programs.

Rgc
Reality General Services Interface for C

Programs.

Rlc
Reality List Services Interface for C

Programs.

ROUTE-FILE

A file, at system level on a Reality system

and in the /etc directory on a UNIX system

which contains routing information required

by the system to make a connection to a

remote system. On Windows, routing

information is stored in the registry.

Server A program that responds to a client.

Session

manager

A process which establishes and monitors

connections.

Session

reference

A variable used by client and server

programs, that is allocated a number when

a connect/accept is successful. The variable

is used to reference the established session

in all further program to program

communication.

S-LAN A NEC LAN controller for Reality systems.

Timeout

Part of a DDA CONNECT message that

specifies the amount of time within which a

connection must be made.

USERS-FILE

A file on a UNIX system which contains

local user-ids and maps them onto network

user IDs.

WAN Wide Area Network (such as X.25).

Section 11: Glossary

Reality v9.0 C API Reference Manual v0.1 Page 157 of 157

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

