

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

x

Reality v2.0
UIMS DATABASIC API, Programmer’s Guide

Copyright © NEC Software Solutions UK Limited (Company No.00968498) ("NEC") [1994]. All rights reserved.

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 2 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Document control

Software Version

Document

Status

Document

Revision

Issue Date Reason for Change

v2.0 Published v0.1 September

1994

Final draft

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 3 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table of Contents

Section 1: About this manual .. 11

1.1 Purpose of this manual .. 11

1.2 Related Documents ... 12

1.3 Using the Example Applications .. 12

1.4 Conventions ... 13

Section 2: UIMS Concepts ... 16

2.1 Introduction ... 16

2.2 UIMS and REALITY: a Comparison... 17

2.2.1 The User Interface ... 18

2.2.2 Queued Input ... 18

2.2.3 Multitasking .. 19

2.2.4 Shared Processing ... 19

2.3 The UIMS Programming Model .. 19

2.3.1 Windows .. 20

2.3.2 Menus .. 20

2.3.3 Dialog Boxes ... 21

2.3.4 The Message Loop ... 21

2.4 Converting existing applications .. 21

2.4.1 NewView .. 21

2.4.2 Hybrid Applications .. 22

2.5 Building a UIMS Application .. 22

Section 3: Converting Existing Applications - NewView 24

3.1 What is NewView? ... 24

3.1.1 Contact Groups ... 24

3.1.2 Hot-spots ... 24

3.1.3 The Components of a NewView Application ... 24

3.1.4 CATALOG Command .. 25

3.2 The MENUEX Character-based Application .. 25

3.2.1 The MENUEX Source Code .. 26

3.3 The NewView Version – MENUNV .. 27

3.3.1 Constant Definitions .. 28

3.3.2 Initialising UIMS .. 29

3.3.3 Signing On to UIMS ... 29

3.3.4 Event Masks ... 30

3.3.5 Error Handling .. 30

3.3.6 Coordinate Mode ... 31

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 4 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.3.7 Creating Resources .. 31

3.3.8 Creating NewView Groups .. 35

3.3.9 Error Messages ... 37

3.3.10 Closing the Application ... 38

3.3.11 Changing the Options Available ... 39

3.3.12 Running Utilities .. 42

Section 4: A Generic UIMS Application .. 44

4.1 Introduction ... 44

4.2 The Components of a UIMS Application .. 44

4.2.1 Initialisation ... 45

4.2.2 Signing On and Off .. 45

4.2.3 Creating Resources .. 46

4.2.4 Creating a Resources Script .. 46

4.2.5 Loading the Compiled Resources ... 47

4.2.6 Displaying the Application Window ... 48

4.2.7 Hiding the RealLink Window .. 48

4.3 The Message Loop ... 48

4.4 Displaying an About Box .. 50

4.5 Handling Errors ... 51

4.6 Closing the Application .. 52

4.7 The Complete Application ... 52

4.8 The DATA/BASIC .. 53

4.8.1 Header File ... 57

4.8.2 Resource Script ... 57

4.8.3 Compiling the Generic Application ... 58

4.9 Using Generic as a Template .. 58

Section 5: Windows ... 60

5.1 Types of Window .. 60

5.1.1 App and d Windows ... 60

5.1.2 Other types of Window ... 60

5.2 Creating a Window .. 60

5.2.1 Enabling and Disabling a Window .. 63

5.2.2 Making a Window Visible .. 63

5.2.3 Destroying a Window ... 64

5.3 Controlling the Appearance of a Window .. 64

5.3.1 Window Style .. 64

5.3.2 Window Title ... 65

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 5 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.3.3 Menu Bar ... 65

5.3.4 Scroll Bars .. 65

5.3.5 Setting Colours ... 65

5.4 Positioning a Window on the Screen .. 66

5.4.1 The Coordinate System .. 66

5.4.2 Moving and Sizing a Window ... 66

5.4.3 Maximising and Minimising a Window ... 66

5.4.4 Controlling Updates ... 67

5.5 Output to a Window .. 67

5.5.1 Update Messages .. 67

5.5.2 Using a Text Canvas .. 68

5.5.3 Drawing Tools ... 68

5.5.4 Drawing and Writing .. 70

5.5.5 Controlling the Client Area .. 70

5.6 An Example Application: Output .. 71

5.6.1 Add New Constant Definitions ... 71

5.6.2 Define New Resources .. 71

5.6.3 Enable Update Messages .. 73

5.6.4 Enable Create Messages ... 73

5.6.5 Add the Create Case .. 73

5.6.6 Add the Create Case .. 75

5.6.7 Add the Destroy Case .. 77

5.6.8 Modify the Exit Case .. 77

5.6.9 Modify the Error Subroutine .. 77

5.6.10 Compile .. 77

Section 6: Keyboard and Mouse Input ... 79

6.1 Input Messages .. 79

6.1.1 Keyboard Input ... 79

6.1.2 Mouse Input ... 80

6.1.3 Timer Input .. 80

6.1.4 Scroll-bar Input ... 81

6.1.5 Menu Input ... 82

6.2 An Example Application: Input .. 82

6.2.1 Modify the Window Style .. 82

6.2.2 Enable Messages ... 83

6.2.3 Set the Text Positions .. 83

6.2.4 Initialise Variables ... 83

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 6 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.2.5 Add the Create Case .. 84

6.2.6 Add the Destroy Case .. 84

6.2.7 Modify the Exit Case .. 84

6.2.8 Add the Key Press Case.. 84

6.2.9 Add the Mouse Motion Case .. 84

6.2.10 Add the Click and Double Click Case .. 85

6.2.11 Add the Scroll Case .. 85

6.2.12 Add the Timer Case ... 86

6.2.13 Modify the Error Subroutine .. 86

6.2.14 Compile .. 86

Section 7: The Pointer, the Mouse and the Keyboard 88

7.1 Displaying the Pointer .. 88

7.1.1 Displaying the Hourglass during a Lengthy Operation 89

7.2 Using the Pointer with the Keyboard .. 90

7.2.1 Using the Keyboard to Move the Pointer ... 90

7.3 Letting the User Select Information with the Mouse ... 92

7.4 An Example Application: Pointer ... 92

7.4.1 Add New Constant Definitions ... 92

7.4.2 Define New Resources .. 93

7.4.3 Enable Size Messages .. 94

7.4.4 Add the Size Case ... 95

7.4.5 Add the Keypress Case .. 95

7.4.6 Compile ... 97

Section 8: Menus ... 98

8.1 What is a Menu? ... 98

8.2 Defining a Menu .. 98

8.3 Processing Input from a Menu .. 101

8.4 Modifying Menus from within your Application .. 102

8.4.1 Enabling and Disabling Menu Items ... 102

8.4.2 Checking and Unchecking Menu Items ... 103

8.4.3 Changing a Menu .. 105

8.4.4 Creating a New Menu ... 107

8.5 Using Cascading Menus ... 108

8.6 An Example Application: EditMenu .. 110

8.6.1 Add New Menus to the Resource File .. 110

8.6.2 Add Definitions to the Header File .. 111

8.6.3 Modify the Menu Item Case .. 112

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 7 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

8.6.4 Compile ... 113

Section 9: Controls .. 114

9.1 What is a Control?... 114

9.2 Creating a Control ... 114

9.2.1 Setting the Parent Window ... 114

9.3 Using a Control ... 115

9.3.1 Receiving User Input.. 115

9.3.2 Control Tasks .. 115

9.3.3 Disabling and Enabling Input to a Control ... 115

9.3.4 Moving and Sizing a Control.. 116

9.3.5 Destroying a Control .. 116

9.4 Button Controls .. 116

9.4.1 Titled Buttons ... 116

9.4.2 Default Titled Buttons .. 118

9.4.3 Check Buttons .. 119

9.4.4 Option Buttons .. 119

9.5 Static Controls .. 122

9.5.1 Text ... 122

9.5.2 Lines and Rectangles ... 123

9.6 List Boxes .. 123

9.6.1 Changing the Contents of a List Box .. 125

9.6.2 Using Standard List Boxes .. 126

9.6.3 Multiple-selection List Boxes ... 126

9.7 Edit Controls .. 127

9.7.1 Edit Box ... 127

9.7.2 Text Editor ... 128

9.8 Scroll Bars ... 128

9.9 Inclusive Groups ... 129

9.10 An Example Application: EditCtrl ... 134

9.10.1 Add New Constant Definitions ... 135

9.10.2 Define New Resources .. 135

9.10.3 Enable Enter and Size Messages .. 136

9.10.4 Change the Window's Colour ... 137

9.10.5 Add New Variables ... 137

9.10.6 Add the Enter Case .. 137

9.10.7 Add the Size Case .. 138

9.10.8 Add the ButtonPress Case ... 138

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 8 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

9.10.9 Compile .. 140

Section 10: Dialog Boxes ... 141

10.1 What is a Dialog Box ... 141

10.1.1 Modal Dialog Boxes .. 141

10.1.2 Modeless Dialog Boxes ... 141

10.1.3 Message Boxes .. 141

10.2 Using a Dialog Box .. 142

10.2.1 Using Controls in Dialog Boxes .. 143

10.3 Using a Message Box ... 145

10.3.1 Style Parameter .. 145

10.3.2 Button Titles ... 146

10.3.3 Pre-defined Styles ... 146

10.3.4 Example ... 146

10.4 An Example Application: SendMsg ... 147

10.4.1 Add New Constant Definitions ... 148

10.4.2 Define Resources ... 149

10.4.3 Modify the Menu Item Case .. 151

10.4.4 Add the Dialog1 Case ... 152

10.4.5 Add Support Subroutines .. 155

10.4.6 Compile .. 159

Section 11: The Clipboard ... 160

11.1 Using the Clipboard ... 160

11.1.1 Copying Text to the Clipboard ... 160

11.1.2 Pasting Text from the Clipboard .. 161

11.2 Controlling the Edit Menu ... 162

11.2.1 The Cut and Copy Items ... 162

11.2.2 The Paste Item .. 163

11.3 An Example Application: ClipEdit ... 164

11.3.1 Modify the Resource Script ... 164

11.3.2 Enable Select Messages .. 165

11.3.3 Add New Variables ... 165

11.3.4 Modify the Enter Case .. 165

11.3.5 Add the Select Case ... 166

11.3.6 Modify the Edit Menu Commands ... 166

11.3.7 Modify the Edit Button Actions ... 167

11.3.8 Add Support Subroutines .. 168

11.3.9 Compile .. 170

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 9 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 12: Fonts .. 171

12.1 Writing Text ... 171

12.1.1 Using Colour when Writing Text ... 171

12.2 Creating a Font ... 172

12.2.1 TypeFaces .. 172

12.3 Getting Information about a Font .. 173

12.4 Using Multiple Fonts in a Window .. 174

12.4.1 Redrawing when Necessary ... 174

12.4.2 Using a Text Contact .. 175

12.4.3 Printing in Different Colours .. 176

12.5 An Example Application: ShowFont .. 176

12.5.1 Add New Constant Definitions ... 176

12.5.2 Define New Resources .. 176

12.5.3 Modify the Create Case .. 177

12.5.4 Modify the Update Case .. 178

12.5.5 Compile .. 179

Section 13: Dynamic Data Exchange ... 181

13.1 Introduction ... 181

13.2 An Overview of DDE .. 181

13.2.1 Clients, Servers and Conversations .. 181

13.2.2 Applications, Topics and Items .. 182

13.2.2 'Advise' Data Links ... 183

13.3 Using the UIMS DDE Subroutines .. 183

13.3.1 Requesting Information .. 183

13.3.2 Sending Commands ... 185

13.3.3 Using Advise Links ... 186

13.4 Example DDE Application ... 187

Section 14: Hybrid Applications... 188

14.1 Introduction ... 188

14.1.1 UIMS Modules ... 188

14.1.2 Combining Terminal Data and Messages ... 189

14.2 An Example Application: MENUDLG ... 190

14.2.1 Add New ... 191

14.2.2 Define Application Resources .. 191

14.2.3 Modify the Option Menu Group .. 191

14.2.4 Modify the Response Loop .. 192

14.2.5 Modify Constant Definitions ... 192

Table of Contents

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 10 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

14.2.6 Modify Subroutine's Resources .. 193

14.2.7 Add the SUBROUTINE Statement ... 194

14.2.8 Delete Unnecessary Code ... 194

14.2.9 Set up and Display the Dialog Box ... 195

14.2.10 Initialise the Subroutine.. 195

14.2.11 Restore the Previous State .. 196

14.2.12 Change the Unmap Commands .. 196

14.2.13 Compile .. 197

Section 15: Appendix A NewView Examples .. 198

15.1 MENUEX ... 198

15.1.1 Menu Definition File ... 202

15.1.2 MAIN Item .. 202

15.1.3 SUB1 Item .. 202

15.1.4 SUB2 Item .. 202

15.1.5 SUB3 Item .. 202

15.1.6 SUB4 Item .. 203

15.1.7 SUB5 Item .. 203

15.2 MENUNV .. 203

15.2.1 Header File ... 216

15.2.2 Resource Script ... 218

15.2.3 Menu Definition File ... 222

Section 16: Glossary .. 223

Section 1: About this manual

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 11 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 1: About this manual

This chapter describes the different sections of the manual and any conventions used.

1.1 Purpose of this manual

This manual is intended to help experienced DATA/BASIC programmers make the

transition to writing applications that use the REALITY User Interface Management

System (UIMS). It shows you how to provide existing applications with a graphical user

interface and explains the basics of writing new UIMS applications. It also explains how

to use UIMS subroutines and messages to carry out useful tasks common to all UIMS

applications. These explanations are illustrated with example applications that you can

compile and run with RealLink for Windows.

It is assumed that, in addition to being an experienced DATA/BASIC programmer, you

will be familiar with RealLink for Windows and Microsoft Windows, and have access to

the appropriate user manuals. You will also need a copy of the UIMS DATA/BASIC API

Reference Manual.

This manual consists of the following sections:

Chapter 1, About this Manual, describes the different sections of the manual and any

conventions used.

Chapter 2, UIMS Concepts, describes the features that the UIMS environment offers,

and compares UIMS applications with standard REALITY applications.

Chapter 3, Converting Existing Applications – NewView, explains how to give an

existing character-based application a graphical user interface, with only minimal

changes to the source code.

Chapter 4, A Generic UIMS Application, explains how to create a simple UIMS

application, which you can use as the basis for your own programs.

Chapter 5, Windows, describes how to create a window, and how to control its

appearance and its position on the screen. It also shows you how to display text and

graphics in a window.

Chapter 6, Keyboard and Mouse Input, describes the input messages that UIMS sends

to your application and shows you how to respond to these messages.

Chapter 7, The Pointer, the Mouse and the Keyboard, describes how to display and the

pointer and control its shape, and how to let the user use the keyboard to move the

pointer.

Chapter 8, Menus, shows you how to use menus in your application.

Chapter 9, Controls, shows you how to create and use controls for interaction with the

user.

Section 1: About this manual

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 12 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Chapter 10, Dialogue Boxes, shows you how to create and use dialog boxes containing

controls.

Chapter 11, The Clipboard, describes how to copy data to and paste data into your

application from the Windows clipboard. It also describes how to control the Cut, Copy

and Paste items on the Edit menu.

Chapter 12, Fonts, shows you how you can use fonts to improve the look of your

application.

Chapter 13, Dynamic Data Exchange, describes how to use DDE to extract information

from other Windows applications, to automatically update them with new information,

and to send commands and keystrokes to manipulate them by remote control.

Chapter 14, Hybrid Applications, describes how to enhance existing applications by

creating UIMS modules with their own event loops.

Appendix A, NewView Examples, gives the source code listings for the example

programs described in Chapter 3.

1.2 Related Documents

UIMS DATA/BASIC API, Reference Manual.

UIMS DATA/BASIC API, Quick Reference Guide.

REALITY DATA/BASIC Reference Manual.

Systems Application Architecture, Common User Access: Advanced Interface Design

Guide (IBM).

RealLink for Windows User Manual.

Microsoft Windows User's Guide.

1.3 Using the Example Applications

Most chapters in this guide conclude with an example application that illustrates the

UIMS features described in the chapter. These applications are written in REALITY

DATA/BASIC and conform to the user-interface style recommended in the IBM Systems

Application Architecture, Common User Access: Advanced Interface Design Guide.

The source files for all example applications are in the file UIMS-EXAMPLES, supplied

with the UIMS API. In most cases, the application consists of a DATA/BASIC source item,

a resource script, and a header item that is common to both. Compiled versions of the

DATA/BASIC code and the resources are also provided. Before running the application,

you must do one of the following – Either:

• Copy the compiled resources to the RealLink resource directory on your PC (this

directory is specified in your RFW.INI file).

• Catalog the compiled DATA/BASIC program.

Or:

• Copy the resource script and the header item to your PC and compile the

resources using the UIMS Resource Compiler (RLRC). Then copy the resulting

resource file to your RealLink resource directory.

Section 1: About this manual

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 13 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Compile the DATA/BASIC source and then catalog the resulting program.

It is a good idea, when reading the description of an example application, to refer to the

corresponding source code. You can also use the sources as the basis for your own

applications.

1.4 Conventions

This manual uses the following conventions:

Example Meaning

TEXT Bold text shown in this typeface is used to indicate input

which must be typed at the terminal.

Text Text shown in this typeface is used to show text that is

output to the screen.

Bold text Bold text in syntax descriptions represents characters typed

exactly as shown. For example

WHO

{ } Braces enclose options and optional parameters. For

example in

BLIST {DICT} file-name item-id {(options}

The word DICT can optionally be typed to specify the

dictionary of the file.

file-name and item-id must be supplied.

One or more single-letter options can be included, as

defined for the command; these must be preceded by an

open parenthesis, can be given in any order, and are not

separated by spaces. Any number of options can be used

except where specified in text.

Text Characters or words in italics indicate parameters which

must be supplied by the user. For example, in

GetChildFocus(Context, Contact, vChild)

the parameters Context, Contact and vChild are italicized to

indicate that this is the general form of the GetChildFocus

subroutine. In an actual program, the user supplies

particular arguments for the placeholders Context, Contact

and vChild.

Italic text is also used for titles of documents referred to by

this document.

vText A lower case 'v' prefixing a parameter name indicates that a

variable must be supplied so that a value can be returned.

In the above example, for instance, the 'v' prefix to the

parameter name vChild indicates that, in an actual program,

the user must supply the name of a variable in which to

return the handle of the child which currently has the focus.

Section 1: About this manual

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 14 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Example Meaning

aText, vaText A lower case 'a' prefixing a parameter name indicates that

either the programmer must supply a dynamic array or,

when combined with a lower case 'v', that on return the

parameter will contain a dynamic array with one value in

each attribute.

[Brackets] Brackets enclose optional parameters. For example, in

#IFDEF ident source

code block

[#ELSE

source code block]

#ENDIF

the keyword #ELSE and an associated source code block

can optionally be included.

In syntax descriptions, ellipses following a group of items

indicate that the parameters preceding can be repeated as

many times as necessary. For example, in

ATTRIBUTE = Value

[ATTRIBUTE = Value

…]

the ellipses indicate that the sequence ATTRIBUTE = Value

may be repeated as many times as necessary.

In the DATA/BASIC program examples, ellipses are used to

split lines of code for clarity. Since in DATA/BASIC an ellipsis

indicates that a line of code continues on the next line, this

does not prevent compilation of the examples.

Vertical ellipses are used in program examples to indicate

that a portion of the program is omitted.

SMALL CAPITALS Small capitals are used for the names of keys such as

RETURN.

CTRL+X Two (or more) key names joined by a plus sign (+) indicate

a combination of keys, where the first key(s) must be held

down while the second (or last) is pressed.

For example, CTRL+X indicates that the CTRL key must be

held down while the X key is pressed.

Enter To enter means to type text then press RETURN. For

instance, 'Enter the WHO command' means type WHO, then

press RETURN.

In general, the RETURN key (shown as ENTER or ↵ on some

keyboards) must be used to complete all terminal input

unless otherwise specified.

Press Press single key or key combination, but do not press

RETURN afterwards.

X'nn' This denotes a hexadecimal value.

REALITY Throughout this manual, REALITY should be taken to include

RealityX unless otherwise stated.

Section 1: About this manual

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 15 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Example Meaning

You This manual is written for the application developer.

Depending on the context, the word "you" can refer either

to you as a developer, or to the application you are

developing.

User The "user" refers not to you, the application developer, but

to the person who will ultimately use the application you

write.

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 16 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 2: UIMS Concepts
The REALITY User Interface Management System adds many features to the standard

REALITY environment. Because of this, UIMS applications are, in some ways, more

complex than standard REALITY DATA/BASIC programs.

This chapter covers the following topics:

• The relationship between RealLink for Windows and UIMS.

• A comparison of UIMS applications and standard REALITY DATA/BASIC

applications.

• Features that the UIMS environment offers, and the impact these features have

on the way you develop and write applications.

• The UIMS programming model.

• The process you use to develop UIMS applications.

2.1 Introduction

RealLink for Windows is a PC terminal emulator that runs in the Microsoft Windows

environment. At the heart of RealLink is a User Interface Manager that provides its

interface to the Windows environment and generates its graphical display.

RealLink makes many of the features of the User Interface Manager available to host

applications by means of commands that can be transmitted across a LAN or other

communications link. The UIMS DATA/BASIC API provides the REALITY DATA/BASIC

programmer with a suite of subroutines that can be used in applications. These

subroutines simplify the programmer's task by constructing the User Interface Manager

commands and transmitting them to RealLink. RealLink, in turn, carries out these

commands and returns any results to the host application via variables supplied by the

DATA/BASIC programmer.

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 17 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 2-1. The User Interface Management System

2.2 UIMS and REALITY: a Comparison

UIMS has many features that the standard REALITY environment does not. For this

reason, UIMS applications may, at first, seem more complex than standard REALITY

programs.

This is understandable when you consider some of the additional features that UIMS

offers. These include:

• A graphical user interface featuring windows, menus, dialog boxes and controls

for applications.

• Queued input.

• Multitasking.

• Data interchange between applications.

When writing applications for the REALITY environment, programmers use the standard

DATA/BASIC statements to carry out a program's input, output and other activities.

DATA/BASIC assumes a standard user environment which includes a character-based

terminal for user input and output. In UIMS, this assumption is no longer valid. A UIMS

application is a collaboration between the user's PC and the remote host, with the

application sharing the PC's resources, including the CPU, with other applications. UIMS

applications interact with the user through a graphics-based display, a keyboard and a

mouse.

The following sections describe some of the major differences between standard REALITY

applications and UIMS applications.

Host Application

UIMS
DATA/BASIC

API

UIMS Messages API calls

Communications Port

PRINT INPUT

UIMS Messages UIMS calls

Communications Port

Host

PC

RealLink for Windows

User Interface Manager

Microsoft Windows

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 18 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

2.2.1 The User Interface

RealLink for Windows is an application that runs in the Microsoft Windows environment.

Since one of the principal design goals of Windows was to provide the user with visual

access to most, if not all, applications at the same time, UIMS applications must share

the display with other Windows applications. Some systems do this by giving one

program exclusive use of the display, while other programs wait in the background.

Windows, however, can give every application access to some part of the display at all

times.

An application shares the display with other applications by using a "window" for

interaction with the user. Technically, a window is little more than a rectangular portion

of the display that Windows allows the application to use. In practice, however, a

window is a combination of useful visual devices, such as menus, controls and scroll

bars, that the user uses to direct the actions of the application.

In REALITY, the system automatically prepares the display for your application. The

DATA/BASIC input and output commands simply assume that this has been done. In

UIMS, your application must create its own window before performing any output or

receiving any input. Once a window has been created, UIMS provides a great deal of

information about what the user is doing with that window. UIMS also automatically

carries out many of the tasks that the user requests, such as moving the window and

changing its size.

Another advantage offered by the UIMS environment is that, in contrast with a

standard REALITY program which has access to a single screen "surface", a UIMS

application can create and use any number of overlapping windows to display

information. UIMS manages the screen for you and controls the placement and display

of windows, ensuring that applications do not attempt to access any part of the display

at the same time.

2.2.2 Queued Input

One of the biggest differences between UIMS applications and standard DATA/BASIC

programs is the way they receive user input.

In the normal REALITY environment, a program reads from the keyboard by making an

explicit call to the INPUT DATA/BASIC statement. This statement typically waits until

the user presses RETURN before returning a string of characters to the program. In

contrast, in the UIMS environment, UIMS receives all input from the keyboard, mouse

and timer and places the input in the application's "message queue". When the

application is ready to receive input it simply reads the next message from its message

queue.

In the normal REALITY environment, input is typically in the form of 7- or 8-bit

characters from the keyboard. The INPUT statement reads characters from the

keyboard and returns ASCII codes corresponding to the keys pressed.

In UIMS, an application receives input in the form of "input messages" that UIMS sends

it. A UIMS input message contains information that exceeds the type of input

information available in the standard REALITY environment. Depending on the source

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 19 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

of the message, it can specify a code representing the key (if a key has been pressed),

the states of the SHIFT, CTRL and ALT keys, the position of the mouse, the mouse

button that has been pressed or released, and the system time. For example, there are

two mouse messages,

UIMS.MSG.PRESS and UIMS.MSG.RELEASE, that correspond to the press and release of

a mouse button. With each mouse message, UIMS provides the position of the mouse,

and the states of all the mouse buttons and of various keys on the keyboard (such as

SHIFT, CTRL and NUMLOCK), in addition to a code that identifies the button. Other

mouse messages have the same format and are processed in the same way.

2.2.3 Multitasking

Since RealLink for Windows (and thus UIMS) runs in the Microsoft Windows

environment, it can take full advantage of Windows' multitasking capabilities. The user

can run a number of different applications at the same time, or in many cases two or

more instances of the same application, and swap between them as required. On

REALITY, the user is restricted to running only one application at a time, but by using

two or more instances of RealLink, the user can run multiple REALITY and UIMS

applications.

UIMS also provides access to the Windows clipboard, so that users can transfer data

between applications.

2.2.4 Shared Processing

Within your host application, you make use of UIMS by calling the catalogued

subroutines that form the UIMS DATA/BASIC API. The subroutines do not, however, call

UIMS directly, but rather construct "UIMS calls" that are transmitted over the

communications link to the PC. On receipt of a UIMS call, RealLink calls the appropriate

UIMS function on the PC. UIMS, in turn, calls Windows functions to manage the user

interface.

This means that the task of running your application is shared by the host and the PC.

The PC takes charge of the user interface, allowing the host to concentrate on data

processing.

In addition, you can store definitions of your graphical resources (windows, menus,

controls, etc.) on the PC and simply instruct UIMS to load them when required.

Because the load operation is carried out entirely on the PC, the communication needed

between the host and the PC is reduced and the speed of the application is increased.

2.3 The UIMS Programming Model

Most UIMS applications use the following elements to interact with the user:

• Windows

• Menus

• The message loop

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 20 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This section describes these elements in detail.

2.3.1 Windows

A window is the primary input and output device of any UIMS application. It is an

application's only means of access to the system display. A window is a combination of

various features (such as title bar, menu bar, scroll bars and borders) that occupy a

rectangle on the system display. You specify which of these features you want when

you create a window. UIMS then draws and manages the window. Figure 2-2 shows the

main features of a window.

Although an application creates a window and technically has exclusive rights to it, the

management of the window is actually a collaborative effort between the application

and UIMS. UIMS maintains the position and appearance of the window, manages

standard window features such as the border, scroll bars and title, and carries out many

tasks initiated by the user that directly affect the window. The application maintains

everything else about the window. In particular, the application is responsible for

managing the client area (the portion within the window borders). The application has

complete control over the appearance of the window's client area.

To manage this collaboration, UIMS advises the application of changes that might affect

the window. Because of this the application must have a message loop which separates

out messages for different windows and carries out any processing that might be

needed.

2.3.2 Menus

Menus are the principal means of user input in a UIMS application. A menu is a list of

commands that the user can view and choose from. When you create an application,

you supply the menu and command names. UIMS displays and manages the menus for

System menu

System menu box
Title bar

Menu bar Maximise box

Minimise box

Scroll bar thumb

Scroll bar Window border

Client area

Figure 2-2. Window Features

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 21 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

you, and sends a message to your application when the user makes a choice. The

message is the application's signal to carry out the command.

2.3.3 Dialog Boxes

A dialog box is a temporary window that you can display to allow the user to supply

more information for a command. A dialog box contains one or more controls: that is,

small windows that have very simple input or output functions – for example, an edit

control is a simple window that lets the user enter and edit text. The controls in a

dialog box let the user choose options, supply information and otherwise control the

action of the command.

2.3.4 The Message Loop

Since your application receives input through a message queue, the main feature of

any UIMS application is the "message loop". The message loop must retrieve messages

from the application queue and process them appropriately.

Figure 2-3 shows how the UIMS and an application collaborate to process keyboard

input messages. When the user presses and releases a key, this triggers a UIMS

keypress event which processes the keyboard input. The event process constructs a

keyboard input message which is placed in the application's message queue. The

message loop must retrieve the message and route it to a subroutine that deals with all

the messages for a particular window. This subroutine then uses the UIMS

DrawTextString subroutine to display the character in the client area of the window.

Figure 2-3. Processing Keyboard Input

2.4 Converting existing applications

2.4.1 NewView

Converting existing applications to UIMS can be a major job, involving as it does the

provision of a message loop, windows, menu, dialog boxes, etc. However, RealLink

UIMS

Application

Z

Z

Z Z

Message loop

Window
subroutine

Window
subroutine

DrawTextString
In response to the
Window subroutine's
DrawTextString request,
UIMS outputs a "Z" to
the application window

Application
window

Z Keypress
message

Keypress
message

User presses
the "Z" key

Application queue

Keypress event

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 22 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

provides a simple method of adding a graphical user interface to an existing character-

based application.

NewView allows you to create menus and buttons, and set them up so that, instead of

returning messages to the application, they return character strings. In a similar way,

"hotspots" can be defined within a window, and set up to return character strings to the

application. These two features allow the user to use a mouse in addition to the normal

keyboard interface.

Chapter 3 describes how to use NewView to convert an existing character-based

application.

2.4.2 Hybrid Applications

If you need to use UIMS features that are not available in NewView, but do not want to

rewrite your application, you can create a Hybrid application. This will primarily be a

character-based or NewView application, but will have some, generally self-contained,

UIMS features.

Chapter 14 describes how to add UIMS modules to a NewView application.

2.5 Building a UIMS Application

To build a UIMS application, follow these steps:

1. Create DATA/BASIC source files that contain the message loop, window

subroutines and other application code.

2. Create resource scripts that define the windows, menus, controls and other

graphical elements required by your application.

3. Compile and catalog all DATA/BASIC sources on the host.

4. Use the Resource Compiler (RLRC) on the PC to compile the resource scripts.

Figure 2-4 shows the steps required to build a UIMS application.

Host PC

Section 2: UIMS Concepts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 23 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 2-4. Building a UIMS Application

DATA/BASIC
source

BASIC

RLRC

CATALOG

Resource
file (.RES)

Application

UIMS API
subroutines

Run

Create the source files

Create the resource files

Compile the source files

Catalog the compiled
application

Run the application

Compile the resource
files

Resource
script

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 24 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 3: Converting Existing Applications - NewView
This chapter explains how to use NewView to give an existing characterbased application

a graphical user interface, with only minimal changes to the source code. It describes a

simple character-based application and then describes how to add various NewView

features. The following points are covered:

• What is NewView?

• The components of a NewView application.

• Setting up NewView, and creating resources.

• Creating NewView groups

• Closing the Application

• Changing the options available to the user.

• Running Windows utilities from within your application.

3.1 What is NewView?

NewView is a subsystem of the RealLink User Interface Management System. It

intercepts the UIMS messages which result from user actions and translates them into

strings; these strings are then passed to the application as if they had been entered at

the keyboard.

NewView allows the use of a pointing device, such as a mouse, in applications which

previously could only be used from a keyboard. Operations which require the user to

enter a predetermined character string can be made available on buttons, pull-down

menus and hotspots. A single click with the mouse can then initiate an operation which

normally requires several keystrokes.

3.1.1 Contact Groups

Contacts are configured to return strings to the application by forming them into

NewView contact groups. Note, however, that only MenuItem and TitledButton contacts

can be used in groups, and that all the contacts in a group must be of the same type.

Other types of contact that can be used in NewView applications are as follows:

AppWindow

ChildWindow

MenuBar

Menu

Text Line

Rectangle

3.1.2 Hot-spots

The other major feature that NewView provides is the ability to define 'hot-spots' within

the terminal window. These act in a similar way to button groups, generating text strings

when clicked with the mouse. Hot-spots are defined by creating hot-spot groups.

The user can identify hot-spots by the shape of the mouse pointer; when pointing to a

hotspot, it changes to a hand shape.

3.1.3 The Components of a NewView Application

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 25 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The following summarises the steps that must be added, when converting an application

so that it can use NewView.

3.1.4 CATALOG Command

When used in Reality X, this TCL command produces a catalogued DATA/BASIC program

with a different format from that on Release 7.0. This means that cataloged program

items produced in one environment cannot be transferred directly to the other. Object

code must be transferred first, then cataloged again in the new database. It will then

run, provided it does not contain GAD statements.

1. INCLUDE statements which specify the RealLink and UIMS constant definitions

must be added.

2. The application must determine whether UIMS is available on the selected

account and, if it is, initialise the UIMS system. This will also determine whether

the application is running on RealLink or on a normal terminal (NewView can only

be used on RealLink). The remaining steps below must only be carried out if

running on RealLink with UIMS available.

3. The application must sign on to UIMS.

4. Event masks must be set up to determine which types of message will be passed

from UIMS to NewView (primary event mask), and which of these will be passed

on to the application (secondary event mask). NewView applications will not

normally include a message loop, and the secondary event mask should therefore

disable all types of message.

5. If synchronous error handling is required, this must be selected.

6. Graphics coordinate mode must be selected.

7. The UIMS resources (windows, buttons, menu items and other contacts) used by

the application must be created. To minimise changes to the application, this

could be done by a separate cataloged subroutine, or the resources could be

loaded from a compiled resource script on the PC.

8. If a window other than the RealLink window is to be used as the terminal window,

the terminal window functionality must be transferred to the required window.

9. NewView contact and hot-spot groups must be created.

10. Each time the application displays a different screen, the appropriate NewView

groups should be enabled and disabled as appropriate.

11. When the application terminates, if it is running on RealLink, the following must

be done:

• All NewView contact and hot-spot groups must be destroyed.

• If a window other than the RealLink window has been used as the terminal

window, the terminal window must be returned to RealLink.

• The application must be signed off from UIMS.

3.2 The MENUEX Character-based Application

In order to demonstrate how to convert an application using NewView, we need an

application to convert. The one we have chosen simply presents a series of menus to the

user, and would normally form part of a much larger application. However, it illustrates

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 26 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

well the way in which NewView can improve the user interface and make an application

simpler to use.

The character-based application is called MENUEX; its DATA/BASIC source code is listed

in Appendix A. It works by reading menu definitions from a file. These definitions consist

of lists of item numbers, screen column positions, screen row positions, item titles and

links to sub-menus. In addition, there is a title for the complete menu. In use, the user

enters the number of the item required; or E to return to the previous menu, M to return

directly to the main menu, or OFF to return to TCL.

The menu definition file contains only six menus. There is a main menu, the first four

items of which are linked to four sub-menus. The first item on sub-menu 1 is linked to a

fifth submenu, and the first four items on sub-menu 4 all return the user to the main

menu. In a working application, there would be more menus, and the sub-menu links

would, where appropriate, be replaced with identifiers for data-entry screens and

processing routines.

The main menu displayed by this application is shown in Figure 3-1.

Figure 3-1. Example Character-based Application

3.2.1 The MENUEX Source Code

The code for MENUEX is listed in Appendix A. It is divided into three routines:

• A main routine which initialises the application, displays the selected menu and

processes the user selection.

• The BUILD subroutine which reads a menu definition from the menu definition file

and converts this into a string which can be displayed on the screen.

• The ERRSUB subroutine which displays error messages when necessary.

3.2.1.1 The Main Routine

The main routine is divided into four sections:

• An introductory section which initialises the application and opens the menu

definition file.

• An outer loop which calls the BUILD subroutine to set up the selected menu and

then displays the result. As each menu is selected, its identifier is added to a

'history' array (PREVID), which is used when returning to the previous level.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 27 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• An inner loop which waits for the user to make a selection and takes the

appropriate action.

• A closing section which clears the screen and returns the user to TCL.

The inner loop contains a case structure which processes the user's selection as follows:

• If a valid menu item is selected, the ID variable points to the selected menu for

display on the next pass through the loop.

• If the user enters M, the ID variable is set to the main menu for display on the

next pass through the loop. The history variable (PREVID) is cleared.

• If the user enters E, the identifier of the previous menu is retrieved from PREVID.

• If the user enters OFF, the control variable (OK) for the outer loop is cleared, so

that the program will drop out into the closing section.

• If the user has entered none of the above, the ERRSUB subroutine is called to

display an error message. The variable containing the user selection (ANS) is then

cleared, so that the program will remain within the inner loop until a valid

response is entered.

3.2.1.2 The BUILD Subroutine

The menu for display is built up in the variable SCR. The BUILD routine starts by clearing

this variable and then reads the details of the selected menu into a dynamic array

(MENUREC). If there is no definition for the selected menu, an error message is

displayed and the subroutine returns.

The new menu starts with the code to clear the screen, followed by the position and text

of the menu heading. The routine then loops, reading the details of each menu item in

turn from MENUREC, and adding them to SCR in the appropriate form: a cursor

positioning code, followed by the item number; then another cursor positioning code,

followed finally by the text of the item. Two variables, START.OPT.NO and END.OPT.NO,

store the range of valid item numbers for testing in the main routine.

If the item identifier is 'S', the item is assumed to be the prompt which appears at the

bottom of the menu. This is added to SCR as a cursor positioning code and the text of

the item, and two variables, SELCOL and SELROW, are set to specify the screen position

for the INPUT statement in the main routine.

3.2.1.3 The ERRSUB Subroutine

This subroutine simply prints an error message (from the ERRMSG variable) in reverse

video. It then waits for the user to press a key before clearing the message and

returning to the calling routine.

3.3 The NewView Version – MENUNV

The NewView version of MENUEX is called MENUNV (see Appendix A for its source code

listing). The differences between the two applications fall into two categories:

• NewView enhancements to existing facilities.

• Additional facilities added to illustrate NewView features.

The enhancements to existing facilities are as follows:

• The definition of a hot-spot for each item on the displayed menu. These allow the

user to select an item simply by pointing to it with the mouse and clicking the left

mouse button.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 28 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• The addition of Back and Main buttons at the top of the application's window to

provide easy access to the E and M commands.

• The addition of a menu bar at the top of the window. This has a File pull-down

menu containing an Exit command which has the same effect as the OFF menu

command.

Note

These features do not replace those provided by MENUEX. The application can still be used from
the keyboard as described in the previous section. Also, the NewView code is added in such a
way that MENUNV can be used on a normal terminal.

The additional facilities are as follows:

• The provision of the RealLink Print commands on the File pull-down menu.

• The addition of an Edit pull-down menu containing the RealLink Edit commands.

• The addition of a third, Options pull-down menu containing additional commands.

• The addition of eight extra buttons which could be used for more commands.

• Example routines which show how the NewView features can be changed from

screen to screen, or in response to user input.

Note

In order to distinguish between the character-based menus displayed by MENUNV and the
NewView menus on the menu bar, the latter will be referred to as pulldown menus.

Figure 3-2 shows the main menu for the MENUNV application.

Figure 3-2. Example NewView Application

The sections which follow describe in detail the changes which must be made to

MENUEXto enable it to use NewView. The source code for the converted application

(called MENUNV) is listed in Appendix A.

3.3.1 Constant Definitions

The appropriate UIMS and NewView constant definitions must be included at the

beginning of the application. These are contained in three header items – RFWDEFS,

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 29 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMSDEFS and UIMSCOMMON – in the file UIMS-TOOLS. Note that all NewView

applications need RFWDEFS, but if only hot-spots are used, the other two can be

omitted.

The constant definitions for MENUNV are as follows:

INCLUDE RFWDEFS FROM UIMS-TOOLS

INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-TOOLS

In addition, a header file, MENUNV.H, is included. This contains definitions specific to

MENUNV, many of which are common to both the DATA/BASIC source and the resource

script (see page 3-11).

INCLUDE MENUNV.H

3.3.2 Initialising UIMS

NewView can only be used if the terminal supports UIMS (that is, if the application is

being run on RealLink for Windows), and if UIMS is available in the selected account. The

InitialiseUims subroutine sets a common variable, UIMS.CAPABLE, which can be tested

to determine whether the terminal supports UIMS. However, in order to run

InitialiseUims, you must have access to this subroutine. The following code tests for

the availability of UIMS and, if it is, runs InitialiseUims:

UIMS.CAPABLE = FALSE ;* until we've tried, assume no UIMS support. * See

if the InitialiseUims subroutine exists. If it does, call it. OPEN "MD" TO

ACCMD THEN

 READ ACCREC FROM ACCMD,"InitialiseUims" THEN CALL InitialiseUims

 CLOSE ACCMD

END

Note

If you are only using hot-spots, there is no need to initialise UIMS. Instead, you should call the
IsUimsCapable subroutine (checking that it exists, as shown above). Refer to the UIMS
DATA/BASIC API, Reference Manual for details.

3.3.3 Signing On to UIMS

Once you have initialised UIMS for your application, you must sign on in order to create

a application context. The context handle returned when you sign on must be passed to

many of the UIMS subroutines and will also be needed when you sign off.

The SignOn subroutine requires two parameters: a string containing the name of the

application and the name of a variable in which to return the handle of the application

context. For example:

CALL SignOn("MENUNV", CONTEXT)

You should then test the context handle to check that the application is properly signed

on. A context of zero indicates an error.

IF NOT(CONTEXT) THEN

 UIMS.CAPABLE = FALSE ;* can't sign on, so can't use NewView

 ERRMSG = "Error - failed to signon to UIMS"

 GOSUB ERRSUB

 RETURN

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 30 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

END

ERRSUB is a routine that will display an error message. Note that the UIMS.CAPABLE

variable is set to FALSE to indicate that NewView cannot be used; the application can,

however, be run on a normal terminal and can therefore continue without NewView.

Note

If you are using only hot-spots, there is no need to sign on to UIMS.

3.3.4 Event Masks

One of the reasons it is easy to convert applications using NewView is that no message

loop is needed. NewView itself processes most of the messages generated by UIMS and

these are never passed on to the application. However, in order for NewView to work

correctly, two event masks must be set up to ensure that NewView receives the correct

types of message, and that unwanted messages are disabled. This is done as follows:

1. A primary event mask is set up using the SetEventMask subroutine. This ensures

that NewView receives the correct types of message.

2. A secondary event mask is set up using the SetSecondaryEventMask subroutine.

This ensures that any messages passed on by NewView to the RealLink terminal

emulator do not reach the application.

The following code sets these event masks:

* set an event mask that will allow NewView the right messages to

* process

CALL SetEventMask(CONTEXT , CONTEXT , UIMS.EM.NEWVIEW , ERR)

* disable unwanted messages

CALL SetSecondaryEventMask(CONTEXT , 0 , FALSE , FALSE , ERR)

In both subroutines, the first parameter is the handle of the application context,

returned by the SignOn subroutine.

A primary event mask can be set for individual contacts as well as for a complete

application. The second parameter to SetEventMask specifies this contact. In this case,

we require a mask for the complete application, so this parameter is the handle of the

application context.

This parameter is the NewView event mask, defined in the UIMSDEFS header.

The final parameter to both subroutines must be a variable in which a completion code

can be returned. If required, this variable can be tested to see if an error has occurred.

This parameter specifies those types of message which should be allowed to reach the

application. A value of zero disables all messages.

This parameter allows you to disable messages which cannot be masked using

SetEventMask. A value of FALSE disables all non-maskable messages.

The fourth parameter is provided for use in future versions of UIMS. It must be included,

but its value will be ignored.

3.3.5 Error Handling

Once you have enabled or disabled UIMS error messages, you must select the error

handling mode. Most UIMS and NewView subroutines have a vErr parameter in which a

completion code is returned.

• If synchronous error handling is selected, this parameter will return set to

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 31 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• UIMS.SUCCESS (zero) for successful completion, or one of the error codes

defined in UIMSDEFS and RFWDEFS if an error has occurred.

• If asynchronous error handling is selected, vErr always returns UIMS.SUCCESS

and errors are reported by means of a UIMS message. Since NewView

applications do not have a message loop, you cannot use asynchronous error

handling.

The error handling mode is set as follows:

CALL SetSync(CONTEXT, TRUE, ERR)

The second parameter controls the error mode; TRUE selects synchronous error

handling.

3.3.6 Coordinate Mode

NewView applications must use graphics coordinate mode. This is set as follows:

CALL SetCoordMode(CONTEXT, UIMS.COORD.GRAPHIC, ERR)

3.3.7 Creating Resources

The resources for a NewView application consist of all the windows, pull-down menus

and buttons presented to the user. These can be created in two ways:

• They can be pre-defined by preparing a resource script and compiling it using the

UIMS Resource Compiler.

• They can be created dynamically during initialisation or as required by the

application.

For MENUNV we will use a resource script. Note, however, that whichever method you

use, you can modify your resources dynamically at any time, as required by your

application.

The resources required by MENUNV consist of a main application window (AppWindow),

a Child window to use as the terminal window, a menu bar with three pull-down menus,

and ten titled buttons.

3.3.7.1 Creating a Resource Script

Resources are defined on the PC in a source file (resource script) which can be produced

by any ASCII text editor (Windows Notepad, for example). The completed source must

then be compiled, using the UIMS Resource Compiler, RLRC.

The following shows the main elements of the resource script for MENUNV. The complete

resource script is shown in Appendix A.

#INCLUDE RFWDEFS.H Œ

#INCLUDE MENUNV.H Œ

* Main application window and pull-down menus

APPWINDOW = APPWIN •

{

 TITLE = 'NewView Demonstration'

 POSITION = 0,40 Ž

 SIZE = 1000, 825 Ž

 STYLE = NOSCROLL, MOVABLE, ICONISABLE •

 BDRSTYLE = BORDER •

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 32 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 MENUBAR = APPMENUBAR ‘

 {

 * The File pull-down menu has all the RealLink Printing

 * commands plus Exit

 MENU = APPMENUFILE ’

 {

 TITLE = '&File'

 ENABLED = TRUE

 CHILDREN = '&Print' = ID.FILEPRINT,

 'Print &Window' = ID.FILEPRINTWINDOW,

 'P&rinter Setup' = ID.FILEPRINTERSETUP,

 '-' = 0,

 'E&xit' = APPMENUEXIT “

 }

 .

 . * definitions for Edit and Options pull-down menus

 .

 * Child window to use as the terminal window

 CHILDWINDOW = CHILDWIN ”

 {

 POSITION = 0, TEWINSTART

 SIZE = 1000, 755

 STYLE = NOSCROLL

 BDRSTYLE = NONE

 EVENTMASK = NEWVIEW

}

* Buttons

 TITLEDBUTTON = BUT1 •

 {

 TITLE = 'Back'

 POSITION = BUT1X, BUTY

 MAPPED = FALSE

 ENABLED = TRUE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 .

 . * definitions for nine more buttons

 .

}

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 33 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

These two lines insert the contents of header files containing the definitions of constants

used in the application. RFWDEFS contains definitions used by NewView, and must be

copied onto the PC from the host and given the extension '.H' (RFWDEFS can be found in

the host file UIMS-TOOLS). MENUNV.H contains definitions specific to this application

which are used in the resource script and the DATA/BASIC program (see Appendix A).

This line introduces the definition for the application's main App window. The window is

given the identifier APPWIN, which has been assigned a numeric value in the header file

MENUNV.H.

The next two lines specify the window's initial position on the screen and its size. These

values will be interpreted as character or pixel units, depending on the current

coordinate mode of the application context. If graphics mode is selected, the coordinates

are interpreted as pixel positions on an arbitrary screen 1000 units wide by 1000 units

high. When the resources are loaded into an application, the coordinates are scaled to fit

within the actual screen.

MENUNV will run in graphics mode, so the position is at the left-hand edge and 40 units

down, and the window size is 1000 units wide (full width) by 825 high.

This line specifies the style of the window. It consists of a combination of a number of

style elements. In this case the elements MOVABLE, NOSCROLL and ICONISABLE are

selected, producing a window without scroll bars that can be moved and minimised to an

icon.

The next line specifies whether or not the window has a border. It can have the value

BORDER as shown above, or NONE to specify no border. Note however, that the window

style controls the type of border and in some cases will automatically generate a border,

even though none is specified. Refer to the UIMS DATA/BASIC API, Reference Manual for

more details. In this case, the setting of the border style parameter is irrelevant because

the MOVABLE style element automatically generates a single border. The parameter must

be included, however, and setting it to BORDER will serve as a reminder that the window

has a border.

This line introduces the definition for the App window's menu bar. Because the definition

is nested within that of the App window, the menu bar will be automatically attached to

the App window.

This line introduces the definition for the File pull-down menu. The nested definition

makes the menu a child of the menu bar. Note that the title includes an ampersand (&)

preceding the letter 'F'; this specifies that this letter may be used in combination with

the ALT key to select the pull-down menu from the keyboard.

This line defines the items that will appear on the File pull-down menu. Note that the

three Print items are given identifiers (defined in RFWDEFS.H) which allow them to call

the standard RealLink printing functions. The Exit item, however, is handled by the

application and has an identifier defined in MENUNV.H.

The item defined as '-'=0 creates a line separating Exit from the three Print items.

The definitions for the other two pull-down menus are similar (see the complete resource

script in Appendix A).

This line introduces the definition for the Child window. This has no scroll bars or border,

and is the same width as the App window's client area. Its height, however, is smaller

than that of the App window, and it is positioned 50 units (TEWINSTART) down from the

top of the App window to leave room for the titled buttons. Note that because this

window will be used as the terminal window, it must be given the same NEWVIEW event

mask as the application.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 34 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This line introduces the definition for the first of ten titled buttons that will form a 'button

bar' just below the menu bar. The definitions for the other nine buttons are similar (see

the complete resource script in Appendix A).

3.3.7.2 Loading the Compiled Resources

The compiled resources are loaded into a host UIMS application by calling the

LoadAppRes subroutine. The following line loads the resources for the MENUNV

application:

CALL LoadAppRes(CONTEXT, "menunv.res", ERR)

CONTEXT parameter is the handle of the application context.

"menunv.res" is the name of the compiled resource file on the PC. If no path is

specified, it is assumed to be in the resource directory specified in the RFW.INI file.

ERR is a variable in which to return the completion status of the subroutine. You should

test this variable to check that the resources have been created successfully. A non-zero

value indicates an error.

IF ERR THEN

 UIMS.CAPABLE = FALSE

 CALL SignOff(CONTEXT, ERR)

 ERRMSG = "Cannot find MENUNV.RES resource file"

 GOSUB ERRSUB

 RETURN

END

Note

Without resources there is no point is remaining signed on to UIMS. The UIMS.CAPABLE variable
is set to FALSE to indicate that NewView cannot be used. The application can, however, be run
on a normal terminal and can therefore continue without NewView.

3.3.7.3 Displaying the Application Window

When the application window is complete, it can be displayed. This is done by adding the

window as a child of the application context by calling the AddChild subroutine.

AddChild requires the following parameters:

• The handle of the application context.

• The handle of the parent object; that is the object to which the child is to be

attached.

• A number indicating where, in any existing list of children, the new child is to be

added.

• This allows, for instance, a new menu item to be added at the beginning of a pull-

down menu rather than at the end.

• The handle of the child to be added.

• A variable in which to return any error code.

The following example attaches the application window to the context of the MENUNV

application.

CALL AddChild(CONTEXT, CONTEXT, -1, APPWIN, ERR)

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 35 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The list index of -1 adds the new child at the end of any existing list.

3.3.7.4 Setting the Terminal Window

Once you have displayed the App window, you can transfer the terminal functionality to

the appropriate window – in this case the Child window created in the resource script.

This will also hide the RealLink window.

To hide the RealLink window, include the following line in your application:

CALL SetTeWindow(CONTEXT, CHILDWIN, UIMS.NONE, ERR)

CHILDWIN is the identifier for the window which will become the terminal window.

UIMS.NONE parameter specifies that the RealLink window is to be hidden.

Note

Before returning to TCL, your application must return terminal functionality to the RealLink
window (see page 3-21).

You must then ensure that keyboard input is directed to the new terminal window by giving

it the focus:

CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

3.3.8 Creating NewView Groups

Before they can be used in a NewView application, the UIMS contacts you have created

must be formed into groups. The main reason for doing this is to assign text strings to

the contacts; each contact will then return its associated text string to the application

whenever it is operated.

Three types of NewView group are required in the MENUNV application: a menu item

contact group for each pull-down menu on the menu bar; contact groups for the titled

buttons on the button bar; and a hot-spot group for each different menu displayed

3.3.8.1 Contact Groups

The contact groups – two menu item groups (see note 1 below), and two button groups

are all created in the same way: by calling the CreateNVContactGroup subroutine. The

following example shows how the group for the Options pull-down menu is created.

EQU MENU2GRPID TO 5

EQU APPMENUDIARY TO 150

EQU APPMENUCALC TO 151

EQU APPMENUCHANGE TO 152

MENU2GRP.RESP=DIARY.RESP:CRET:AM:CALC.RESP:CRET:AM:SWAP.RESP:CRET

CALL CreateNVContactGroup(CONTEXT, ...

 MENU2GRPID, ...

 APPMENUDIARY, ...

 3, ...

 MENU2GRP.RESP, ...

 ERR)

EQU MENU2GRPID parameter is a unique number identifying the group.

EQU APPMENUDIARY is the numeric identifier for the first contact in the group. Note that

the contacts must be consecutively numbered.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 36 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3 is the number of contacts in the group.

MENU2GRP.RESP is a dynamic array, where each attribute contains the text string to be

returned by the corresponding contact in the group. Note that each string ends with a

carriage return, as if it had been entered at the keyboard.

Note

In MENUNV, only the File and Options pull-down menus require NewView groups; the Edit pull-
down menu is managed entirely by RealLink. Similarly, the File pull-down menu group consists of
only one item, Exit, since the Print items are all managed by RealLink. Separator items should
not be included in groups.

The MENUNV button bar is divided into two NewView groups. The first consists of the two
leftmost buttons: Back and Menu. The second contains the remaining eight buttons, though only
the two rightmost, OK and Swap, are used. This division allows the application to disable the OK

and Swap buttons when the Main menu is displayed.

3.3.8.2 Hot-spot Groups

NewView hot-spots are areas defined in the terminal window, with which text strings are

associated. When the user points to a hot-spot with the mouse and clicks the left-hand

button, the associated text string is returned to the application as if it had been entered

at the keyboard. For example, suppose the user must enter the letter 'Q' to select a

particular item from a menu. A NewView hot-spot could be set up surrounding the text of

that item as it is displayed in the terminal window, with the string 'Q':CHAR(13) assigned

to it. Then, all the user would need to do to select that item, would be to point to the

item with the mouse and click; the assigned string would be sent to the application,

selecting the item in the same way as if 'Q' had been entered at the keyboard.

Hot-spots are created with the CreateNVHotspotGroup subroutine. This requires the

following parameters:

• The handle of the application context.

• A unique numeric identifier for the group to be created.

• The number of hot-spots in the group

• Five dynamic arrays containing respectively the horizontal positions, vertical

positions,widths, heights and text responses for the hot-spots in the group. The

positions and sizes of the hot-spots must be defined in text coordinates.

• A variable in which to return a completion code.

The details of the hot-spots required are therefore built up in five dynamic arrays, while

a sixth variable counts the hot-spots as they are set up. The setting up of the hot-spots

is in two stages:

• First any previous hot-spots are destroyed, the dynamic arrays are cleared, and

the hot-spot count is reset to zero.

IF UIMS.CAPABLE THEN

* destroy any previous hot-spot group

IF HOTSPOTS # 0 THEN ...

CALL DestroyNVGroup(CONTEXT, HOTGRPID, ERR)

* reset hot-spot attribute arrays

XPOS = '' ; YPOS = '' ;* positions

WIDTH = '' ; HEIGHT = '' ;* sizes

RESP = '' ;* responses

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 37 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

HOTSPOTS = 0 ;* no hot-spots now exist

END

• Then, for each new hot-spot, the appropriate attributes are appended to the

arrays, and the hot-spot counter is incremented.

IF UIMS.CAPABLE THEN

XPOS<-1> = COL ; YPOS<-1> = ROW ;* position

WIDTH<-1> = LEN(TITLE)+5 ; HEIGHT<-1> = 1 ;* size

RESP<-1> = OPT.NO:CRET ;* response

HOTSPOTS = HOTSPOTS+1 ;* increment the hot-spot counter

END

The menu item position, text and response are read from the Menu Definition File

when the character-based menu is set up. Note that these can be used directly,

since, although MENUNV is operating in graphics coordinate mode, hot-spots

must always be defined using text coordinates.

Once all the hot-spots have been set up, CreateNVHotspotGroup can be called.

CALL CreateNVHotspotGroup(CONTEXT, ...

 HOTGRPID, ...

 HOTSPOTS, ...

 XPOS, ...

 YPOS, ...

 WIDTH, ...

 HEIGHT, ...

 RESP, ...

 ERR)

HOTGRPID is the numeric identifier for the hot-spot group created.

In MENUNV, each menu displayed requires different hot-spots. A hot-spot group is

therefore set up when the menu is constructed (in the BUILD subroutine), and

created when the menu is displayed.

3.3.9 Error Messages

A feature of UIMS that can be used in NewView applications is the use of message boxes

to display error messages. A message box is created with the CreateMessageBox

subroutine.

• This requires the following parameters:

• The handle of the application context.

• The type of message box required.

• The title of the message box.

• The message to be displayed.

• A list of button names (to replace the default names if required).

• A variable that will be used to return the selected button.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 38 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• A variable in which to return the completion status of the subroutine.

In MENUNV, the ERRSUB subroutine is modified to use a message box if UIMS is

available:

ERRSUB:

 IF UIMS.CAPABLE THEN

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "Error", ...

 ERRMSG, ...

 "", ...

 REPLY, ...

 ERR)

 * Set the focus back to the terminal window

 CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

 END ELSE

 .

 . ;* if UIMS not available display the message below the menu

 .

 END

RETURN

CONTEXT first parameter is the handle of the application context, returned by the SignOn

call.

UIMS.INFO second parameter specifies the message box type. UIMS.INFO specifies a box

with an information icon and a single button. The button is labelled OK unless changed

by providing a title in parameter.

"Error" the next parameter specifies the title of the message box.

ERRMSG the next parameter specifies the message displayed in the box. In MENUNV this

is set up by the calling routine.

The next parameter is a list of titles to use for the buttons. In this case, the parameter is

a null string and the default title (OK) will therefore be used.

REPLY the penultimate parameter is a variable in which the selected button in returned.

The about box has only one button and the value returned will therefore, in this case, be

ignored.

ERR the final parameter must be a variable in which any error code will be returned. A

return value of 0 indicates successful completion.

When the message box has been removed, the focus will normally be passed to the main

App window. This line ensures that control is returned to the application's terminal

window.

3.3.10 Closing the Application

Before leaving a NewView application, there are three tasks that must be carried out:

• You must destroy all contact and hot-spot groups.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 39 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• You must transfer the terminal window back to RealLink.

• You must sign off from UIMS.

The following shows how this is done in the MENUNV application.

IF HOTSPOTS # 0 THEN CALL DestroyNVGroup(CONTEXT, HOTGRPID, ERR)

CALL DestroyNVGroup(CONTEXT, BUT1GRPID, ERR)

CALL DestroyNVGroup(CONTEXT, BUT2GRPID, ERR)

CALL DestroyNVGroup(CONTEXT, MENU1GRPID, ERR)

CALL DestroyNVGroup(CONTEXT, MENU2GRPID, ERR)

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR)

CALL SignOff(CONTEXT, ERR)

IF HOTSPOTS # 0 THEN CALL DestroyNVGroup(CONTEXT, HOTGRPID, ERR): This line

destroys the hot-spot group, if one exists. The DestroyNVGroup subroutine requires the

handle of the application context, the identifier of the group to be destroyed, and a

variable in which to return a completion code. The contact groups are destroyed in the

same way.

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR): This line returns the terminal window to

RealLink. The zero values of the first two parameters specify the RealLink context and

window respectively. The third parameter specifies that the RealLink window should be

displayed.

CALL SignOff(CONTEXT, ERR): This line signs off the application from UIMS. The first

parameter must be the context handle returned by the SignOn call.

3.3.11 Changing the Options Available

There are many reasons why you might want to change the options available within your

NewView application. The most obvious one has already been addressed above; that is,

to allow for running the application on both RealLink and a normal terminal. Two other

possibilities are: offering different options according to the menu displayed; and giving

the application different modes of operation and allowing the user to choose between

them.

Examples of both these possibilities are described below.

3.3.11.1 Enabling and Disabling Resources

When the MENUNV resources are created, the Options pull-down menu and the OK and

Swap buttons are all disabled. Selecting a different menu enables these facilities, while

returning to the main menu disables them again. This is done by adding some additional

code to the outer loop of the main routine, as follows:

 .

 .

 REPEAT ;* end of inner loop

 IF UIMS.CAPABLE THEN GOSUB CHANGE.MENUBAR

REPEAT ;* end of outer loop

 .

 .

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 40 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 .

CHANGE.MENUBAR:

 * if the main menu is displayed

 IF ID = "MAIN" THEN

 * disable button group 2

 CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, FALSE, ERR)

* disable the Options pull-down menu

 CALL SetEnabledNVGroup(CONTEXT, MENU2GRPID, FALSE, ERR)

 CALL SetEnabled(CONTEXT, APPMENUOPTIONS, FALSE, ERR)

 END ELSE

 * otherwise enable button group 2

 CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, TRUE, ERR)

 * and enable the Options pull-down menu

 CALL SetEnabledNVGroup(CONTEXT, MENU2GRPID, TRUE, ERR)

 CALL SetEnabled(CONTEXT, APPMENUOPTIONS, TRUE, ERR)

 END

RETURN

The pull-down menu and button resources will only exist if UIMS is available, so the

CHANGE.MENUBAR subroutine is only called if UIMS.CAPABLE is set.

CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, FALSE, ERR): This line disables the

button group when the main menu is displayed. The second parameter is the identifier of

the button group, and the third the required enabled or disabled state; FALSE disables

the group.

CALL SetEnabledNVGroup(CONTEXT, MENU2GRPID, FALSE, ERR): This line disables the

group of menu items on the Options pull-down menu.

Disabling the menu items would give us a pull-down menu with all its commands

disabled. This line disables the pull-down menu as well. Note that, as the pull-down

menu is not part of a group, we use the SetEnabled subroutine instead of

SetEnabledNVGroup.

CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, TRUE, ERR), CALL

SetEnabledNVGroup(CONTEXT, MENU2GRPID, TRUE, ERR), CALL SetEnabled(CONTEXT,

APPMENUOPTIONS, TRUE, ERR): These lines enable the buttons and the Options pull-

down menu when any other menu is displayed.

3.3.11.2 Changing Existing Resources

When the MENUNV resources are created, the leftmost button on the button bar is titled

'Back', and the one next to it, 'Main'. The second button group contains a button titled

'Swap', which swaps these two buttons, so that the leftmost becomes the Main button

and that next to it, the Back button.

Note

The Options pull-down menu also contains a Swap command. This performs the same function as

the Swap button.

The swap function is made available by adding an additional condition to the CASE

statement in the inner loop, as follows:

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 41 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

.

.

.

BUT1GRP.RESP = BACK.RESP:CRET:AM:MAIN.RESP:CRET

BUT1GRP.RESP2 = MAIN.RESP:CRET:AM:BACK.RESP:CRET

.

.

.

CASE ANS = SWAP.RESP

 IF UIMS.CAPABLE THEN

 GOSUB SWAP.BUTTONS

 END ELSE

 ERRMSG = "Invalid entry : ":ANS

 GOSUB ERRSUB

 END

 ANS = 0

.

.

.

SWAP.BUTTONS:

 IF SWITCH = 0 THEN

 CALL TitledButtonSetTitle(CONTEXT, BUT1, "Main", ERR)

 CALL TitledButtonSetTitle(CONTEXT, BUT2, "Back", ERR)

 CALL ChangeNVContacts(CONTEXT, BUT1GRPID, BUT1, 2,

BUT1GRP.RESP2, ERR)

 SWITCH = 1

 END ELSE

 CALL TitledButtonSetTitle(CONTEXT, BUT2, "Main", ERR)

 CALL TitledButtonSetTitle(CONTEXT, BUT1, "Back", ERR)

 CALL ChangeNVContacts(CONTEXT, BUT1GRPID, BUT1, 2,

BUT1GRP.RESP, ERR)

 SWITCH = 0

 END

RETURN

.

.

.

These two lines define alternative responses for button group 1.

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 42 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This is the response assigned to the Swap button and the Swap pull-down menu item.

The buttons will only exist if UIMS is available, so the SWAP.BUTTONS subroutine is only

called if UIMS.CAPABLE is set. Otherwise, the selection is rejected as invalid.

The control variable for the inner loop is reset, so that we continue with the same menu.

The SWITCH variable is toggled each time the buttons are swapped, so that next time

the command is used, the program knows the current state.

These lines change the titles of the buttons. In each case, the second parameter is the

identifier for the button concerned, and the third, the new title.

These lines change the responses for the buttons in the first group. The

ChangeNVContacts subroutine requires the following parameters:

• The handle of the application context.

• The identifier for the required contact group.

• The handle of the first contact in the group to be changed.

• The number of contacts to be changed.

• A dynamic array containing the new responses for the contacts to be changed.

• A variable in which a completion code can be returned.

3.3.12 Running Utilities

In some cases, applications give the user access to useful utilities or sub-programs. This

can also be done with NewView. MENUNV includes a Calculator command on the Options

pull-down menu, which runs the Windows Calculator program. This is done by adding an

additional condition to the CASE statement in the inner loop, as follows:

.

.

.

CASE ANS = CALC.RESP

 IF UIMS.CAPABLE THEN

 GOSUB RUN.CALC

 END ELSE

 ERRMSG = "Invalid entry : ":ANS

 GOSUB ERRSUB

 END

 ANS = 0

.

.

.

RUN.CALC:

 COMMANDLINE = "calc.exe"

 WINDOWSTATE = EXECUTE.SHOWNORMAL

 CONTROL = EXECUTE.WAIT

 CALL Execute(COMMANDLINE, WINDOWSTATE, CONTROL, ERR)

Section 3: Converting Existing Applications - NewView

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 43 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 IF ERR THEN

 ERRMSG = "Unable to run Calculator : ":ERR

 GOSUB ERRSUB

 END

 CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

RETURN

This is the response assigned to the Calculator item on the Options pull-down menu.

The pull-down menu will only exist if UIMS is available, so the RUN.CALC subroutine is

only called if UIMS.CAPABLE is set. Otherwise, the selection is rejected as invalid.

The control variable for the inner loop is reset, so that we continue with the same menu.

The Execute subroutine is used to run Windows programs on the PC. This parameter is

the command line which runs the Windows Calculator.

This parameter determines the appearance of the Calculator window.

EXECUTE.SHOWNORMAL produces a normal, active window.

This parameter specifies that control should not return to MENUNV until the Calculator is

closed.

If, for any reason, it is not possible to run the Calculator, the ERR variable is returned

containing an error code. If this occurs an error message is displayed.

When the Calculator is closed, the focus will normally be passed to the main App

window. This line ensures that control is returned to the application's terminal window.

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 44 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 4: A Generic UIMS Application
This chapter explains how to create a simple UIMS application called Generic which

demonstrates the principles explained in Chapter 2. It covers the following topics:

• The essential parts of a UIMS application.

• Initialising and creating resources for a UIMS application.

• Writing the message loop.

• Terminating an application.

• The basic steps needed to build a UIMS application.

The Generic application will be used as the basis of all the sample applications in the

chapters later in this manual.

4.1 Introduction

Generic is a standard Microsoft Windows application; that is, it meets the

recommendations for user-interface style given in the IBM System Application

Architecture, Common User Access; Advanced Interface Design Guide. Generic has a

main window, a border, an application menu, and maximise and minimise boxes, but no

other features. The application menu includes a Help menu with an About command,

which, when chosen by the user, displays an About dialog box, describing Generic. The

completed Generic application looks like Figure 4-1 when its About box is displayed.

Figure 4-1. The Generic Application

Generic is important, not for what it can do, but for what it provides: a template for

writing UIMS applications. Building it helps you understand how UIMS applications are

put together and how they work.

4.2 The Components of a UIMS Application

A UIMS application is any application that is specifically written to run with the REALITY

User Interface Management System, and that uses the UIMS Application Programming

Interface (API) to carry out its tasks. A UIMS application has the following basic

components:

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 45 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• An initialisation routine which defines the UIMS constants, sets up various

variables and initialises UIMS.

• A sign on call to create an application context.

• A routine to create the resources needed by the application. This can be done

dynamically, as part of the initialisation procedure, or can simply consist of

loading a pre-defined resource file.

• A message loop to process messages relating to the application.

• A sign off call to destroy the application's resources and terminate the application

4.2.1 Initialisation

The initialisation routine must contain two INCLUDE statements which integrate the

UIMS constant definitions and variable assignments with the application, and a

subroutine call to initialise UIMS.

INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL InitialiseUims

It does not matter which INCLUDE statement appears first, but they must both come

before the InitialiseUims call.

The initialisation routine can also include application-specific initialisation. In the case of

the Generic application, the following line includes constant definitions which are

common to both the DATA/BASIC source code and the resource script (see page 4-5):

INCLUDE GENERIC.H

These definitions must exist as an item in the REALITY file containing the DATA/BASIC

source code, and also be available on the PC when compiling the resource script. The

RealLink LanFTU file transfer facility can be used to copy the information from the host

to the PC or vice versa.

4.2.2 Signing On and Off

Once you have initialised the UIMS for your application, you must sign on in order to

create a application context. The context handle returned when you sign on must be

passed to many of the UIMS subroutines and will also be needed when you sign off.

The SignOn subroutine requires two parameters: a string containing the name of the

application and the name of a variable in which to return the application context. For

example:

CALL SignOn("GENERIC", CONTEXT)

You should then test the context handle to check that the application is properly signed

on.

A context of zero indicates an error.

IF NOT(CONTEXT) THEN

 PRINT "Failed to Signon"

 STOP

END

The last action performed by your UIMS application must always be to sign off. This will

destroy the application's resources and remove them from the screen. The SignOff

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 46 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

subroutine requires two parameters: the application context handle returned when you

signed on, and a variable in which to return the completion status.

CALL SignOff(CONTEXT, ERR)

STOP

4.2.3 Creating Resources

UIMS application resources consist of all the windows, menus and dialogue boxes

presented to the user, together with their contents. These can be created in two ways:

• They can be pre-defined by preparing a resource script and compiling it using the

UIMS Resource Compiler.

• They can be created dynamically during initialisation or as required by the

application.

For the generic application, we will use a resource script. Note, however, that whichever

method you use, you can modify your resources dynamically at any time, as required by

your application.

The resources required by the Generic application consist of a main application window

(AppWindow) and a menu bar with a single menu. The About box will be a message box

with a single OK button; note that message boxes are displayed as they are created and

the About box cannot therefore be defined in advance, but must be created when

needed.

4.2.4 Creating a Resources Script

Resources are defined on the PC in a source file (resource script) which can be produced

by any ASCII text editor (Windows Notepad, for example). The completed source must

then be compiled, using the UIMS Resource Compiler, RLRC.

The following is the resource script for the Generic application:

#include GENERIC.H

APPWINDOW = Win1

{

 TITLE = 'UIMS Generic Application'

 STYLE = CLOSABLE, SIZABLE, MOVABLE, ICONISABLE

 BDRSTYLE = BORDER

 POSITION = 125, 167

 SIZE = 500, 417

 MENUBAR = 0

 {

 MENU = 0

 {

 TITLE = '&Help'

 CHILDREN = '&About Generic...'=HelpAbout

 }

 }

}

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 47 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

#include GENERIC.H: This line inserts the contents of a header file (GENERIC.H) which

contains definitions of the constants used in the resource script and DATA/BASIC

program (see page 4-19).

APPWINDOW = Win1: This line introduces the definition for the application's main App

window. The window is given the identifier Win1, which has been assigned a numeric

value in the header file GENERIC.H.

STYLE = CLOSABLE, SIZABLE, MOVABLE, ICONISABLE: This line specifies the style of

the window. It consists of a combination of a number of style elements. In this case the

elements CLOSABLE, SIZABLE, MOVABLE and ICONISABLE are selected, producing a

window that can be closed, moved, changed in size and minimised to an icon.

BDRSTYLE = BORDER The next line specifies whether or not the window has a border. It

can have the value BORDER as shown above, or NONE to specify no border. Note

however, that the window style controls the type of border and in some cases will

automatically generate a border, even though none is specified. Refer to the UIMS

DATA/BASIC API, Reference Manual for more details. In this case, the setting of the

border style parameter is irrelevant because the SIZABLE style element automatically

generates a double border. The parameter must be included, however, and setting it to

BORDER will serve as a reminder that the window has a border.

POSITION = 125, 167: The next two lines specify the window's initial position on the

screen and its size. These values will be interpreted as character or pixel units,

depending on the current coordinate mode of the application context. If graphics mode is

selected, the coordinates are interpreted as pixel positions on an arbitrary screen 1000

units wide by 1000 units high. When the resources are loaded into an application, the

coordinates are scaled to fit within the actual screen. The Generic application will run in

graphics mode so the position is 125 units in from the left and 167 down, and the

window size is 500 units wide by 417 high.

MENUBAR = 0: This line introduces the definition for the App window's menu bar.

Because the definition is nested within that of the App window, the menu bar will be

automatically attached to the App window. The identifier of zero asks UIMS to assign a

handle to this contact; this can be done in the case of the menu bar, because the

application will not need access to this contact.

MENU = 0: This line introduces the definition for the Help menu. The nested definition

makes the menu a child of the menu bar, and the identifier of zero asks UIMS to assign

a handle to the contact.

TITLE = '&Help': This line defines the title that will appear on the menu bar for the

Help menu. The ampersand (&) specifies that the following letter (H) may be used in

combination with the ALT key to select the menu from the keyboard.

CHILDREN = '&About Generic...'=HelpAbout: This line defines a menu item with the

title About as a child of the Help menu. The menu item will have the identifier HelpAbout

(which has been assigned a numeric value in the header file GENERIC.H), and can be

selected from the menu by pressing the A key.

4.2.5 Loading the Compiled Resources

The compiled resources are loaded into a host UIMS application by calling the

LoadAppRes subroutine. The following line loads the resources for the Generic

application:

CALL LoadAppRes(CONTEXT, "generic.res", ERR)

CONTEXT: This parameter is the handle of the application context.

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 48 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

generic.res: This is the name of the compiled resource file on the PC. If no path is

specified, it is assumed to be in the resource directory specified in the RFW.INI file.

This is a variable in which to return the completion status of the subroutine; a non-zero

value indicates an error. Note, however, that if your application handles errors

asynchronously (as it will, unless changed) the error parameter will always be returned

set to zero, and any error will be reported in a Notify message. See page 4-12 for more

details.

4.2.6 Displaying the Application Window

When the application window is complete, it can be displayed. This is done by adding the

window as a child of the application context by calling the AddChild subroutine.

AddChild requires the following parameters:

• The handle of the application context.

• The handle of the parent object; that is the object to which the child is to be

attached.

• A number indicating where, in any existing list of children, the new child is to be

added. This allows, for instance, a new menu item to be added at the beginning

of a menu rather than at the end.

• The handle of the child to be added.

• A variable in which to return any error code.

The following example attaches the application window to the context of the Generic

application.

CALL AddChild(CONTEXT, CONTEXT, -1 , Win1, ERR)

The list index of -1 adds the new child at the end of any existing list.

If necessary, you can add several children in one operation by calling AddChildren.

Refer to the UIMS DATA/BASIC API, Reference Manual for details of this subroutine.

4.2.7 Hiding the RealLink Window

Once you have displayed the App window, you can hide the RealLink window. This is not

essential, and certainly should not be done until you have finished debugging your

application, since any run time error messages will be displayed in the RealLink window.

To hide the RealLink window, include the following line in your application:

CALL SetTeWindow(0, 0, UIMS.NONE, ERR)

If your application hides the RealLink window, it must re-display it before returning to

TCL. The following line re-displays the RealLink window:

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR)

4.3 The Message Loop

So far, all we have done is initialise our Generic application. The main part of the code

consists of a loop where messages returned from the resources we have created are

processed.

The loop has the following basic structure:

Until (user wants to exit) do

Fetch the next message

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 49 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Process the message

Loop

Control of the loop can be achieved by using a variable which only changes value when

the user selects the Close option from the system menu. For instance:

USER.WANTS.TO.EXIT = FALSE

LOOP UNTIL USER.WANTS.TO.EXIT DO

* fetch message

* if (user has selected Close)

USER.WANTS.TO.EXIT = TRUE

* else

* process message

end if

REPEAT

We will see later how we decide whether or not the user has selected Close.

Information about a UIMS event is obtained by using the GetMsg subroutine to fetch a

message from the message queue. The subroutine requires ten parameters, as follows:

• A number representing how long (in tenths of a second) to wait for a message.

This can allow an application to perform background tasks while waiting for

messages. If zero is specified, GetMsg will not return until a message is received.

• Variables in which to return the handles of the application context, and the

window and contact in which the event occurred.

• A variable in which to return the type of message.

• A variable in which to return a number representing the time the event occurred.

This is only valid for certain types of event.

• Four variables in which to return additional message-specific parameters.

Message processing is best organised as a series of embedded case statements, with

each level switching on a different message parameter. You are recommended to switch

first on the window in which the event occurred, and then on the type of message. You

can then, if necessary, test for the specific contact. It is unlikely that you will need to

test the application context, as very few applications will have more than one.

The following example shows the code used to test messages received by the Generic

application. Note that we are only interested in UIMS.MSG.MENUITEM and

UIMS.MSG.EXIT messages and that all others are ignored, and that in this case the

outer CASE structure is not really necessary, since the application has only one window.

The subroutine HANDLE.WIN1.MENU tests for the selected menu item.

USER.WANTS.TO.EXIT = FALSE
LOOP UNTIL USER.WANTS.TO.EXIT DO

CALL GetMsg(0 , ...
MSG.CONTEXT, ...
MSG.WINDOW, ...
MSG.CONTACT, ...
MSG.TYPE, ...
TIMESTAMP, ...

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 50 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

DATA1, ...
DATA2, ...
DATA3, ...
DATA4)

BEGIN CASE
CASE MSG.WINDOW=Win1

BEGIN CASE

CASE MSG.TYPE=UIMS.MSG.MENUITEM
GOSUB HANDLE.WIN1.MENU

CASE MSG.TYPE=UIMS.MSG.EXIT USER.WANTS.TO.EXIT = TRUE
END CASE

END CASE

REPEAT .
.
.

HANDLE.WIN1.MENUS: BEGIN CASE

CASE MSG.CONTACT = HelpAbout
GOSUB SHOW.ABOUT.BOX

END CASE
RETURN

This parameter signifies that GetMsg should not return until a message is received.

4.4 Displaying an About Box

The About box will consist of a message box with a single OK button. Message boxes are

displayed as they are created and the About box cannot therefore be defined in advance,

but must be created when needed.

A message box is created by calling the CreateMessageBox subroutine. This requires the

following parameters:

• The handle of the application context.

• The type of message box required.

• The title of the message box.

• The message to be displayed.

• A list of button names (to replace the default names if required).

• A variable that will be used to return the selected button.

• A variable in which to return the completion status of the subroutine.

The example which follows creates the About box for the Generic application.

ABOUT.MESSAGE="UIMS Generic Application":CHAR(10):...
 "Version 1.0, 24-Mar-93"

CALL CreateMessageBox(CONTEXT , ...

 UIMS.INFO , ...

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 51 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 "About Generic" , ...

 ABOUT.MESSAGE , ...

 "" , ...

 OK , ...

 ERR)

IF ERR THEN

ERRNO = ERR
ERROR.STRING="Failed to create About message box" GOSUB ERROR.EXIT

END

The first parameter is the handle of the application context, returned by the SignOn call.

The second parameter specifies the message box type. UIMS.INFO specifies a box with

an information icon and a single button. The button is labelled OK unless changed by

providing a title in parameter.

The next parameter specifies the title of the message box.

The next parameter specifies the message displayed in the box.

The next parameter is a list of titles to use for the buttons. In this case, the parameter is

a null string and the default title (OK) will therefore be used.

The penultimate parameter is a variable in which the selected button in returned. The

about box has only one button and the value returned will therefore, in this case, be

ignored.

The final parameter must be a variable in which a completion code can be returned. A

return value of 0 indicates successful completion. Note that because

CreateMessageBox returns a value (the selected button) as well as the completion

code, no notify message will be generated, and this variable must be tested for

successful completion as shown above.

4.5 Handling Errors

By default, UIMS handles errors asynchronously. This means that, where the only value

returned by a UIMS subroutine is a completion code, this will always be returned set to

UIMS.SUCCESS (zero), whether or not an error has occurred. If an error does occur, a

UIMS.MSG.NOTIFY message will be generated, and this must be processed in the

message loop. In the generic application, this is done as follows:

.

.

.

CASE MSG.WINDOW = 0

 BEGIN CASE
*

 CASE MSG.TYPE = UIMS.MSG.NOTIFY

 ERRNO = DATA4

 ERROR.STRING = DATA2
 GOSUB ERROR.EXIT

 END CASE .
.

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 52 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

.
ERROR.EXIT:

 CALL GetErrorText(ERRNO, ERR.TEXT, ERR)
 ERROR.STRING = ERROR.STRING:": ":CHAR(10):ERRNO:" - ":ERR.TEXT

 CALL CreateMessageBox(CONTEXT, ...
 UIMS.INFO, ...
 "Error", ...
 ERROR.STRING, ...
 "", ...
 OK, ...
 ERR)

 USER.WANTS.TO.EXIT = TRUE
RETURN

Notify messages are not associated with a particular window, so the event window

handle is always zero.

There are other types of message that have a zero window-handle, so we must specify

Notify messages.

The error number is returned in the vData4 parameter.

The vData2 parameter returns a string with the name of the subroutine which failed.

The GetErrorText subroutine returns a textual description of the specified error.

Generic treats all UIMS errors as fatal. Setting this variable to TRUE causes the

application to tidy up and return to TCL.

Note

If required, all errors can be handled synchronously. To do this, set UIMS into synchronous mode
as follows.

CALL SetSync(CONTEXT, TRUE, ERR)

The second parameter must be TRUE to select synchronous mode, or FALSE for asynchronous.

4.6 Closing the Application

The user closes the application by selecting the Close option from the system menu.

When this happens, a UIMS.MSG.EXIT message is generated. This must be tested for in

the message loop so that housekeeping operations, such as saving open files, can be

carried out before closing the application. In the Generic application, no housekeeping is

necessary, so exiting is simply a matter of setting the USER.WANTS.TO.EXIT variable

TRUE to cause the application to leave its message loop. The final actions are to re-

display the RealLink window and then to sign off as described on page 4-4.

4.7 The Complete Application

The code for the complete Generic application is shown below. Note that in many cases

the code fragments described above have been incorporated into short subroutines for

ease of expansion and maintenance.

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 53 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.8 The DATA/BASIC

The DATA/BASIC source can be created on the host with a REALITY text editor (ED or

Source SE). Alternatively it can be created on the PC with a text editor such as Windows

Notepad, and then copied onto the host with one of the RealLink file transfer utilities

(LanFTU or HOST-WS).

*

* PROGRAM: GENERIC
*

* PURPOSE: Generic template for UIMS applications
*

* ROUTINES:
* Main routine - initialises the application, loads resources,
* processes messages
* HANDLE.WIN1.MESSAGES - processes messages for Win1
* HANDLE.WIN1.MENU - processes menu item messages for Win1
* SHOW.ABOUT.BOX - displays an 'About' message box
* ERROR.EXIT - processes errors

*

* Definitions required for all UIMS applications
INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

* definitions specific to this application
INCLUDE GENERIC.H

* Sign on to UIMS

CALL InitialiseUims
CALL SignOn("GENERIC", CONTEXT)
IF NOT(CONTEXT) THEN
 PRINT "Failed to Signon"
 STOP

END

* Screen positions and contact sizes will be specified in pixels

CALL SetCoordMode(CONTEXT, UIMS.COORD.GRAPHIC, ERR)

* Load the resources

* The resource file must be on the PC, in the directory specified

* in the RFW.INI file

CALL LoadAppRes(CONTEXT, "generic.res", ERR)

* Add Win1 as a child of the context returned by the SignOn call.

* This has the effect of 'drawing' Win1 and its children.

CALL AddChild(CONTEXT, CONTEXT, -1, Win1, ERR)

* Hide the RealLink window

* This can be done at any time, but it's more reasuring to the

* user if we wait until the application's window has appeared.

CALL SetTeWindow(0, 0, UIMS.NONE, ERR)

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 54 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* Message loop - continue until an EXIT message is received

USER.WANTS.TO.EXIT = FALSE

LOOP UNTIL USER.WANTS.TO.EXIT DO

* Fetch a message

* Note that GetMsg does not return until it has a message.

 CALL GetMsg(0, ...

 MSG.CONTEXT, ...

 MSG.WINDOW, ...

 MSG.CONTACT, ...

 MSG.TYPE, ...

 TIMESTAMP, ...

 DATA1, ...

 DATA2, ...

 DATA3, ...

 DATA4)

 BEGIN CASE ;* Switch on the window in which the event occurred.

*

CASE MSG.WINDOW = Win1

 GOSUB HANDLE.WIN1.MESSAGES

 CASE MSG.WINDOW = 0

 BEGIN CASE

*

 CASE MSG.TYPE = UIMS.MSG.NOTIFY

 ERRNO = DATA4

 ERROR.STRING = DATA2

 GOSUB ERROR.EXIT

 END CASE

 END CASE

REPEAT

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR) ;* re-display the RealLink window

CALL SignOff(CONTEXT, ERR) ;* sign off from UIMS

STOP ;* return to TCL

*

* SUBROUTINE: HANDLE.WIN1.MESSAGES

*

* PURPOSE: Process messages for Win1

*

* COMMENTS:

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 55 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* This routine takes action according to the type of message.

* In this application we only need to process menu item and exit

* messages, but the routine is coded so that it can easily be

* expanded to handle others as well.

*

HANDLE.WIN1.MESSAGES:

 BEGIN CASE ;* switch on the type of message

*

CASE MSG.TYPE = UIMS.MSG.MENUITEM ;* user has selected a menu item

 GOSUB HANDLE.WIN1.MENU

 CASE MSG.TYPE = UIMS.MSG.EXIT ;* close the application

 USER.WANTS.TO.EXIT = TRUE

 END CASE

RETURN

*

* SUBROUTINE: HANDLE.WIN1.MENU

*

* PURPOSE: Process Win1 menu item messages

*

* COMMENTS:

* This routine takes action according to which menu item was

* selected by the user. In this case we only have one menu,

* with just one item, but the routine is coded so that it can

* easily be expanded to handle more.

*

HANDLE.WIN1.MENU:

 BEGIN CASE ;* Switch on the contact in which the event occurred

*

 CASE MSG.CONTACT=HelpAbout ;* About item on Help menu

 GOSUB SHOW.ABOUT.BOX

 END CASE

RETURN

*

* SUBROUTINE: SHOW.ABOUT.BOX

*

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 56 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* PURPOSE: Display a message giving details of the application

*

* COMMENTS:

* The message is displayed in an About box - a UIMS information

* box. This is application modal and will not allow the user to

* do anything other than acknowledge the message.

*

SHOW.ABOUT.BOX:

 * Set up the message

 * CHAR(10) starts a new line

 ABOUT.MESSAGE="UIMS Generic Application":CHAR(10):...

 "Version 1.0, 24-Mar-93"

 * Create a message box with an information icon and an OK button

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "About Generic", ...

 ABOUT.MESSAGE, ...

 "", ...

 OK, ...

 ERR)

 * If no error has occurred, the user must have operated the OK button

 IF ERR THEN

 ERRNO = ERR

 ERROR.STRING = "Failed to create About message box"

 GOSUB ERROR.EXIT

 END

RETURN

*

* ROUTINE: ERROR.EXIT

*

* PURPOSE: Error handling routine

*

* COMMENTS:

* Displays a message giving the type of error and where it

* occurred, and then closes down the application.

*

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 57 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

ERROR.EXIT:

* Get the text associated with the error code

 CALL GetErrorText(ERRNO, ERR.TEXT, ERR)

 ERROR.STRING = ERROR.STRING:": ":CHAR(10):ERRNO:" - ":ERR.TEXT

* Display it in a message box

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "Error", ...

 ERROR.STRING, ...

 "", ...

 OK, ...

 ERR)

 USER.WANTS.TO.EXIT = TRUE ;* close the application

RETURN

END

4.8.1 Header File

The header file contains constant definitions which are common to both the DATA/BASIC

source code and the resource script. These definitions must exist as an item in the

REALITY file containing the source of the Generic application, and also be available on

the PC when compiling the resource script. The RealLink LanFTU file transfer facility can

be used to copy the information from the host to the PC or vice versa.

The header file for Generic must contain the following:

*
* GENERIC.H - Constant definitions for Generic application
*

EQUATE Win1 TO 10
EQUATE HelpAbout TO 20

4.8.2 Resource Script

The resource script must be created on the PC and given a name with the extension

'.UCL'. It contains the definitions of the main App window, its menu bar, and the Help

menu and About menu item:

*** *
* GENERIC.UCL - Resource file for GENERIC program
*

#include GENERIC.H

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 58 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

APPWINDOW = Win1
{
 TITLE = 'UIMS Generic Application'
 STYLE = CLOSABLE, SIZABLE, MOVABLE, ICONISABLE
 BDRSTYLE = BORDER
 POSITION = 125, 167
 SIZE = 500, 417
 MENUBAR = 0
 {
 MENU = 0
 {
 TITLE = '&Help'
 CHILDREN = '&About Generic...'=HelpAbout
 }
 }

}

4.8.3 Compiling the Generic Application

When you have created all the source files, you must carry out the following before you

can run the Generic application:

Compile the resource script using the RLRC resource compiler on the PC. Make sure that

the header file, GENERIC.H, is available on the PC; if necessary, copy it to the PC from

the host.

RLRC path\GENERIC.UCL

Copy the resulting resource file (GENERIC.RES) to the resource directory specified in

RFW.INI.

Compile the DATA/BASIC source code on the host. Make sure that your source file

includes an item containing the Generic header information (GENERIC.H); if necessary,

copy it to the host from the PC.

BASIC FileName GENERIC

Catalog the compiled program:

CATALOG FileName GENERIC

You can now run the Generic program by entering:

GENERIC

4.9 Using Generic as a Template

Generic provides the essentials that make it an appropriate starting point for your UIMS

applications. It conforms to the appearance standards given in the IBM System Application

Architecture, Common User Interface: Advanced Interface Design Guide. The About Generic…

command on the Help menu is included, and this displays an About dialog box, an

application standard.

You can use Generic and the other examples in this manual as templates to build your

own applications. To do this, copy and rename the sources of an existing application;

then change any references to other source files within the copied files and insert new

code. All sample applications in this manual have been created by inserting new code

into copies of Generic's source files.

The following procedure explains how to use Generic as a template and adapt its source

files to a new application:

Section 4: A Generic UIMS Application

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 59 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Generic provides the essentials that make it an appropriate starting point for your UIMS

applications. It conforms to the appearance standards given in the IBM System

Application Architecture, Common User Interface: Advanced Interface Design Guide. The

About Generic… command on the Help menu is included, and this displays an About

dialog box, an application standard.

You can use Generic and the other examples in this manual as templates to build your

own applications. To do this, copy and rename the sources of an existing application;

then change any references to other source files within the copied files and insert new

code. All sample applications in this manual have been created by inserting new code

into copies of Generic's source files.

The following procedure explains how to use Generic as a template and adapt its source

files to a new application:

1. Choose a name for your new application.

2. Copy the following REALITY file items, renaming them to match that of your new

application: GENERIC, GENERIC.H.

3. Copy the following PC files, renaming them to match that of your new application:

GENERIC.UCL, GENERIC.H.

Note

The same header file should be used on both the host and the PC. You should create

and edit this file on one or the other and then use the RealLink file transfer utilities to
copy it as required.

4. Use a text editor to change the source code of your new application, replacing

any references to Generic with the name of your new application. In particular,

change the following:

• The header file name: GENERIC.H.

• The application name in the SignOn call.

• The resource file name: GENERIC.RES.

• The title and message in the About box.

5. Use a text editor to change the resource script of your new application, replacing

any references to Generic with the name of your new application. In particular,

change the following:

• The header file name: GENERIC.H.

• The title of the App window: 'UIMS Generic Application'.

• The name of the HelpAbout menu item: 'About Generic...'.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 60 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 5: Windows
This chapter covers the following topics:

• Types of Window

• Creating a Window.

• Controlling the appearance of a Window.

• Positioning a Window on the screen.

• Output to a Window.

It also explains how to create a simple application, Output, that illustrates some of these

concepts.

5.1 Types of Window

5.1.1 App and d Windows

UIMS provides two main types of window: App (application) and Child windows.

• An App window can be displayed anywhere on the screen. It can therefore only

have the application context as its parent. The main or root window of an

application is always an App Window. An App window can have a menu bar with

menus containing the application's commands.

• A Child window is restricted to the client area of its parent. It cannot therefore

have the application context as its parent, but it can be the child of an App

window or another Child window. It can even be the child of a dialog box or an

inclusive group. A Child window cannot have a menu bar.

In all other respects, App and Child windows are identical.

5.1.2 Other types of Window

There are various other types of window; dialog boxes and inclusive groups for example.

These do not have the same range of features as App and Child windows and are

therefore described in the appropriate sections later in this manual.

5.2 Creating a Window

You can create a window either in your resource script, or by calling the appropriate

create subroutine: CreateAppWin or CreateChildWin. You must provide the following

information:

• The handle of the application context.

• A number by which the newly created window will be identified.

• A window title (if required).

• The position (relative to its parent) and size of the window. Note that the position

will be that of the top left-hand corner of the complete window, including (if

appropriate) the border, title bar, menu bar and scroll bars.

• The required styles for the window and its border.

• The handle of the window's parent.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 61 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• A variable in which to return the handle of the newly created window. The handle

will normally be the same as the specified identifying number; however, if the

identifier is zero, UIMS will assign a handle to the window.

The following examples both create an App window which has a title bar, a menu bar

with a Help menu containing an About command, a system menu, and vertical and

horizontal scroll bars. The window can be maximised, minimised, moved and changed in

size.

In the resource script:

EQUATE Win1 TO 10

EQUATE Win1_Menus TO 11 EQUATE Win1_Help TO 20

EQUATE Help_About TO 21

APPWINDOW = Win1

{

TITLE = 'Window Example'

STYLE = CLOSEABLE, SIZABLE, MOVABLE, ICONISABLE, VSCROLL,

 HSCROLL

BDRSTYLE = BORDER

SIZE = 300, 150

POSITION = 30, 20

MENUBAR = Win1_Menus

{

MENU = Win1_Help

{

TITLE = '&Help'

CHILDREN = '&About'=Help_About

}

}

}

APPWINDOW = Win1: In this case, this has been given the identifier Win1, which is

defined as having the value 10 at the beginning of the example.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 62 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

TITLE = 'Window Example': This line defines the title of the window. The text between

the single quotes will appear in the title bar of the window.

STYLE = CLOSEABLE, SIZABLE, MOVABLE, ICONISABLE, VSCROLL, HSCROLL: This line

specifies the style of the window. In this case the window will have a system menu,

maximise and minimise boxes, and vertical and horizontal scroll bars. It will also be

possible to close, move and change the size of the window.

BDRSTYLE = BORDER: The style of the window border is BORDER, giving the window a

single border. Note, however, that in this case the SIZABLE window style makes the

border double so that the size of the window can be changed with the mouse.

SIZE = 300, 150 POSITION = 30, 20: The next two lines specify the initial size of the

window and its position relative to its parent; in this case the window will be 500

coordinate units wide by 300 high and positioned 30 coordinate units across and 20

down. As this is an App window, the position is relative to the top left-hand corner of the

screen. Note that the values given for the size and position assume that the application

will be running in graphics mode (see page 5-10).

MENUBAR = Win1_Menus : The remainder of the example consists of definitions for the

menu bar and the help menu. These are described in detail in Chapter 8.

While your application is running:

EQUATE Win1 TO 10
EQUATE Win1.Mbar TO 11
EQUATE Help.Menu TO 20
EQUATE Help.About TO 21

TITLE = "Window Example"
STYLE = UIMS.WIN.CLOSEABLE + UIMS.WIN.SIZABLE + UIMS.WIN.MOVABLE ... +

UIMS.WIN.ICONISABLE + UIMS.WIN.VSCROLL + UIMS.WIN.HSCROLL

BDRSTYLE = UIMS_BORDER

CALL CreateAppWin(CONTEXT , Win1 , TITLE, 30 , 20 , 500 , ...

 300 , STYLE, BORDERSTYLE, CONTEXT , WIN1)

CALL CreateMenuBar(CONTEXT, Win1.Mbar, 0, WIN1.MBAR)

CALL CreatePullDownMenu(CONTEXT, Help.Menu, "&Help", WIN1.MBAR, ...
 HELP.MENU)
CALL CreateMenuItem(CONTEXT, Help.About, "&About", HELP.MENU, ...
 HELP.ABOUT)
CALL AppWinSetMenuBar(CONTEXT, WIN1, WIN1.MBAR, ERR)

TITLE = "Window Example"

STYLE = UIMS.WIN.CLOSEABLE + UIMS.WIN.SIZABLE + UIMS.WIN.MOVABLE ... +

UIMS.WIN.ICONISABLE + UIMS.WIN.VSCROLL + UIMS.WIN.HSCROLL

BDRSTYLE = UIMS_BORDER

The above lines define variables containing the window title, style and border style,

which will be used in the call to CreateAppWin.

CONTEXT: This is a variable containing the handle of the application context, obtained by

a call to the SignOn subroutine.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 63 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Win1: The second parameter to CreateAppWin is the identifier to be assigned to the

contact. In this case, this has been given the identifier Win1, which is defined as having

the value 10 at the beginning of the example.

30 , 20: These two parameters specify the position of the window relative to its parent:

30 coordinate units across and 20 down. In this case the parent is the application

context, so the position is relative to the screen.

500, 300: These two parameters specify the size of the window; in this case 500

coordinate units wide by 300 high.

CONTEXT: This parameter must be the handle of the window's parent; in this case the

application context.

:WIN1 This parameter is a variable in which to return the handle of the newly created

window.

CALL CreateMenuBar(CONTEXT, Win1.Mbar, 0, WIN1.MBAR): The rest of the example

creates a menu bar with a Help menu containing an About command. These are then

attached to the AppWindow contact with AppWinSetMenuBar. Menu bars and menus

are described in detail in Chapter 8.

5.2.1 Enabling and Disabling a Window

If a particular window is not appropriate in the current state of your application you can

disable it. Disabled items do not respond to mouse clicks or keyboard selection.

To disable a window, call the SetEnabled subroutine and specify FALSE as the required

state. For example:

CALL SetEnabled(Context.Handle, Window.Handle, FALSE, ERR)

To re-enable a disabled window, simply call SetEnabled with the second parameter set

to TRUE:

CALL SetEnabled(Context.Handle, Window.Handle, TRUE, ERR)

If you prefer, you can use the Disable and Enable subroutines instead of SetEnabled.

The GetState subroutine returns whether a contact is enabled or disabled, and also

whether it is mappable or unmappable.

5.2.2 Making a Window Visible

Many of the windows and other contacts that you create in your UIMS application will

only be needed when you select particular commands. There are three ways in which

you can control when a contact appears:

• You could create the contact only when it is needed and destroy it again when

you have finished.

• You could create the contact as an orphan and attach it to its parent window

when needed. When you have finished with the contact you would remove it from

its parent's list of children.

• You could attach the contact to its parent, but set it unmappable (by calling the

SetMapped subroutine) so that it will not normally be displayed. When you need

the contact you simply change it to mappable, changing it back again when you

have finished. Note that as alternatives to SetMapped, you could use Map and

UnMap.

The last of these is the simplest and quickest method to use.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 64 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The GetState subroutine returns whether a contact is mappable or unmappable, and

also whether it is enabled or disabled.

5.2.3 Destroying a Window

You can destroy a window by calling the Destroy subroutine. This deletes any internal

record of the window and removes it from its parent's client area. The following example

shows how this is done:

CALL Destroy(Context.Handle, Window.Handle, ERR)

Note

1. UIMS automatically destroys a window when its parent is destroyed.
2. If you destroy an application's root window this will have the effect of making the

application invisible.

5.3 Controlling the Appearance of a Window

App and Child windows are the most complex objects which are available in UIMS. They

each have over twenty different attributes, the most commonly used of which are

described below.

5.3.1 Window Style

The style of a window is made up of a number of different style elements. As shown in

the examples in the previous section, the style elements are added together to make up

the style you require.

If you require, you can change the style of a window while your application is running,

by calling AppWinSetStyle or ChildWinSetStyle. If you need to find out the current

style of a window, you can call AppWinGetStyle or ChildWinGetStyle as appropriate.

The following example changes the style of a Child window by adding the ability to

minimise it.

CALL ChildWinGetStyle(CONTEXT , CHILDWIN , STYLE)

CALL BitTest(STYLE, UIMS.WIN.ICONISABLE, ICONISABLE)

IF NOT(ICONISABLE) THEN
STYLE = STYLE + UIMS.WIN.ICONISABLE

CALL ChildWinSetStyle(CONTEXT , CHILDWIN , STYLE, ERR)

END

This parameter is the handle of the application context.

This parameter is the handle of the window.

This parameter is a variable in which the current window style will be returned.

This line determines whether the window can already be minimised. If not, the minimise

style element (UIMS.WIN.ICONISABLE) is added to the current style. The style of the

window is then changed using ChildWinSetStyle.

This parameter is a variable in which a completion code will be returned.

5.3.1.1 Border Style

Another way in which you can change the appearance of a window is by specifying

whether or not it has a border. This is set when the window is created, but can be

changed with SetBorderStyle. You can find out the current style of a window's border

by calling GetBorderStyle.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 65 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

However, many of the window styles generate a border, overriding the border style setting. For
example, a window with style UIMS.WIN.SIZABLE always has a double border, so that the user
can change its size with the mouse.

5.3.2 Window Title

In many applications you will want to tell the user the current status by changing the

window title. For instance, in a word processor you might display the name of the file

which is being edited. You can change the title of an App window with AppWinSetTitle;

a Child window cannot have a title.

5.3.3 Menu Bar

If you want your App window to have a menu bar, you must create this and its menus

separately (see Chapter 8 for details). Once the menu bar has been created it can be

attached to the window by calling AppWinSetMenuBar. There are also subroutines

which allow you to remove the menu bar and to obtain the handle of the currently

attached menu bar.

Note

You cannot attach a menu bar to a Child window.

5.3.4 Scroll Bars

In many cases you will need to give the user access to much more information than can

be displayed in the client area of even a maximised window. A word processor, for

example, will allow documents many pages long to be edited, but the client area of the

application window can normally show only half a page at the most. UIMS allows you to

add vertical and horizontal scroll bars to a window so that the user can choose which

portion of the information will be displayed.

Scroll bars form part of the window style. They can be added to a window when it is

created, by specifying the HSCROLL (UIMS.WIN.HSCROLL) and VSCROLL

(UIMS.WIN.VSCROLL) style elements. These style elements can also be added or

removed at any time by changing the window style with AppWinSetStyle or

ChildWinSetStyle.

Scroll bars attached to a window are used in a similar way to scroll bar controls

(described in Chapter 9). You will need to set values for the maximum and minimum

positions, and the line and page movement increments. To do this, use

AppWinGetHScroll, AppWinGetVScroll, ChildWinGetHScroll or

ChildWinGetVScroll, as appropriate, to obtain the handle of the required scroll bar;

you can then call ScrollBarSetRange and ScrollBarSetInc.

5.3.5 Setting Colours

The foreground and background colours of a window's client area can be set by changing

the Drawrule object attached to the window.

Note

Any object to which a Drawrule can be attached initially inherits this from its parent. If you

want to change the colours of a window without affecting its parent, you must create a new
Drawrule to use.

Drawrules are described in more detail on page 5-14.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 66 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.4 Positioning a Window on the Screen

When you create an App or Child window, you must specify its size and its position

relative to its parent. Once created, it can be moved and resized as required.

5.4.1 The Coordinate System

UIMS has two screen coordinate systems: text and graphics. In text mode you specify

the positions and sizes of windows and other contacts as a number of characters; for

example, in text mode a window 76 coordinate units wide by 23 high will occupy most of

the screen. Graphics mode gives you much finer control, since positions and sizes are

specified in pixels; a graphics mode window the same size as in the previous example

might be 608 coordinate units wide by 299 high.

Unless changed, UIMS applications use text mode. If you want to use graphics mode,

call the SetCoordMode subroutine. You can use GetCoordMode to find out the current

coordinate mode, while other subroutines allow you to find out the size of the screen in

pixels, and the width and height in pixels of a screen font.

Note that in some cases you will not be able to use text mode – for instance, a standard

width scroll bar is between two and three characters wide; if you want to create a

standard width scroll bar contact, you must use graphics mode (refer to Chapter 9 for

details).

All examples given in this manual assume that the application is using graphics mode.

In both coordinate modes, the top, left-hand corner of a contact's client area is position

0,0 (parent-relative coordinates). Note, however, that when positioning an App window

(which has the application context as its parent) this origin is the top left-hand corner of

the screen (screen-relative coordinates).

5.4.2 Moving and Sizing a Window

To move a window within its parent, call the Move subroutine. This positions the top

lefthand corner of the window relative to the top left-hand corner of its parent's client

area. The following example illustrates this.

CALL Move(Context.Handle, Window.Handle, 35, 72, ERR)

This moves the specified window to a position 35 coordinate units to the left of, and 72

coordinate units down from the top left-hand corner of its parent's client area.

Note

UIMS automatically moves any children when it moves the parent window.

You can find out the position of a window relative to its parent by calling the

GetPosition subroutine.

If you want to change the size of a window, call the Resize subroutine. The following

example makes a window 350 coordinate units wide by 220 units high.

CALL Resize(Context.Handle, Window.Handle, 350, 220, ERR)

Note

The size you specify is that of the complete window, including the border, title bar, etc.

5.4.3 Maximising and Minimising a Window

App windows with the styles UIMS.WIN.SIZABLE and UIMS.WIN.ICONISABLE can

respectively be maximised and minimised by the user. There are also UIMS subroutines

that allow you to perform these operations from within your application.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 67 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The AppWinSetSizing subroutine allows you to maximise and minimise an App window,

and also to restore it to its previous size. Alternatively, you can use the separate

maximise, minimise and restore subroutines (AppWinMaximize, AppWinMinimize and

AppWinRestore).

5.4.4 Controlling Updates

Normally, any changes that affect the appearance of a window will take place

immediately. Under some circumstances, however, you might prefer to make several

changes and then display the combined result, without letting the user see the

intermediate stages.

Updates can be controlled by the SetUpdate and Draw subroutines. There are two

update modes: UIMS.IMMEDIATE, where updates take place immediately; and

UIMS.NONE, where the window must be explicitly updated by calling the Draw

subroutine.

GetUpdate returns the current update mode.

5.5 Output to a Window

There are two ways in which text and graphics can be displayed in the client area of a

window: contacts can be created and made children of the window, or the UIMS drawing

subroutines can be used to draw images directly on the client area. Each of these has its

advantages and disadvantages.

• Contacts displayed within the client area are managed by UIMS and are

automatically redrawn when necessary (for instance, if the window is minimised

and restored). They are best used for static images – ones that are a constant

feature of the window, and which do not move if the Window is resized or

scrolled.

• Images drawn with the drawing subroutines must be managed by the application.

For example, if the window is minimised and then restored, the application must

redraw any images that were displayed in the Window immediately before it was

minimised. This type of image is best used for information that is constantly

changing – for the text of a document, for example, or for an image which is

being edited in a graphics application.

5.5.1 Update Messages

UIMS tells the application that the client area of a window requires redrawing by

generating an Update message. This typically occurs when the window is displayed, or

when another application which is obscuring part or all of the window is moved. The

message parameters indicate the position and size of the area that needs to be redrawn.

Note that if this area is irregularly shaped (L-shaped, for instance), it is divided up into a

number of rectangles and an Update message is generated for each.

The following example indicates the way in which update messages should be handled.

.

.

.

CALL GetMsg(0, MSG.CONTEXT, MSG.WINDOW, MSG.CONTACT, MSG.TYPE, ...

 TIMESTAMP, DATA1, DATA2, DATA3, DATA4)

BEGIN CASE ;* Switch on the window in which the event occurred.

*

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 68 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CASE MSG.WINDOW=Win1

 BEGIN CASE ;* Now switch on the type of message

*

 CASE MSG.TYPE=UIMS.MSG.UPDATE

 GOSUB HANDLE.WIN1.UPDATES

.

.

.

The four GetMsg data parameters return the size and position of the region to be

redrawn, relative to the top left-hand corner of the window's client area.

Note

The default UIMS event mask disables UIMS.MSG.UPDATE messages. If your application needs
to process these messages, they can be enabled with the SetEventMask subroutine, as shown
below:

CALL GetEventMask(CONTEXT, CONTEXT, EVENTMASK)

CALL BitTest(EVENTMASK, UIMS.EM.UPDATE, ENABLED)
IF NOT(ENABLED) THEN

 EVENTMASK = EVENTMASK + UIMS.EM.UPDATE

 CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)
END

The GetEventMask subroutine returns the current event mask for a specified contact. In this
case, the second parameter specifies the application context. The third parameter is a variable in

which the event mask is returned.

The BitTest subroutine allows you to test an individual element in the mask. The third

parameter is a variable in which the state of the specified element is returned.

If update messages are not already enabled, they are added to the event mask and the new

event mask is set by calling SetEventMask. As in the case of GetEventMask, the second
parameter specifies the application context.

5.5.2 Using a Text Canvas

Under some circumstances, UIMS can reduce the amount of work required to keep the

client area updated. A special style is available for App and Child windows which creates

a text canvas, in which text drawn using the DrawTextString subroutine is stored.

Whenever the client area needs redrawing, UIMS uses the stored information to restore

the previously displayed text.

Note

However, although a text canvas can reduce the application's work load, it has certain

limitations.

• The text canvas stores only the text strings and their positions within the client

area. The appearance of the text is determined by the Font object attached to the

window; if the font is changed, the appearance of the text will change when it is

next redrawn.

• Graphics shapes are not stored in the text canvas. The application must ensure

that these are redrawn when the window is updated.

A text canvas is created by including the style UIMS.WIN.TEXT when creating the

window. Once created, the canvas remains attached until the window is destroyed.

5.5.3 Drawing Tools

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 69 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS provides a number of objects which affect the appearance of text and graphics

displayed in a window.

Pen This controls the colour and width of lines drawn using the

Line and Rectangle contacts, and the DrawLine and

DrawRect subroutines.

Brush This determines the way in which areas of a window client

area are filled. It controls the colour used to fill rectangles

drawn using the Rectangle contact and the DrawRect

subroutine.

Font This determines the characteristics of the text font used

when writing characters on a window's client area. It

controls the typeface used, and the style (bold, italic, etc.)

and size of the characters.

Drawrule This encapsulates the methods for drawing text and

graphics in a window's client area. It determines which Pen,

Brush and Font objects are used, and also controls the

colours used for the window background and for text

displayed in the window, and the way in which new text and

graphics combine with that already displayed.

When a new contact is created and attached to a parent object, it is given the same

Drawrule as its parent. UIMS provides default Drawrule, Pen, Brush and Font objects,

which are inherited by contacts which have the application context as their parent. If you

want a particular contact to have a different appearance, you can create a new Drawrule

(and Pen, Brush and Font if required) and attach it to the contact concerned with the

SetDrawrule subroutine. For example:

* Create a new Drawrule, using the default colours

FOREGROUND = UIMS.DEFAULT

BACKGROUND = UIMS.DEFAULT

TEXTMODE = UIMS.TEXT.OPAQUE

DRAWMODE = UIMS.DRAW.COPY

CALL CreateDrawrule(CONTEXT, NewDRule, FOREGROUND, BACKGROUND, ...

 DRAWMODE, TEXTMODE, NEWDRULE)

* Create a red Pen, 3 pixels wide

COLOUR = UIMS.RED

WIDTH = 3

RESERVED = 0

CALL CreateDrawPen(CONTEXT, NewPen, COLOUR, WIDTH, RESERVED, NEWPEN)

* Attach the new Pen to the new Drawrule

CALL DrawruleSetPen(CONTEXT, NewDRule, NewPen, ERR)

* Now attach the new Drawrule to the required contact

CALL SetDrawrule(CONTEXT, CONTACT, NewDRule, ERR)

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 70 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.5.4 Drawing and Writing

UIMS provides only a limited range of drawing and writing functions, allowing you to

draw straight lines, rectangles and text.

You draw straight lines with the DrawLine subroutine. The colour and width of the line

are determined by the Pen object attached to the window's Drawrule. The following

example draws a line from the point (10, 90) to the point (360, 90).

CALL DrawLine(CONTEXT, CONTACT, 10, 90, 360, 90, 0 , ERR)

0 parameter is for future use. It must be set to a numeric value, but its value will be

ignored.

The DrawRect subroutine allows you to draw rectangles. The width and colour of the

border is determined by the Pen object attached to the window's Drawrule, while the

colour of the interior is set by the selected Brush object. The following example draws a

rectangle which has its top-left and bottom-right corners at positions (10, 30) and (60,

80) respectively.

CALL DrawRect(CONTEXT, CONTACT, 10, 30, 60, 80, 0 , ERR)

0 parameter is for future use. It must be set to a numeric value, but its value will be

ignored.

You can display text by calling the DrawTextString subroutine. The Font object attached

to the window's Drawrule determines the style of the text, while the Drawrule itself

specifies its colour. The following example displays the string "Some Sample Text" at the

point (1, 1).

CALL DrawTextString(CONTEXT, CONTACT, "Some Sample Text", 1, 1, ERR)

5.5.5 Controlling the Client Area

In many cases, the text and graphics displayed within a window will need to change as

the user operates the application. UIMS provides two subroutines, Scroll and Erase, to

help you control the appearance of the client area.

The Scroll subroutine allows you to move the contents of the client area relative to its

containing window. You can scroll up, down, left or right, and can specify whether all or

only part of the client area should be scrolled. The following example scrolls the whole of

the client area up by 13 pixels. Note that text and graphics within 13 pixels of the top of

the client area will be lost and that the bottom 13 pixels of the client area will be erased;

that is, filled with the background colour specified by the window's Drawrule.

Note

In addition to scrolling the window, the Scroll subroutine generates an update message,
specifying the erased region of the client area. Any images to be scrolled into the client area

should be displayed in response to this message.

CALL Scroll(CONTEXT, WINDOW, 0 , 13 , 0 , 0 , 0 , 0 , ERR)

This parameter specifies the amount of horizontal movement. Since, in this case, we are

scrolling up, it is set to zero.

This parameter specifies the amount of vertical movement – 13 pixels.

These four parameters specify the region of the client area to be scrolled. In this case,

all are set to zero, specifying the whole of the client area. If only part of the client area

was to be scrolled, these would define the left, top, right and bottom edges of the

scrolled region.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 71 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The Erase subroutine allows you to erase all or part of the client area, filling the erased

area with the background colour specified by the window's Drawrule. The following

example erases a rectangle which has its top-left and bottom-right corners at positions

(25, 15) and (75, 90) respectively.

CALL Erase(CONTEXT, CONTACT, 25, 15, 75, 90, ERR)

5.6 An Example Application: Output

The example application, Output, illustrates how to use the UIMS.MSG.UPDATE

message to restore the client area, and demonstrates the differences between drawing

directly into the client area, and using a text canvas and graphics objects. It does this by

creating two Child windows, one maintained by UIMS and the other by the application.

Output is an extension of the Generic application described in Chapter 4. To create the

Output application, copy and rename the source files of the Generic application and then

make the following modifications.

1. Add new constant definitions.

2. Define ChildWindow, Drawrule, Brush and Pen resources.

3. Enable update and create messages.

4. Add a UIMS.MSG.CREATE case to the message loop.

5. Add a UIMS.MSG.UPDATE case to the message loop.

6. Add a UIMS.MSG.DESTROY case to the message loop.

7. Modify the UIMS.MSG.EXIT case.

8. Modify the ERROR.EXIT subroutine.

9. Compile the resource file and the DATA/BASIC program.

5.6.1 Add New Constant Definitions

You will need identifiers for the additional resources defined in the resource script. These

must be available to both the resource script and the DATA/BASIC source, so add the

following to your header file.

EQUATE Child1 TO 30

EQUATE Child2 TO 40

EQUATE BlueRect TO 50

EQUATE YellowLine TO 60

EQUATE Drawrule1 TO 100 EQUATE RedBrush TO 110

EQUATE BlueBrush TO 111

EQUATE GreenPen TO 120

EQUATE YellowPen TO 121

Ensure that the new header file is available on both the host and the PC.

5.6.2 Define New Resources

You must create the drawing tools to be used in Output's client area before any drawing

is carried out. Since you need to create these tools only once, the best place to do this is

in the resource script. Add the following lines to the file OUTPUT.UCL before the

definition of Win1:

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 72 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

DRAWRULE = Drawrule1 /* used by the graphic objects */
{
 FOREGROUND = BLACK
 BACKGROUND = WHITE
 DRAWMODE = COPY
 TEXTMODE = OPAQUE
 BRUSH = BlueBrush
 {
 STYLE = SOLID
 FOREGROUND = BLUE
 }
 PEN = YellowPen {
 STYLE = SOLID
 FOREGROUND = YELLOW
 WIDTH = 3
 }
}

BRUSH = RedBrush /* used for rectangle in Child2 */
{
 STYLE = SOLID
 FOREGROUND = RED
}

PEN = GreenPen /* used for diaglonal line in Child2 */
{
 STYLE = SOLID
 FOREGROUND = GREEN
 WIDTH = 3
}

CHILDWINDOW = Child1 /* the left-hand half of Win1 */
{
 BDRSTYLE = NONE
 POSITION = 0, 0
 SIZE = 450, 500
STYLE = TEXT /* give it a text canvas */

 RECTANGLE = BlueRect /* rectangle object */
 {
 STYLE = NONE
 STARTPOS = 0, 0 /* arbitrary initial position */
 ENDPOS = 100, 100 /* arbitrary initial size */
 DRAWRULE = Drawrule1 /* specifies the blue brush */
 MAPPED = FALSE /* hide it until needed */
 }

 LINE = YellowLine /* line object */
 {
 ENDSTYLE = NONE
 STARTPOS = 0, 0 /* arbitrary initial position */
 ENDPOS = 100, 100 /* arbitrary initial size */
 DRAWRULE = Drawrule1 /* specifies the yellow pen */
 MAPPED = FALSE /* hide it until needed */
 }
}

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 73 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CHILDWINDOW = Child2 /* the right-hand half of Win1 */
{
 BDRSTYLE = NONE
 POSITION = 450, 0
 SIZE = 450, 500
 STYLE = NONE /* no text canvas */
}

Then add the following line to the definition of Win1:

CHILDREN = Child1, Child2

5.6.3 Enable Update Messages

When you start your application update messages will be disabled. To enable them, add

the following code to the DATA/BASIC source after signing on to UIMS, but before

loading the resources.

CALL GetEventMask(CONTEXT, CONTEXT, EVENTMASK)
CALL BitTest(EVENTMASK, UIMS.EM.UPDATE, ENABLED)
IF NOT(ENABLED) THEN EVENTMASK = EVENTMASK + UIMS.EM.UPDATE

CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)

5.6.4 Enable Create Messages

Create messages are not controlled through the normal event mask mechanism, but

must be separately enabled by calling the SetSecondaryEventMask subroutine. Add

the following line immediately after the code which enables Update messages:

CALL SetSecondaryEventMask(CONTEXT, EVENTMASK, TRUE, FALSE, ERR)

Note

This also enables UIMS.MSG.DESTROY messages.

5.6.5 Add the Create Case

The UIMS.MSG.CREATE message informs your application that an App window has

been created. In the Output application, this will be used to draw text and display

objects in the left-hand Child window, Child1.

To handle the UIMS.MSG.CREATE message, add the following CASE statement to the

HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.CREATE
 GOSUB HANDLE.WIN1.CREATE

The following is the HANDLE.WIN1.CREATE subroutine called by this CASE statement.

This can be added to the source code at any convenient point.

*
* SUBROUTINE: HANDLE.WIN1.CREATE
*
* PURPOSE: Process the Win1 create message
*
* COMMENTS:
* Draws some text in the default font and then positions,
* sizes and maps two graphics contacts: a blue rectangle and
* a diagonal yellow line. The Rectangle and Line contacts are* are loaded from

the resource file.

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 74 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

*

HANDLE.WIN1.CREATE:
* Get the size characteristics of the font.
* This will be used to determine the vertical spacing of the * text in the

window.
* The window's font is that attached to the window's Drawrule.
 CALL GetDrawrule(CONTEXT, Child1, DEFAULT.DRAWRULE)
 CALL DrawruleGetFont(CONTEXT, DEFAULT.DRAWRULE, DEFAULT.FONT) CALL

FontGetMetrics(CONTEXT, ...
 DEFAULT.FONT, ...
 HEIGHT, ...
 ASCENT, ...
 DESCENT, ...
 LEADING, ...
 LCWIDTH, ...
 UCWIDTH, ...
 MAXWIDTH, ...
 ERR)

* The vertical spacing will be standard height (HEIGHT) of the
* selected font, plus the standard amount of spacing between * adjacent lines

(LEADING).

 VSPACE = HEIGHT + LEADING

* Initialise the drawing position to one line from the top of
* the screen and one standard upper case character from the * left-hand edge.

 HPOS = UCWIDTH
 VPOS = VSPACE

* Send characters to the screen. After displaying each line of
* text, advance the vertical position by the vertical spacing * determined above,

ready for the next line of text.

 TEXT = "These characters are drawn onto the Text"
 CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)
 VPOS = VPOS + VSPACE

 TEXT = "Canvas and UIMS therefore manages"
 CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)
 VPOS = VPOS + VSPACE

 TEXT = "updating the display. The yellow line"
 CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)
 VPOS = VPOS + VSPACE

 TEXT = "and blue rectangle below are UIMS"
 CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR) VPOS = VPOS +

VSPACE

 TEXT = "objects, and redraw themselves when"
 CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)
 VPOS = VPOS + VSPACE

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 75 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 TEXT = "necessary."
 CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)
 VPOS = VPOS + VSPACE

* Move print position 5 characters to the right and 2 lines

down
 HPOS = HPOS + (5 * UCWIDTH)
 VPOS = VPOS + (2 * VSPACE)

* Blue rectangle
 CALL Move(CONTEXT, BlueRect, HPOS, VPOS, ERR)
 CALL Resize(CONTEXT, BlueRect, 150, 60, ERR)
 CALL Map(CONTEXT, BlueRect, ERR)

* Yellow line
 CALL Move(CONTEXT, YellowLine, HPOS, VPOS, ERR)
 CALL Resize(CONTEXT, YellowLine, 150, 60, ERR)
 CALL Map(CONTEXT, YellowLine, ERR)

RETURN

5.6.6 Add the Create Case

The UIMS.MSG.UPDATE message informs your application when it should redraw all or

part of its client area. In the Output application, this will be used to draw text and

graphics in the right-hand Child window, Child2. In many ways, the routine is similar to

the HANDLE.WIN1.CREATE subroutine shown above.

To handle the UIMS.MSG.UPDATE message, add the following CASE statement to the

main message case statement:

CASE MSG.WINDOW = Child2
 GOSUB HANDLE.CHILD2.MESSAGES

The following is the HANDLE.CHILD2.MESSAGES subroutine called by this CASE

statement. This can be added to the source code at any convenient point.

*

* SUBROUTINE: HANDLE.CHILD2.MESSAGES

*

* PURPOSE: Process messages for the Child2 window

*

* COMMENTS:

* Draws some text in the default font and then draws a red

* rectangle with a green line across it. The Brush and Pen

* contacts required are loaded from the resource file.

*

HANDLE.CHILD2.MESSAGES:

 BEGIN CASE

 CASE MSG.TYPE = UIMS.MSG.UPDATE

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 76 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * The window font has not been changed so it is the same as

 * that of Child1. We can therefore use the position and

 * spacing values set up when Win1 was created

 VSPACE = HEIGHT + LEADING

 * Initialise the drawing position to one line from the top of

 * the screen and one standard upper case character from the

 * left-hand edge.

 HPOS = UCWIDTH

 VPOS = VSPACE

 * Send characters to the screen. After displaying each line of

 * text, advance the vertical position by the vertical spacing

 * determined above, ready for the next line of text.

 TEXT = "These characters, and the red rectangle"

 CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

 VPOS = VPOS + VSPACE

 TEXT = "and green line below, are drawn directly"

 CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

 VPOS = VPOS + VSPACE

 TEXT = "onto the client area. The application"

 CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

 VPOS = VPOS + VSPACE

TEXT = "must therefore redraw the display each"

 CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

 VPOS = VPOS + VSPACE

 TEXT = "time an Update message is received."

 CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

 VPOS = VPOS + VSPACE

 * Move the print position 5 characters to the right

 * and 2 lines down

 HPOS = HPOS + (5 * UCWIDTH)

 VPOS = VPOS + (2 * VSPACE)

 * Draw a red rectangle

 CALL DrawruleGetBrush(CONTEXT, DEFAULT.DRAWRULE, OLDBRUSH)

 CALL DrawruleSetBrush(CONTEXT, DEFAULT.DRAWRULE, RedBrush, ERR)

 CALL DrawRect(CONTEXT, Child2, HPOS, VPOS, HPOS+150, ...

 VPOS+60, UIMS.NONE, ERR)

 CALL DrawruleSetBrush(CONTEXT, DEFAULT.DRAWRULE, OLDBRUSH, ERR)

 * Draw a green line

 CALL DrawruleGetPen(CONTEXT, DEFAULT.DRAWRULE, OLDPEN)

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 77 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CALL DrawruleSetPen(CONTEXT, DEFAULT.DRAWRULE, GreenPen, ERR)

 CALL DrawLine(CONTEXT, Child2, HPOS, VPOS, HPOS+150, ...

 VPOS+60, 0, ERR)

 CALL DrawruleSetPen(CONTEXT, DEFAULT.DRAWRULE, OLDPEN, ERR)

 END CASE

RETURN

5.6.7 Add the Destroy Case

In enabling UIMS.MSG.CREATE messages, you have also enabled

UIMS.MSG.DESTROY messages. You must therefore modify your message loop to

process these messages. Add the following to the HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.DESTROY

 USER.WANTS.TO.EXIT = TRUE

5.6.8 Modify the Exit Case

Since the USER.WANTS.TO.EXIT variable is now set when a Destroy message is

received, the Exit case must initiate the generation of this message by destroying the

App window.

Find the lines in the HANDLE.WIN1.MESSAGES subroutine which read:

CASE MSG.TYPE = UIMS.MSG.EXIT ;* close the application

USER.WANTS.TO.EXIT = TRUE

and change them to read:

CASE MSG.TYPE = UIMS.MSG.EXIT ;* close the application

 CALL Destroy(CONTEXT, Win1, ERR)

5.6.9 Modify the Error Subroutine

In Generic, the ERROR.EXIT routine sets the USER.WANTS.TO.EXIT variable, but in

Output it must destroy the App window and thus generate a Destroy message. Find the

line in the ERROR.EXIT subroutine which reads:

USER.WANTS.TO.EXIT = TRUE

and change it to read:

CALL Destroy(CONTEXT, Win1, ERR)

5.6.10 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. When run,

the application should look like this:

Section 5: Windows

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 78 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 5-1. The Output Application

As you use Output and other applications, you will see the two halves of the App window

redrawn. Note that the left-hand half of the window, with its text canvas and graphics

contacts, will always be redrawn faster than the right-hand half. This is because updates

to Child1 are handled entirely by UIMS and do not involve communication with the host.

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 79 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 6: Keyboard and Mouse Input
Most applications require input from the user. Typically, input from the user comes via

the keyboard or the mouse. In UIMS, applications receive keyboard and mouse input in

the form of input messages.

This chapter covers the following topics:

• The input messages that UIMS sends your application.

• Responding to UIMS input messages.

It also explains how to create an example application that responds to various types of

input message.

6.1 Input Messages

Whenever the user presses a key, moves the mouse or clicks a mouse button, UIMS

responds by sending input messages to the active application. UIMS also sends input

messages in response to Timer input.

UIMS provides several types of input message:

Keyboard User input through the keyboard.

Mouse User input through the mouse.

Timer Input from the system timer.

Scroll-bar User input through a window's scroll-bars.

Menu User input through a window's menus.

The keyboard, mouse and timer messages correspond directly to hardware input. The

scrollbar and menu messages are generated in response to mouse and keyboard actions

outside the client area of the window.

6.1.1 Keyboard Input

Much of an application's input comes from the keyboard. Whenever the user presses a

key, a UIMS.MSG.KEYPRESS message is generated.

The vData2 parameter of a UIMS.MSG.KEYPRESS message contains the UIMS virtual key

code (key alias) of the key that was pressed. A virtual key code is a device-independent

value for a specific key or key-combination. UIMS uses virtual key codes so that it can

provide consistent keyboard input, no matter what computer your application is running

on.

The vData1 parameter contains the states of the various modifier keys (SHIFT, CTRL,

ALT, etc.).

An application receives keyboard messages only when it has 'input focus'. Your

application receives input focus when it is the active application; that is, when the user

has selected your application's window. If required, you can use the SetContactFocus

subroutine to set the focus to a particular window within your application. The

GetChildFocus subroutine can be used to determine which window has the focus.

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 80 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.1.2 Mouse Input

User input can also come from the mouse. UIMS sends mouse messages to an

application when the user moves the mouse pointer into and through any of its windows,

or presses or releases a mouse button while the pointer is in any of its windows. UIMS

generates mouse messages in response to the following events:

UIMS.MSG.MOTION

The user has moved the pointer into or through the window.

UIMS.MSG.PRESS

The user has pressed a mouse button.

UIMS.MSG.RELEASE

The user has released a mouse button.

UIMS.MSG.CLICK

The user has clicked (pressed and released) a mouse button.

UIMS.MSG.DBLCLICK

The user has double-clicked (pressed and released twice) a mouse button.

UIMS.MSG.DRAG

The user has started or stopped dragging the mouse; that is, moving the mouse

while holding down its primary button (button 1).

For all these types of message, the vData1 and vData2 parameters contain the

horizontal and vertical coordinates of the pointer position. vData3 contains the states of

the keyboard modifier keys and of any mouse buttons that have not changed state.

vData4 contains the number of any mouse button that has changed state (been pressed

or released).

UIMS sends mouse messages to a window only if the pointer is in the window, or if you

have captured mouse input by calling GrabPointer. This subroutine directs UIMS to

send all mouse input to a specified window, regardless of the position of the mouse

pointer. Applications should typically use this subroutine to take control of the mouse

when carrying out some critical operation with the mouse, such as selecting something

in the client area. Capturing the mouse prevents other applications taking control of the

mouse before the operation is completed.

Since the mouse is a shared resource, it is important to release the captured mouse as

soon as you have finished the operation. The mouse is released by calling the

UngrabPointer subroutine.

Note

If a contact's event mask has enabled pointer drag messages, when a drag event starts within
that contact, UIMS will automatically perform a GrabPointer, followed by an UngrabPointer
when the drag ends.

6.1.3 Timer Input

UIMS sends timer input to your application when the specified interval elapses for a

particular timer. To receive timer input, you must create a timer by calling the AddTimer

subroutine. Once created, a timer runs continuously, generating a UIMS.MSG.TIMER

message every time its period expires.

The following example shows how to create a timer for a 5 second interval:

CALL AddTimer(CONTEXT, 5000 , TIM5SEC)

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 81 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This parameter sets an interval of 5000 milliseconds. This means that the timer will

generate a UIMS.MSG.TIMER message every 5 seconds.

This parameter is a variable in which the handle of the timer will be returned. This can

be used to distinguish between messages generated by different timers, and also to

remove the timer when it is no longer required (by calling the RemoveTimer

subroutine).

6.1.4 Scroll-bar Input

When the user operates a window's scroll-bar (with either the mouse or the keyboard),

UIMS generates a scroll-bar input message. The message type is either

UIMS.MSG.HSCROLL or UIMS.MSG.VSCROLL depending on whether the scroll-bar is

aligned horizontally or vertically.

Applications use the scroll-bar messages to direct scrolling within the window.

Applications that display text or other data that is too large to fit in the client area

usually provide some form of scrolling. Scroll-bars are an easy way to let the user direct

scrolling actions.

To get scroll-bar input, add scroll-bars to the window. You can do this by including the

UIMS.WIN.HSCROLL and UIMS.WIN.VSCROLL style elements when you create the

window. The following example creates scroll-bars for the window Win1:

TITLE = "Input Example Application"

STYLE = UIMS.WIN.CLOSABLE + UIMS.WIN.ICONISABLE + UIMS.WIN.MOVABLE +

UIMS.WIN.SIZABLE + UIMS.WIN.HSCROLL + UIMS.WIN.VSCROLL

BORDER = UIMS.BORDER

CALL CreateAppWin(CONTEXT, Win1, TITLE, 20, 20, 300, 200, STYLE,

BORDER, CONTEXT, WIN1)

UIMS displays the scroll-bars when it displays the window. It automatically maintains the

scroll-bars and sends scroll-bar messages to the application when the user moves the

scrollbar thumb.

When the application receives a scroll-bar message, the vData4 parameter indicates the

new thumb position and vData2 specifies the type of scrolling requested, as listed below:

UIMS.SB.LEFT The user clicked the scroll-bar Left arrow.

UIMS.SB.RIGHT The user clicked the scroll-bar Right arrow.

UIMS.SB.UP The user clicked the scroll-bar Up arrow.

UIMS.SB.DOWN The user clicked the scroll-bar Down arrow.

UIMS.SB.PAGELEFT The user clicked the scroll-bar thumb-track to the left of the

thumb.

UIMS.SB.PAGERIGHT The user clicked the scroll-bar thumb-track to the left of the

thumb.

UIMS.SB.PAGEUP The user clicked the scroll-bar thumb-track above the

thumb.

UIMS.SB.PAGEDOWN The user clicked the scroll-bar thumb-track below the

thumb.

UIMS.SB.THUMB The user has stopped dragging the thumb.

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 82 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS.SB.THUMBTRACK The user is dragging the thumb.

6.1.5 Menu Input

Whenever the user chooses a command from one of the application's menus, UIMS

generates a UIMS.MSG.MENUITEM message. Refer to Chapter 8 for details of how to

use menus and menu input.

6.2 An Example Application: Input

The example application, Input, illustrates how to process input messages, using the

keyboard, the mouse, a timer and scroll bars as examples. It displays the current or

most recent state of each of these input mechanisms. To create the Input application,

copy and rename the source files of the Generic application, as described in Chapter 4.

Then make the following modifications:

1. Modify the style of the App Window.

2. Enable the messages you intend processing.

3. Set up the positions at which the states of the input mechanisms will be

displayed.

4. Initialise new variables.

5. Add the UIMS.MSG.CREATE case.

6. Add the UIMS.MSG.DESTROY case.

7. Modify the UIMS.MSG.EXIT case.

8. Add the UIMS.MSG.KEYPRESS case.

9. Add the UIMS.MSG.MOTION case.

10. Add the UIMS.MSG.CLICK and UIMS.MSG.DBLCLICK cases.

11. Add the UIMS.MSG.HSCROLL and UIMS.MSG.VSCROLL cases.

12. Add the UIMS.MSG.TIMER case.

13. Modify the ERROR.EXIT subroutine.

14. Compile the resource file and the DATA/BASIC program.

Although Windows does not require a pointing device, this example assumes that you

have a mouse or other pointing device. If you do not have a mouse, the application will

not receive mouse input messages.

6.2.1 Modify the Window Style

You will need to modify the definition of the application's App window so that a window

with horizontal and vertical scroll bars will be created. In addition, you should give the

window a text canvas so that you do not have to process Update messages. Change the

definition of Win1 in the resource script so that the STYLE parameter looks like this:

STYLE = CLOSABLE,
 SIZABLE,
 MOVABLE,
 ICONISABLE,
 HSCROLL, /* scroll bars */ VSCROLL,

 TEXT /* text canvas */

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 83 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.2.2 Enable Messages

Of the types of message you require, only Keyboard messages are enabled when you

start a UIMS application. To enable Mouse, Timer and Scroll messages, add the following

code to the DATA/BASIC source after signing on to UIMS, but before loading the

resources.

CALL GetEventMask(CONTEXT, CONTEXT, EVENTMASK)
EVENTMASK = EVENTMASK + UIMS.EM.MOTION + UIMS.EM.CLICK ...
 + UIMS.EM.DBLCLICK
EVENTMASK = EVENTMASK + UIMS.EM.TIMER
EVENTMASK = EVENTMASK + UIMS.EM.HSCROLL + UIMS.EM.VSCROLL
CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)

In addition, you will need to enable Create messages. This is done by the following

subroutine call, which must follow the code given above:

CALL SetSecondaryEventMask(CONTEXT, EVENTMASK, TRUE, FALSE, ERR)

Note

This also enables UIMS.MSG.DESTROY messages.

6.2.3 Set the Text Positions

The vertical spacing of the text in the window will be determined by the size

characteristics of the window's font. The following lines of code set the positions at which

the different messages are displayed.
CALL GetDrawrule(CONTEXT, Win1, WIN1.DRAWRULE)
CALL DrawruleGetFont(CONTEXT, WIN1.DRAWRULE, WIN1.FONT)
CALL FontGetMetrics(CONTEXT, WIN1.FONT, HEIGHT, ASCENT, DESCENT,
LEADING, LCWIDTH, UCWIDTH, MAXWIDTH, ERR)

VSPACE = HEIGHT + LEADING
HPOS = UCWIDTH ;* one upper case character width from the left edge
MOUSE.VPOS = VSPACE ;* one line from the top
BUTTON.VPOS = MOUSE.VPOS + VSPACE
KEY.VPOS = BUTTON.VPOS + VSPACE
SCROLL.VPOS = KEY.VPOS + VSPACE
TIMER.VPOS = SCROLL.VPOS + VSPACE

This code must be included after the application's resources have been created, but

before the start of the message loop.

6.2.4 Initialise Variables

The text strings that will be displayed in the window will be set up in the appropriate

case statements. They must, however, be initialised before they can be used. Add the

following lines near the beginning of the application:

KEYTEXT = ""
MOUSETEXT = ""
BUTTONTEXT = ""
SCROLLTEXT = ""
TIMERTEXT = ""

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 84 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.2.5 Add the Create Case

The AddTimer subroutine creates a timer and sets it running. Since you only need to do

this once, the UIMS.MSG.CREATE case is a convenient place to do this. Add the following

to the HANDLE.WIN1.MESSAGES subroutine:
CASE MSG.TYPE = UIMS.MSG.CREATE
 CALL AddTimer(CONTEXT, 5000, TIMER)
 TIMER.COUNT = 0

6.2.6 Add the Destroy Case

In enabling UIMS.MSG.CREATE messages, you have also enabled

UIMS.MSG.DESTROY messages. You must therefore modify your message loop to

process these messages. Add the following to the HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.DESTROY
 USER.WANTS.TO.EXIT = TRUE

6.2.7 Modify the Exit Case

In the Input application, the UIMS.MSG.EXIT case must stop the timer before the

application terminates and, because the USER.WANTS.TO.EXIT variable is now set when

a Destroy message is received, it must initiate the generation of this message by

destroying the App window.

Find the lines in the HANDLE.WIN1.MESSAGES subroutine which read:
CASE MSG.TYPE = UIMS.MSG.EXIT ;* close the application

 USER.WANTS.TO.EXIT = TRUE

and change them to read:
 CASE MSG.TYPE = UIMS.MSG.EXIT ;* close the application

 CALL RemoveTimer(CONTEXT, TIMER, ERR)

 CALL Destroy(CONTEXT, Win1, ERR)

6.2.8 Add the Key Press Case

Add a UIMS.MSG.KEYPRESS case to process keyboard operations. The following lines

must be added to the HANDLE.WIN1.MESSAGES subroutine:
CASE MSG.TYPE = UIMS.MSG.KEYPRESS

 CALL FontGetTextLen(CONTEXT, WIN1.FONT, KEYTEXT, LENGTH)

 CALL Erase(CONTEXT, Win1, HPOS, KEY.VPOS, HPOS+LENGTH, ...

 KEY.VPOS+HEIGHT, ERR)

 KEYTEXT = "UIMS.MSG.KEYPRESS: ":DATA2:", ":DATA1

 CALL DrawTextString(CONTEXT, Win1, KEYTEXT, HPOS, KEY.VPOS, ERR)

6.2.9 Add the Mouse Motion Case

Add a UIMS.MSG.MOTION case to process mouse-movement. The following lines must

be added to the HANDLE.WIN1.MESSAGES subroutine:
CASE MSG.TYPE = UIMS.MSG.MOTION

 CALL FontGetTextLen(CONTEXT, WIN1.FONT, MOUSETEXT, LENGTH)

 CALL Erase(CONTEXT, Win1, HPOS, MOUSE.VPOS, HPOS+LENGTH, ...

 MOUSE.VPOS+HEIGHT, ERR)

 MOUSETEXT = "UIMS.MSG.MOTION: ":INT(DATA1 / 65536):...

 ", ":DATA2:", ":DATA3

 CALL DrawTextString(CONTEXT, Win1, MOUSETEXT, HPOS, ...

 MOUSE.VPOS, ERR)

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 85 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.2.10 Add the Click and Double Click Case

Add the UIMS.MSG.CLICK and UIMS.MSG.DBLCLICK cases to process mouse button

operations. The following lines must be added to the HANDLE.WIN1.MESSAGES

subroutine:
CASE MSG.TYPE = UIMS.MSG.CLICK OR MSG.TYPE = UIMS.MSG.DBLCLICK

 CALL FontGetTextLen(CONTEXT, WIN1.FONT, BUTTONTEXT, LENGTH)

 CALL Erase(CONTEXT, Win1, HPOS, BUTTON.VPOS, HPOS+LENGTH, ...

 BUTTON.VPOS+HEIGHT, ERR)

 IF MSG.TYPE = UIMS.MSG.CLICK THEN

 BUTTONTEXT = "UIMS.MSG.CLICK: "

 END ELSE

 BUTTONTEXT = "UIMS.MSG.DBLCLICK: "

END

 BUTTONTEXT = BUTTONTEXT:INT(DATA1 / 65536):", ":DATA2:", ":...

 DATA3:", ":DATA4

 CALL DrawTextString(CONTEXT, Win1, BUTTONTEXT, HPOS, ...

 BUTTON.VPOS, ERR)

6.2.11 Add the Scroll Case

Add the UIMS.MSG.HSCROLL and UIMS.MSG.VSCROLL cases to process scroll bar

operations. The following lines must be added to the HANDLE.WIN1.MESSAGES

subroutine:
CASE (MSG.TYPE = UIMS.MSG.HSCROLL OR MSG.TYPE = UIMS.MSG.VSCROLL)

 CALL FontGetTextLen(CONTEXT, WIN1.FONT, SCROLLTEXT, LENGTH)

 CALL Erase(CONTEXT, Win1, HPOS, SCROLL.VPOS, HPOS+LENGTH, ...

 SCROLL.VPOS+HEIGHT, ERR)

 IF MSG.TYPE = UIMS.MSG.HSCROLL THEN

 SCROLLTEXT = "UIMS.MSG.HSCROLL: "

 BEGIN CASE

 CASE DATA2 = UIMS.SB.LEFT

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.LEFT, "

 CASE DATA2 = UIMS.SB.RIGHT

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.RIGHT, "

 CASE DATA2 = UIMS.SB.PAGELEFT

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.PAGELEFT, "

 CASE DATA2 = UIMS.SB.PAGERIGHT

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.PAGERIGHT, "

 END CASE

 END ELSE

 SCROLLTEXT = "UIMS.MSG.VSCROLL: "

 BEGIN CASE

 CASE DATA2 = UIMS.SB.UP

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.UP, "

 CASE DATA2 = UIMS.SB.DOWN

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.DOWN, "

 CASE DATA2 = UIMS.SB.PAGEUP

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.PAGEUP, "

 CASE DATA2 = UIMS.SB.PAGEDOWN

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.PAGEDOWN, "

 END CASE

 END

 BEGIN CASE

 CASE DATA2 = UIMS.SB.THUMB

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.THUMB, "

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 86 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CASE DATA2 = UIMS.SB.THUMBTRACK

 SCROLLTEXT = SCROLLTEXT:"UIMS.SB.THUMBTRACK, "

 END CASE

 SCROLLTEXT = SCROLLTEXT:DATA4

 CALL DrawTextString(CONTEXT, Win1, SCROLLTEXT, HPOS, ...

 SCROLL.VPOS, ERR)

6.2.12 Add the Timer Case

For a UIMS.MSG.TIMER message, the event window parameter is zero. Find the lines in

the message loop which read:
CASE MSG.WINDOW = 0

 BEGIN CASE

and add following lines after them:

CASE MSG.TYPE = UIMS.MSG.TIMER

 CALL FontGetTextLen(CONTEXT, WIN1.FONT, TIMERTEXT, LENGTH)

 CALL Erase(CONTEXT, Win1, HPOS, TIMER.VPOS, HPOS+LENGTH, ...

 TIMER.VPOS+HEIGHT, ERR)

 TIMER.COUNT = TIMER.COUNT + 5

 TIMERTEXT = "UIMS.MSG.TIMER: ":TIMER.COUNT:" seconds"

 CALL DrawTextString(CONTEXT, Win1, TIMERTEXT, HPOS, ...

 TIMER.VPOS, ERR)

6.2.13 Modify the Error Subroutine

The ERROR.EXIT subroutine needs the same changes as the UIMS.MSG.EXIT case. Find

the line in the ERROR.EXIT subroutine which reads:
USER.WANTS.TO.EXIT = TRUE

and replace it with the following:
 CALL RemoveTimer(CONTEXT, TIMER, ERR)

 CALL Destroy(CONTEXT, Win1, ERR)

Note

this is only necessary for errors that you are treating as fatal.

6.2.14 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. Test the

application by moving the mouse, clicking and double clicking the mouse buttons,

pressing keys on the keyboard and using the scroll bars. The application should look like

Figure 6-1.

Section 6: Keyboard and Mouse Input

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 87 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 This text is displayed when mouse, keyboard or

timer messages are received.

Figure 6-1. The Input Application

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 88 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 7: The Pointer, the Mouse and the Keyboard
The pointer is a special graphics image that shows the user where actions initiated by

the mouse will take place. In most UIMS applications, the user makes selections,

chooses commands, and directs other actions by using either the mouse or the

keyboard.

This chapter covers the following topics:

• Displaying and controlling the shape of the pointer.

• Letting the user use the keyboard to move the pointer.

• Letting the user select information with the mouse.

It also explains how to create an example application that illustrates some of these

concepts.

7.1 Displaying the Pointer

No one pointer shape can satisfy the all needs of an application. For example, a text

editor or word processor would normally need an I-beam pointer when the user is editing

text, but it would need an hourglass pointer when carrying out lengthy operations, such

as reading a file from disk.

The shape of the pointer is controlled by attaching a Pointer object to each window. The

pointer changes to the specified shape while it is within the client area of the window

concerned.

When the window is created, it is given a default pointer which, unless changed, has the

standard diagonal arrow shape. If you require a different shape in a particular window,

you can create a new Pointer object with a different shape to attach to the window. A

Pointer object can be created in your resource script, or within your application by calling

the CreatePointer subroutine. The following examples illustrate these two methods:

In the resource script:

#define Win2 200

#define Win2Pointer 201

APPWINDOW = Win2

{

 .

 . * definitions for Win2

 .

 POINTER = Win2Pointer

 {

 TYPE = IBEAM

 }

}

In your application:

* create a new pointer object with I-beam shape

CALL CreatePointer(CONTEXT, Win2Pointer, UIMS.PTR.IBEAM, ...

 WIN2POINTER)

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 89 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* attach it to the window

CALL SetPointer(CONTEXT, Win2, Win2Pointer, ERR)

Should you need to, there are two ways of changing the pointer shape while your

application is running. The preferred method is to use the SetPointer subroutine to

attach a different Pointer object to the window, as shown below:

* get the handle of the current pointer,

* so that it can be restored later

CALL GetPointer(CONTEXT, Win2, OLDPOINTER)

* now attach a cross-hair pointer

CALL SetPointer(CONTEXT, Win2, CrossPointer, ERR)

.

. ;* operations that need a cross-hair pointer

.

* restore the old pointer

CALL SetPointer(CONTEXT, Win2, OLDPOINTER, ERR)

Alternatively, you can change the type of an existing pointer by calling PointerSetType.

7.1.1 Displaying the Hourglass during a Lengthy Operation

Whenever your applicaton begins a lengthy operation, such as reading a large block of

data to a disk file, you should change the shape of the pointer to the hourglass. This lets

the user know that a lengthy operation is in progress and that they should wait before

attempting to continue their work. Once the operation is complete, your application

should restore the pointer to its previous shape.

If you wish, you can create a Pointer object with the hourglass shape and attach this to

the window concerned. However, UIMS provides two subroutines, WaitPointerOff and

WaitPointerOn, which simplfy this process. Both methods are shown in the following

examples.

Using the wait-pointer subroutines:

.

.

.

* change the pointer to the hourglass

CALL WaitPointerOn(CONTEXT, ERR)

.

. ;* lengthy operation

.

* restore the previous pointer shape

CALL WaitPointerOff(CONTEXT, ERR)

.

.

.

Using a Pointer object:

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 90 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL CreatePointer(CONTEXT, HourGlass, UIMS.PTR.WAIT, HOURGLASS)

.

.

.

CALL GrabPointer(CONTEXT, Win1, ERR)

CALL GetPointer(CONTEXT, Win1, OLDPOINTER)

CALL SetPointer(CONTEXT, Win1, HourGlass, ERR)

.

. ;* lengthy operation

.

CALL SetPointer(CONTEXT, Win1, OLDPOINTER, ERR)

CALL UngrabPointer(ERR)

.

.

.

CALL CreatePointer(CONTEXT, HourGlass, UIMS.PTR.WAIT, HOURGLASS): This line

creates a new Pointer object and gives it the hour glass shape. Alternatively, this could

be defined in the resource script.

CALL GrabPointer(CONTEXT, Win1, ERR): The application first captures the mouse

input using the GrabPointer subroutine. This keeps the user from attempting to use the

mouse to carry out work in another application while the lengthy operation is in

progress. When the mouse input is captured, UIMS directs all mouse input messages to

the specified window, regardless of whether the pointer is in that window. The

application can then process the messages as appropriate.

CALL GetPointer(CONTEXT, Win1, OLDPOINTER): The handle of the previous Pointer

object is saved for later restoration.

CALL SetPointer(CONTEXT, Win1, HourGlass, ERR): The pointer is changed to the

hour glass pointer.

CALL SetPointer(CONTEXT, Win1, OLDPOINTER, ERR): When the lengthy operation is

complete, the application restores the previous Pointer object.

CALL UngrabPointer(ERR): The UngrabPointer subroutine releases the mouse input.

7.2 Using the Pointer with the Keyboard

Windows does not require a pointing device and applications should therefore provide

the user with a way to duplicate mouse actions with the keyboard. To allow the user to

move the pointer using the keyboard, use the SetPointerPos, SetPointer and

GetPointerPos subroutines to display and move the pointer.

7.2.1 Using the Keyboard to Move the Pointer

You can use the SetPointerPos subroutine to move the pointer from within your

application.

This subroutine is typically used to let the user move the pointer using the keyboard.

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 91 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

To move the pointer, detect the UIMS.MSG.KEYPRESS message and filter for the

virtual-key values of the direction keys: UIK.UP, UIK.DOWN, UIK.LEFT and UIK.RIGHT.

On each keystroke, the application should update the position of the pointer. The

following example shows how this might be done:

CASE MSG.TYPE = UIMS.MSG.SIZE

 WIN1.WIDTH = INT(DATA1 / 65536)

 WIN1.HEIGHT = DATA2

CASE MSG.TYPE=UIMS.MSG.KEYPRESS

 IF DATA2 = UIK.DOWN ...

 OR DATA2 = UIK.UP ...

 OR DATA2 = UIK.LEFT ...

 OR DATA2 = UIK.RIGHT THEN

 CALL GetPointerPos(CONTEXT, Win1, PT.HPOS, PT.VPOS, ERR)

 BEGIN CASE

 * adjust the pointer position according to which key was

 * pressed

 CASE DATA2 = UIK.UP

 PT.VPOS = PT.VPOS - 1

 CASE DATA2 = UIK.DOWN

 PT.VPOS = PT.VPOS + 1

 CASE DATA2 = UIK.LEFT

 PT.HPOS = PT.HPOS – 1

CASE DATA2 = UIK.RIGHT

 PT.HPOS = PT.HPOS + 1

 END CASE

 IF PT.HPOS >= WIN1.WIDTH THEN

 PT.HPOS = WIN1.WIDTH - 1

 END ELSE

 IF PT.HPOS < 0 THEN PT.HPOS = 1

 END

 IF PT.VPOS >= WIN1.HEIGHT THEN

 PT.VPOS = WIN1.HEIGHT - 1

 END ELSE

 IF PT.VPOS < 0 THEN PT.VPOS = 1

 END

 CALL SetPointerPos(CONTEXT, Win1, PT.HPOS, PT.VPOS, ERR)

 END

* End of UIMS.MSG.KEYPRESS case

In this example:

CASE MSG.TYPE = UIMS.MSG.SIZE

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 92 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CASE MSG.TYPE = UIMS.MSG.SIZE: Each time a UIMS.MSG.SIZE message is received,

the current width and height of the window's client area are stored in the WIN1.WIDTH

and WIN1.HEIGHT variables. Although there are other ways of obtaining this

information, this is by far the simplest.

OR DATA2 = UIK.RIGHT THEN: The first IF statement filters for the virtual-key values of

the direction keys: UIK.UP, UIK.DOWN, UIK.LEFT and UIK.RIGHT.

CALL GetPointerPos(CONTEXT, Win1, PT.HPOS, PT.VPOS, ERR): The GetPointerPos

subroutine returns the current position of the pointer. Since the second parameter

identifies a specific window, the position returned will be relative to the client area of

that window. Note that, if the mouse is available, the user could potentially move the

pointer with the mouse at any time; there is therefore no guarantee that the position

values saved on the last keystroke are correct.

The application uses client-relative coordinates for two reasons: mouse messages give

the pointer position relative the the window's client area; and client-relative coordinates

do not have to be updated if the window moves.

IF PT.HPOS >= WIN1.WIDTH THEN: These IF statements check that the new pointer

position is within the client area. If necessary the position is adjusted.

CALL SetPointerPos(CONTEXT, Win1, PT.HPOS, PT.VPOS, ERR): The SetPointerPos

subroutine moves the pointer to the new location. The position is relative to the window

specified in the second parameter.

7.3 Letting the User Select Information with the Mouse

Many Windows applications (word processors, graphics editors, etc.) allow the user to

select text and graphics with the mouse. Though this capability could be programmed

into a UIMS application, the delays inherent in the communications link would make it

very slow and difficult to use. There are, however, two UIMS contacts which allow text

selection – the EditBox and the TextEditor. If you need to allow the user to select text,

you should use one or more of these contacts, as described in Chapter 9. Chapter 11

shows you how to transfer text between these contacts and the clipboard.

7.4 An Example Application: Pointer

The example application, Pointer, illustrates how to move the pointer with the keyboard,

and how to display the hourglass during a lengthy process. It also shows you how

different windows can be given differently shaped pointers. The main application window

contains four child windows, each of which has a different pointer object attached to it.

Pointer is an extension of the Generic application described in Chapter 4. To create the

Pointer application, copy and rename the source files of the Generic application and then

make the following modifications.

1. Add new constant definitions.

2. Define ChildWindow and Pointer resources.

3. Enable size messages.

4. Add a UIMS.MSG.SIZE case to the message loop.

5. Add a UIMS.MSG.KEYPRESS case to the message loop.

7.4.1 Add New Constant Definitions

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 93 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

You will need identifiers for the additional resources defined in the resource script. These

must be available to both the resource script and the DATA/BASIC source, so add the

following to your header file.

EQUATE Child1 TO 50

EQUATE Pointer1 TO 51

EQUATE Child2 TO 60

EQUATE Pointer2 TO 61

EQUATE Child3 TO 70

EQUATE Pointer3 TO 71

EQUATE Child4 TO 80

EQUATE Pointer4 TO 81

Ensure that the new header file is available on both the host and the PC.

7.4.2 Define New Resources

Pointer requires four Child windows, defined as children of the App window, and a

Pointer object for each Child window. These can all be defined in the resource script. Add

the following lines to the definition of Win1 in the file POINTER.UCL:

CHILDWINDOW = Child1

{

 POSITION = 50, 50

SIZE = 100, 100

 BDRSTYLE = BORDER

 STYLE = NONE

 POINTER = Pointer1

 {

 TYPE = CROSS

 PATTERN = ''

 POSITION = 0, 0

 }

}

CHILDWINDOW = Child2

{

 POSITION = 300, 50

 SIZE = 100, 100

 BDRSTYLE = BORDER

 STYLE = NONE

 POINTER = Pointer2

 {

 TYPE = IBEAM

 PATTERN = ''

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 94 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 POSITION = 0, 0

 }

}

CHILDWINDOW = Child3

{

 POSITION = 50, 200

 SIZE = 100, 100

 BDRSTYLE = BORDER

 STYLE = NONE

 POINTER = Pointer3

 {

 TYPE = PLUS

 PATTERN = ''

 POSITION = 0, 0

 }

}

CHILDWINDOW = Child4

{

 POSITION = 300, 200

 SIZE = 100, 100

BDRSTYLE = BORDER

 STYLE = NONE

 POINTER = Pointer4

 {

 TYPE = PLUS

 PATTERN = ''

 POSITION = 0, 0

 }

}

7.4.3 Enable Size Messages

When you start your application, update messages will be disabled. To enable them add

the following code to the DATA/BASIC source after signing on to UIMS, but before

loading the resources.

* Enable size messages if not already enabled

CALL GetEventMask(CONTEXT, CONTEXT, EVENTMASK)

CALL BitTest(EVENTMASK, UIMS.EM.SIZE, ENABLED)

IF NOT(ENABLED) THEN EVENTMASK = EVENTMASK + UIMS.EM.SIZE

CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 95 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

7.4.4 Add the Size Case

Pointer keeps track of changes to the size of Win1 by monitoring Size messages. To

handle the UIMS.MSG.SIZE message, add the following CASE statement to the

HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.SIZE

 WIN1.WIDTH = INT(DATA1 / 65536)

 WIN1.HEIGHT = DATA2

7.4.5 Add the Keypress Case

The user must be able to use the keyboard to move the pointer and also to initiate a

lengthy operation. This is done by processing UIMS.MSG.KEYPRESS messages, and

testing the DATA2 variable to find out which key was pressed. The RETURN key is used

to initiate a lengthy operation; when this is done, the Pointer application suspends

processing for 10 seconds using the DATA/BASIC SLEEP statement. The cursor control

keys (up, down, left and right) are used to move the pointer.

To handle the UIMS.MSG.KEYPRESS message, add the following CASE statement to

the HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.KEYPRESS

 GOSUB HANDLE.WIN1.KEYS

The following is the HANDLE.WIN1.KEYS subroutine called by this CASE statement. This

can be added to the source code at any convenient point.

*

* ROUTINE: HANDLE.WIN1.KEYS

*

* PURPOSE: Processes keypress messages for Win1

*

* COMMENTS:

* The RETURN key initiates a long procedure (simulated by

* sleeping for 10 seconds), during which the hourglass is

* displayed.

* The cursor keys move the mouse pointer within the client

* area of Win1.

*

HANDLE.WIN1.KEYS:

 BEGIN CASE

*

 * pressing the return key initiates a long procedure

 CASE DATA2 = UIK.RETURN

 * display the hourglass pointer

 CALL WaitPointerOn(CONTEXT, ERR)

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 96 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * simulate a long procedure

 CALL Erase(CONTEXT, Win1, 0, 0, 0, 0, ERR)

 CALL DrawTextString(CONTEXT, Win1, "Long procedure...", ...

 10, 10, ERR)

 SLEEP 10

 CALL DrawTextString(CONTEXT, Win1, ...

 "Procedure took 10 seconds to complete.", 10, 10, ERR)

 * return to the previous pointer

 CALL WaitPointerOff(CONTEXT, ERR)

 * the pointer can be moved with the cursor keys

 CASE DATA2 = UIK.DOWN OR ...

 DATA2 = UIK.UP OR ...

 DATA2 = UIK.LEFT OR ...

 DATA2 = UIK.RIGHT

 * get the current cursor position

 CALL GetPointerPos(CONTEXT, Win1, PT.HPOS, PT.VPOS, ERR)

BEGIN CASE

 * adjust the pointer position

 * according to which key was pressed

*

 CASE DATA2 = UIK.UP

 PT.VPOS = PT.VPOS - 5

 CASE DATA2 = UIK.DOWN

 PT.VPOS = PT.VPOS + 5

 CASE DATA2 = UIK.LEFT

 PT.HPOS = PT.HPOS - 5

 CASE DATA2 = UIK.RIGHT

 PT.HPOS = PT.HPOS + 5

 END CASE

 * stop the pointer moving outside the client area

 IF PT.HPOS >= WIN1.WIDTH THEN

 PT.HPOS = WIN1.WIDTH - 1

 END ELSE

 IF PT.HPOS < 0 THEN PT.HPOS = 1

 END

 IF PT.VPOS >= WIN1.HEIGHT THEN

 PT.VPOS = WIN1.HEIGHT - 1

 END ELSE

 IF PT.VPOS < 0 THEN PT.VPOS = 1

Section 7: The Pointer, the Mouse and the Keyboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 97 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 END

 * set the new pointer position

 CALL SetPointerPos(CONTEXT, Win1, PT.HPOS, PT.VPOS, ERR)

 END CASE

RETURN

7.4.6 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. When run,

the Pointer application should look like Figure 7-1.

Figure 7-1. The Pointer Application

Each box is a Child window. As you move the mouse into a box, the pointer will change

to a cross, I-beam or plus sign; moving out again restores the arrow shape.

You can also use the direction keys to move the pointer and press RETURN to start a

lengthy operation; the pointer changes to the hourglass to indicate that a lengthy

operation is in progress.

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 98 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: Menus
Most UIMS applications use menus to let the user select commands or actions.

This chapter describes what a menu is and tells you how to:

• Define a menu and include it in your application.

• Process input from a menu.

• Modify an existing menu.

• Use special menu features.

An example application, EditMenu, which uses and processes input from menus is also

described.

8.1 What is a Menu?

A menu is a list of items which, to the user, are the application's commands. The user

tells the application to perform a command by using the mouse or the keyboard to select

an item from a menu. When a user chooses a menu item, UIMS sends a message to the

application that specifies which item the user selected.

The primary application menu is normally the menu bar along the top of the main

application window. Each item on this menu can either allow the user to select

commands directly or, more usually, offer a second, pull-down, menu with more

commands. In some cases, an item on the pull-down menu will offer a further,

cascading, menu.

Figure 8-1 illustrates these different kinds of menu.

Figure 8-1. Menus

The menu items are the most important elements in this hierarchy, because they

initiate commands within the application. The menu bar and pull-down menus are simply

the means of presenting these commands to the user.

8.2 Defining a Menu

UIMS menus consist of three elements:

• A MenuBar contact which is attached to an Application Window.

• Menu contacts (pull-down menus) which are attached to the menu bar or, in

some cases, to other menus (cascading menus).

Menu bar

Pull-down menu Cascading menu

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 99 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• MenuItem contacts which are attached to the pull-down menus or, in some

cases, directly to the menu bar.

All these elements must be defined, either within your application, or in a pre-defined

resource script which is compiled in advance and loaded into your application at run

time.

The simplest way of defining a menu is to define it in your application's resource script

(.UCL) file. The definition of a menu must specify:

• The name of the MenuBar contact.

• The names of the items on the menu bar and the text that appears on the menu

bar for those items.

• Any special attributes for each item.

The MenuBar contact is specified in a MENUBAR statement, which consists of the

MENUBAR key word, a unique numeric identifier for the MenuBar, and a pair curly

brackets ({ }) enclosing one or more of the following menu definition statements:

• The MENUITEM statement defines a MenuItem contact.

• The MENU statement defines a Menu contact which contains a list of menu items.

There are two methods of defining a menu in a resource script. In the first method you

must include a full definition of every MenuItem contact. The following example defines

a MenuBar identified by the number 100:

MENUBAR = 100

{

MENUITEM = 101 { TITLE = 'Exit' }

MENU = 102 {

TITLE = 'Format'

MENUITEM = 103 { TITLE = 'Character' }

MENUITEM = 104 { TITLE = 'Paragraph' }

}

}

This line tells the resource compiler that this is the start of the definition for a MenuBar

and assigns the identifier 100 to the new contact. The identifier is used as an handle

when you load the contact into your application (see next section). All resource script

statements consist of a key word (in this case MENUBAR), an equals sign followed by a

numeric identifier, and a pair of curly brackets ({ }) which enclose the item definition

statements for that object.

This MENUITEM statement defines the first item on the menu bar. The text 'Exit' will

appear as the leftmost command on the menu bar.

The MENU statement defines a pull-down menu, in this case with the title 'Format'. When

the user selects the Format command, a menu appears that allows the user to choose

between the Character and Paragraph commands.

Within the MENU statement are the definitions for the items on that pull-down menu.

The Format menu contains two menu items, each with its own name and title.

When the user selects the Exit, Character or Paragraph commands, UIMS will send the

application a UIMS.MSG.MENUITEM message that includes the handle of the selected

item. Note, however, that UIMS does not notify the application when the user selects the

Format command; instead, UIMS displays the Format menu.

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 100 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 8-2. Defining a Menu

The second method of defining a menu uses the resource compiler to create the menu

item definitions. In this case, the MENUITEM statements within the Format menu

definition are replaced by a single CHILDREN statement which lists the titles of the

MenuItem contacts required. The titles must be enclosed in single quotes. The following

example shows how this method can be used to define the same menu as above:

MENUBAR = 100

{

MENUITEM = 101 { TITLE = 'Exit' }

MENU = 102

{

TITLE = 'Format'

CHILDREN = 'Character' = 103, 'Paragraph' = 104

}

}

CHILDREN = 'Character' = 103, 'Paragraph' = 104: This line lists the menu items

that will appear on the Format Menu. When the resource file is compiled, MenuItem

contacts will be created with the specified titles and identifiers.

Note

The second method only allows you to specify some of the possible menu item attributes. You
can, for instance, check or disable a menu item, but cannot set the item into auto-check mode.

For more information about the MENUBAR, MENU and MENUITEM resource compiler

statements, see the UIMS DATA/BASIC API Reference Manual.

8.2.0.1 Including the Menu in your Application

Once you have defined a menu bar and menus in your resource script, you can include

them in your application code. This is done in the same way as for other resources; that

is by using the LoadAppRes subroutine to fetch handles to the contacts you have

defined.

The example below shows how to fetch the handles of the menu items defined in the

examples given in the previous section. The menu resources are loaded from the file

MENUS.RES.

CALL LoadAppRes(CONTEXT, "MENUS.RES", ERR)

IF ERR THEN

ERROR.STRING = "Failed to load resource file: ":ERR

GOTO ERROR.EXIT

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 101 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

END

8.3 Processing Input from a Menu

When a user chooses a command from a menu, UIMS sends a message to the

application. The message includes the handles of the MenuItem contact and the window

to which that contact is attached. The application's message loop should include tests for

the window, the message type and the menu item. The example below shows the

recommended way of doing this.

USER.WANTS.TO.EXIT = FALSE

LOOP UNTIL USER.WANTS.TO.EXIT DO

CALL GetMsg(0, ...

 MSG.CONTEXT, ...

 MSG.WINDOWŒ, ...

 MSG.CONTACTŽ, ...

 MSG.TYPE•, ...

 TS, ...

 DATA1, ...

 DATA2, ...

 DATA3, ...

 VDATA4)

BEGIN CASE

CASE WINDOW = WIN1 Œ

BEGIN CASE

CASE MSGTYPE = UIMS.MSG.MENUITEM •

GOSUB HANDLE.WIN1.MENU

REM case statements for other WIN1 messages

END CASE

REM case statements for other windows

END CASE

REPEAT

.

.

.

HANDLE.WIN1.MENU:

BEGIN CASE

* MSG.CONTACT is set up by the call to GetMsg

CASE MSG.CONTACT = EXIT Ž

.

. REM perform operations for exiting the application

.

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 102 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CASE MSG.CONTACT = FORMAT.CHAR

.

. REM perform operations for formatting characters

.

CASE MSG.CONTACT = FORMAT.PARA

.

. REM perform operations for formatting paragraphs

.

END CASE

RETURN

The third parameter to GetMsg is a variable (MSG.WINDOW) in which the handle of the

window in which the event occurred is returned.

The fifth parameter to GetMsg returns the message type.

The fourth parameter to GetMsg returns the handle of the contact in which the event

occurred.

8.4 Modifying Menus from within your Application

UIMS provides functions that you can use to change existing menus and create new

menus while your application runs. This section explains:

• How to enable and disable menus and menu items.

• How to check and uncheck menu items.

• How to add, change and delete menu items.

• How to replace a menu.

• How to create and initialise a menu.

8.4.1 Enabling and Disabling Menu Items

Normally the items on a menu are enabled; their text appears normal and the user can

select them. Disabled items appear with dimmed (greyed) text and do not respond to

mouse clicks or keyboard selection. You should disable a menu item when the command

it offers is not appropriate. For example, you might disable the Paste command when

there is nothing on the Clipboard.

8.4.1.1 Setting the Initial State of a Menu Item

You can specify in the resource script that a menu or menu item is disabled. For

MenuItem contacts this can be done by including a plus sign in the appropriate menu

item title when you list the children of a MenuBar or Menu. For example:

MENU = 102

{

TITLE = 'Edit'

CHILDREN = 'Cut+' = 103, 'Copy+' = 104, 'Paste' = 105

}

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 103 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

defines an Edit menu with Cut, Copy and Paste items. The plus signs following the titles

Cut and Copy disable these items. Note that the plus signs are removed from the title

text and the MenuItem names by the resource compiler.

A pull-down menu can only be defined as disabled by using the ENABLE resource script

statement. For example:

MENUBAR = 150

{

MENU = 151

{

TITLE = 'Font'

CHILDREN = 'Times'=160,

 'Helvetica'=161,

 'Courier'=162,

 'Symbol'=163

ENABLE = FALSE

}

}

defines a menu bar with a Font menu containing Times, Helvetica, Courier and Symbol

commands. The line

ENABLE = FALSE

disables this menu. Initially, its title will be greyed and it will not appear when the user

tries to select it. When it is needed, it can be enabled as described below

8.4.1.2 Disabling a Menu Item

A menu item or pull-down menu can be disabled by calling either the Disable subroutine,

or the SetEnabled subroutine with the Enabled parameter set to FALSE. For example:

CALL Disable(CONTEXT, 105, ERR)

and

CALL SetEnabled(CONTEXT, 105, FALSE, ERR)

both disable the Paste item (identifier 105) on the Edit menu defined in the first example

above. ERR is a variable in which a completion code will be returned.

8.4.1.3 Enabling a Menu Item

A disabled menu item or pull-down menu can be re-enabled by either calling the Enable

subroutine or specifying the Enabled parameter as TRUE in a call to SetEnabled. For

example, the following calls both enable the Cut item (identifier 103) on the Edit menu

defined above:

CALL Enable(CONTEXT, 103, ERR)

CALL SetEnabled(CONTEXT, 103, TRUE, ERR)

8.4.2 Checking and Unchecking Menu Items

A check mark can be displayed next to a menu item to indicate that the user has

selected it. You might, for instance, use a check mark to indicate the user's most recent

choice from a mutually exclusive group, or to show which options the user has selected

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 104 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

from a range of choices. Typically, you would use checked menu items when you want

the user to be able to find out easily what is selected.

8.4.2.1 Setting an Initial Check Mark

You can specify in the resource script whether or not a menu item is checked by

including an exclamation mark in the appropriate MenuItem title when you list the

children of a MenuBar or Menu. For example:

MENU = 120

{

TITLE = 'View'

CHILDREN = 'Tools!' = 121, 'Palette' = 122, 'Status Bar!' = 123

}

defines a View menu with Tools, Palette and Status Bar items. The exclamation marks

following the titles Tools and Status Bar specify that these items are initially to be

checked. Note that the exclamation marks are removed from the title text and the

MenuItem names by the resource compiler.

8.4.2.2 Checking a Menu Item

A menu item can be checked by calling either the MenuItemCheck subroutine, or the

MenuItemSetCheckMark subroutine with the Check parameter set to TRUE. For

example:

CALL MenuItemCheck(CONTEXT, 122, ERR)

and

CALL MenuItemSetCheckMark(CONTEXT, 122, TRUE, ERR)

both set a check mark for the Palette item (identifier 122) on the View menu defined

above. ERR is a variable in which a completion code will be returned.

8.4.2.3 Removing a Menu Item Check Mark

A check mark can be removed from a menu item either by calling the

MenuItemUncheck subroutine, or by using the MenuItemSetCheckMark subroutine

with the Check parameter set to FALSE. For example, both the following examples

remove the check mark from the Tools item (identifier 121) on the View menu defined

above.

CALL MenuItemUncheck(CONTEXT, 121, ERR)

CALL MenuItemSetCheckMark(CONTEXT, 121, FALSE, ERR)

8.4.2.4 Auto-check – Letting UIMS do the Work

If you prefer, you can ask UIMS to do the work of checking and unchecking a menu item,

by setting the Auto-check attribute. If this is done, when the user selects the menu item

concerned, the checked state will be toggled – if it is checked it will become unchecked

and vice versa.

You can set the Auto-check attribute for a menu item in your resource script or when

your application is running. The following example shows how this is done in a resource

script:

MENU = 120

{

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 105 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 TITLE = 'View'

 MENUITEM = 121

 {

 TITLE = 'Tools'

 AUTOCHECK = TRUE

 } .

 .

 .

 }

}

This line sets the Auto-check attribute for the Tools item on the View menu.

Note that the Auto-check attribute cannot be set in a list of menu CHILDREN (see page

8-4).

To set the Auto-check attribute while your application is running, use the

MenuItemSetAutoCheck subroutine. The example below has the same effect as the

resource script example above:

CALL MenuItemSetAutoCheck(CONTEXT, 121, TRUE, ERR)

You can switch off Auto-check by calling MenuItemSetAutoCheck with the third

parameter set to FALSE.

8.4.3 Changing a Menu

You can change a menu bar or pull-down menu by adding, changing and deleting menu

items.

8.4.3.1 Adding a Menu Item

A new menu item can be inserted before an existing item, or added to the end.

You insert a menu item by using the AddChild subroutine. The item you add must have

been created with no parent (either in the resource script or while the application is

running) and any initialisation (such as disabling, checking, etc.) must have been carried

out before calling AddChild.

The following example creates a menu item with the title Curve, disables it and then

inserts it as the third item on the Draw menu.

CALL CreateMenuItem(CONTEXT, 201, "Curve", "", DRAW.CURVE)

CALL Disable(CONTEXT, DRAW.CURVE, ERR)

CALL AddChild(CONTEXT, DRAW, 2, DRAW.CURVE, ERR)

The first parameter to AddChild is the handle of the application context.

The second parameter to AddChild is the handle of the Menu or MenuBar in which you

are inserting the item; in this case, this is specified by the identifier, DRAW.

The third parameter is the position at which to insert the item. New items are inserted

before that at the position you specify. Numbering starts from 0, so the third item is in

position 2.

The fourth parameter is the variable containing the handle of the new menu item.

The final parameter is a variable in which a completion code can be returned.

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 106 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Refer to page 8-15 for details of the CreateMenuItem subroutine.

Note

You can add a new pull-down menu to a menu bar in the same way.

If you want to add a new item to the end of a menu, you do not need to know how many

items there are already. Simply specify a position of -1 when you call AddChild. For

example:

CALL AddChild(CONTEXT, DRAW, -1, DRAW.RECT, ERR)

This adds the Rectangle item at the end of the Draw menu.

Note

If necessary, you can add several items at once by calling AddChildren instead of AddChild.

8.4.3.2 Deleting a Menu Item

There are two ways of removing an item from a menu or menu bar.

You can use RemoveChild to remove a specific item. The following example removes the

Circle item from the Draw menu:

CALL RemoveChild(CONTEXT, DRAW, DRAW.CIRCLE , ERR)

This parameter is the handle of the item to be removed.

You can use RemoveChildren to remove the item at a specified position. For example, the

following call removes the fifth item from the Draw menu:

CALL RemoveChildren(CONTEXT, DRAW, 4 , 1 , ERR)

This parameter specifies the position of the item to be deleted. Remember that

numbering starts from 0, so the fifth item is number 4.

This parameter is the number of items to be removed.

In both cases any subsequent items are moved up to fill the gap.

8.4.3.3 Changing a Menu Item

Items on a menu bar or menu can be enabled and disabled as described on page 8-8

and checked and unchecked as described on page 8-10. If, however, you want to replace

one item with another there are two ways of doing this.

You can remove the old item and replace it with a different one.

CALL RemoveChildren(CONTEXT, DRAW, 3, 1, ERR)

CALL AddChildren(CONTEXT, DRAW, 3, DRAW.ARC, ERR)

This example removes the fourth item from the Draw menu and then adds an Arc item to

replace it.

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 107 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

If you use this method to change items on a menu bar, you will need to prevent the menu bar
being re-drawn while the changes are taking place. This can be done by calling the SetUpdate
subroutine before starting to make your changes and again when you have finished. For
example:

REM get the current update status

CALL GetUpdate(CONTEXT, WIN1.MENUBAR, UPDATE)

REM turn off updating

CALL SetUpdate(CONTEXT, WIN1.MENUBAR, UIMS.NONE, ERR)

REM remove the third menu

CALL RemoveChildren(CONTEXT, WIN1.MENUBAR, 2, 1, ERR)

REM replace it with the Text menu

CALL AddChildren(CONTEXT, WIN1.MENUBAR, 2, TEXT, ERR)

REM draw the new menu bar

CALL Draw(CONTEXT, WIN1.MENUBAR, ERR)

REM restore the previous update status

CALL SetUpdate(CONTEXT, WIN1.MENUBAR, UPDATE, ERR)

The third parameter to the GetUpdate subroutine is a variable in which to return the current
update status.

The third parameter to SetUpdate specifies the required update status. A value of UIMS.NONE

disables updating for the contact.

You can change the title of an existing menu or menu item by using the MenuSetTitle

or MenuItemSetTitle subroutine as appropriate.

CALL MenuItemSetTitle(CONTEXT, CIRCLE, "Ellipse", ERR)

This example changes the title of the Circle menu item to Ellipse.

Note that although the title displayed on the screen for the item has changed, the

MenuItem contact still has the same handle. Your program will therefore need some

way of telling the difference when you process messages relating to this contact in your

message loop.

8.4.3.4 Replacing a MenuBar

A complete menu bar can be removed and replaced with a different one. You would

typically do this when you application changes modes and needs a completely new set of

commands. For example, you might replace a limited set of commands with a full set

when you load a file.

When you replace a window's menu bar, you must use the AppWinSetMenuBar

subroutine.

The example which follows uses AppWinGetMenuBar to retrieve the handle of the

MenuBar currently attached to an AppWindow, and saves it for restoring later. It then

attaches a new menu bar.

CALL AppWinGetMenuBar(CONTEXT, WIN1.HANDLE , OLD.WIN1.MENUBAR) CALL

AppWinSetMenuBar(CONTEXT, WIN1.HANDLE , FULL.MENUBAR , ERR)

In both subroutines, the first and second parameters are the handle of the application

context, and the handle of the window concerned respectively.

AppWinGetMenuBar requires a variable in which to return the handle of the menu bar.

The third parameter to AppWinSetMenuBar is the handle of the new MenuBar

contact. The old menu bar is automatically detached from the window and becomes an

orphan (it no longer has a parent).

8.4.4 Creating a New Menu

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 108 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If you prefer, you can create your menus while your application runs instead of defining

them in a resource script. The first step is to create a menu bar, using the

CreateMenuBar subroutine. When a menu bar is first created, it has no menus or menu

items on it, so these are created using the CreatePullDownMenu and

CreateMenuItem subroutines.

The following example creates a menu bar consisting of an Exit menu item and a Format

menu. The Format menu consists of two menu items, Character and Paragraph. When

the menus are complete, the menu bar is attached to the appropriate window.

CALL CreateMenuBar(CONTEXT , 100 , "" , WIN1.MENUBAR)

CALL CreateMenuItem(CONTEXT, 101, "E&xit" , WIN1.MENUBAR , EXIT)

CALL CreatePullDownMenu(CONTEXT, ...

 102, ...

 "&Format" , ...

 WIN1.MENUBAR , ...

 FORMAT)

CALL CreateMenuItem(CONTEXT, "&Character", FORMAT, CHAR)

CALL CreateMenuItem(CONTEXT, "&Paragraph", FORMAT, PARA)

AppWinSetMenuBar(CONTEXT, WIN1, WIN1.MENUBAR, ERR)

In this example:

The first parameter to each function is the handle of the application context to which the

contact is to belong.

The second parameter to each function is the identifier to be assigned to the contact.

The penultimate parameter is in each case the handle of the contact which is to be the

parent of the created contact. In the case of the menu bar this parameter is a null string,

so that the contact is created with no parent; the menu bar is only attached to its parent

window when the menus are complete. The Exit menu item and the Format menu have

the menu bar as their parent, while the Character and Paragraph menu items are

attached to the Format menu.

The final parameter to each function is a variable in which the handle of the created

contact will be returned.

In the CreatePullDownMenu and CreateMenuItem calls, the third parameter is the

title that will be displayed on the parent menu bar or menu. An ampersand (&) specifies

that the next character will act as a selector key that the user can operate to choose the

menu or menu item.

This line attaches the menu bar to its parent window.

Note

The MakePullDownMenu subroutine provides an alternative method of creating a complete

menu, including all its menu items. Refer to the UIMS DATA/BASIC API, Reference Manual for
details.

8.5 Using Cascading Menus

If you need more than one level of pull-down menus, you can create multi-level or

cascading menus. Such a menu structure can reduce the number of commands on a

single menu, without requiring a dialog box to offer additional choices.

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 109 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 8-3 shows an example of cascading menus.

 Figure 8-3. Cascading Menus

In this example, the user chose the Domestic command from the Animals menu. At this

point the Domestic cascading menu appeared to the right of the cursor. The user then

moved the cursor over the Domestic menu and chose the Dog command. The Dog

cascading menu then appeared and offered the user the choice of Alsatian, Dachshund,

Labrador, Spaniel or Terrier.

Cascading menus are simply nested pull-down menus. The menu definition for the

example in Figure 8-3 looks like this:

EQUATE idAnimals TO 200

EQUATE idWild TO 210

EQUATE idDomestic TO 220

EQUATE idCat TO 230

EQUATE idDog TO 240

EQUATE idAlsatian TO 241

EQUATE idDachshund TO 242

EQUATE idLabrador TO 243

EQUATE idSpaniel TO 244

EQUATE idTerrier TO 245

EQUATE idBudgie TO 250

EQUATE idHamster TO 260

EQUATE idFarm TO 270

MENU = idAnimals

{

TITLE = '&Animals'

MENU = idWild

{

TITLE = '&Wild'

/* definition for Wild menu */

}

MENU = idDomestic

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 110 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

{

TITLE = '&Domestic'

MENU = idCat

{

TITLE = '&Cat'

/* definition for Cat menu */

}

MENU = idDog

{

TITLE = '&Dog'

CHILDREN = '&Alsatian' = idAlsatian,

'&Dachshund' = idDachshund,

'&Labrador' = idLabrador,

'&Spaniel' = idSpaniel,

'&Terrier' = idTerrier

}

MENUITEM = idBudgie { TITLE = '&Budgerigar'}

MENUITEM = idHamster { TITLE = '&Hamster'}

}

MENU = idFarm

{

TITLE = '&Farm'

/* definition for Farm menu */

}

}

8.6 An Example Application: EditMenu

The EditMenu application illustrates the two most common menus: the File menu and the

Edit menu. To create the EditMenu application, copy and rename the Generic source files

as described in Chapter 4. Then do the following:

1. Add the File and Edit menus to the resource script.

2. Add the menu definitions to the header file.

3. Modify the UIMS.MSG.MENUITEM case in the message loop.

4. Compile the resource file and the DATA/BASIC program.

Although EditMenu has Cut, Copy and Paste menu items, it does not show you how to

use the clipboard. This is described in Chapter 11.

8.6.1 Add New Menus to the Resource File

You need to add File and Edit menus to the definition of the App window. Edit the

resource script and find the start of the menu bar definition: that is, the lines that

contain:

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 111 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

MENUBAR = 0

{

After the opening brace (curly bracket), add the following:
MENU = 0

{

 TITLE = '&File'

 CHILDREN = '&New' = FileNew,

 '&Open...' = FileOpen,

 '&Save' = FileSave,

 'Save &As...' = FileSaveAs,

 '&Print' = FilePrint,

 '-' = 0,

 'E&xit' = FileExit

}

MENU = 0

{

 TITLE = '&Edit'

 CHILDREN = '&Undo+' = EditUndo, /* disabled */

 '-' = 0,

 'Cu&t' = EditCut,

'&Copy' = EditCopy,

 '&Paste+' = EditPaste, /* disabled */

 'C&lear' = EditClear

}

The File menu has six commands and a separator; each command has a mnemonic

(selector key), indicated by the ampersand (&). Similarly, the Edit menu has five

commands and a separator, each command having a mnemonic.

The separators between the Print and Exit commands on the File menus, and the Undo

and Cut commands on the Edit menu, place horizontal bars between these commands on

the menu. A separator is recommended between menu commands that otherwise have

nothing in common. For example, Undo affects only the application, whereas the

remaining commands affect the clipboard.

8.6.2 Add Definitions to the Header File

Each menu item handle (identifier) must be declared in your application's header file,

because these constants are used in both the resource script and the DATA/BASIC

source.

Edit your header file and find the line:

EQUATE HelpAbout TO 20

Replace this line with the following:

* File menu

EQUATE FileNew TO 101

EQUATE FileOpen TO 102

EQUATE FileSave TO 103

EQUATE FileSaveAs TO 104

EQUATE FilePrint TO 105

EQUATE FileExit TO 106

* Edit menu

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 112 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

EQUATE EditUndo TO 111

EQUATE EditCut TO 112

EQUATE EditCopy TO 113

EQUATE EditPaste TO 114

EQUATE EditClear TO 115

* Help menu

EQUATE HelpAbout TO 121

8.6.3 Modify the Menu Item Case

The EditMenu application is intended to demonstrate how to process menu commands.

Therefore, instead of performing tasks, most of the menu commands display the

message "Command not implemented!". The exceptions are the Help About command,

which displays an About box, and the File Exit command, which closes the application.

Edit your DATA/BASIC source file and, in the HANDLE.WIN1.MENUS subroutine, find the

line which contains:

CASE MSG.CONTACT = HelpAbout

Just before this line, insert the following:

 * File menu commands

 CASE MSG.CONTACT = FileNew OR ...

 MSG.CONTACT = FileOpen OR ...

 MSG.CONTACT = FileSave OR ...

 MSG.CONTACT = FileSaveAs OR ...

 MSG.CONTACT = FilePrint

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ..

 "EditMenu Example Application", ...

 "Command not implemented!", ...

 "", ...

 OK, ...

 ERR)

 CASE MSG.CONTACT = FileExit

 USER.WANTS.TO.EXIT = TRUE

 * Edit menu commands

 CASE MSG.CONTACT = EditUndo OR ...

 MSG.CONTACT = EditCut OR ...

 MSG.CONTACT = EditCopy OR ...

 MSG.CONTACT = EditPaste OR ...

 MSG.CONTACT = EditClear

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

Section 8: Menus

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 113 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

8.6.4 Compile

When you have made these changes, you can compile the resource script and the

DATA/BASIC program as described in Chapter 4 for the Generic application. When you

run the application, you will notice the following:

• The Undo and Paste items on the Edit menu are displayed in grey rather than

black, indicating that they are disabled.

• The About command on the Help menu displays an About box.

• The Exit command on the File menu closes the application.

• The remaining commands display the message "Command not implemented!".

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 114 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 9: Controls
Controls are special windows that provide various ways of interacting with the user.

This chapter covers the following topics:

• What is a control?

• Creating a control.

• Using a control.

• Using the different types of control in application and child windows.

An example application which illustrates these concepts is also described.

9.1 What is a Control?

A control is a pre-defined child window that carries out a specific kind of input or output.

For example, to request a filename from the user, you can create and display an edit

control in which the user must type the name. An edit control is a pre-defined child

window that receives and displays keyboard input.

UIMS provides controls which allow the user to input text, select options and values and

initiate operations. You can also use controls to give the user information.

The following controls are available:

• Titled, option and check button controls.

• Static controls – text, line and rectangle.

• List boxes.

• Edit controls – edit box and text editor.

• Scroll bars.

• Inclusive and exclusive groups.

9.2 Creating a Control

You create a control in the same way as other contacts: either by defining it in your

resource script, or by calling the appropriate create subroutine. The parameters required

depend on the control, but in general you must supply the following:

• The handle of the application context.

• A number by which the contact can be identified.

• The handle of the parent object. Alternatively you can create the control without

a parent and attach it at a later time.

• The position of the object on the screen relative to its parent.

• The size of the object. This can be calculated automatically, if required.

• A variable in which to return the handle of the created control.

• Control-specific information, such as the title of a button or whether or not to

display scroll bars in a text editor.

Both methods of creating controls are illustrated later in this chapter.

9.2.1 Setting the Parent Window

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 115 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

As mentioned above, you can specify a parent object when you create a control. Note,

however, that if the parent is displayed on the screen at the time the new contact will be

displayed immediately and in some cases this may not be desirable – if, for instance,

you need to set additional attributes before using the control. Under these circumstances

you should create the contact without a parent and attach it using AddChild or

AddChildren once you have completed your initialisation.

As with any child window, changes to the parent object also affect the control. For

example, if you disable the parent, the control will be disabled as well. If UIMS paints,

moves or destroys the parent, it also paints, moves or destroys the control.

Although a control can be any size and can be moved to any position, it is restricted to

the client area of its parent. UIMS clips the control if you move it outside the parent's

window area, or make it bigger than the client area.

9.3 Using a Control

Once you have created a control, you can:

• Receive user input through the control.

• Tell the control to perform specialised tasks, such as returning a string of text.

• Enable or disable input to the control.

• Move the control or change its size.

• Destroy the control.

This section describes how to perform these tasks.

9.3.1 Receiving User Input

As the user interacts with a control, it sends a message containing information about

that interaction to the application. The type and content of the message will depend on

the control and the operation performed, but it will always include the handles of the

contact and the parent window. For example, when the user clicks on a button control, a

UIMS.MSG.BUTTONPRESS message is generated.

9.3.2 Control Tasks

Each control has a number of related subroutines which can be used to change its

attributes and to return its current attribute settings. For example, the

EditBoxGetContent subroutine returns the text displayed in an edit box control.

In addition there are subroutines connected with a number of attributes that are

common to almost all controls. For example, you can find out the size of a control by

calling the GetSize subroutine.

9.3.3 Disabling and Enabling Input to a Control

If a particular control is not appropriate in the current state of your application you can

disable it. Disabled items are shown dimly (are greyed) and do not respond to mouse

clicks or keyboard selection.

To disable a control, call the SetEnabled subroutine and specify FALSE as the required

state. For example:

CALL SetEnabled(Context.Handle, Control.Handle, FALSE, ERR)

To re-enable a disabled control, simply call SetEnabled with the second parameter set

to

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 116 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

TRUE:

CALL SetEnabled(Context.Handle, Control.Handle, TRUE, ERR)

9.3.4 Moving and Sizing a Control

To move a control within its parent, call the Move subroutine. This positions the top left-

hand corner of the control relative to the top left-hand corner of its parent's client area.

The following example illustrates this.

CALL Move(Context.Handle, Control.Handle, 10, 40, ERR)

This moves the specified contact to a position 10 coordinate units to the left of, and 40

coordinate units down from the top left-hand corner of its parent's client area.

Note

UIMS automatically moves a control when it moves the parent window.

If you want to change the size of a control, call the Resize subroutine. The following

example makes a contact 30 coordinate units wide by 12 units high.

CALL Resize(Context.Handle, Control.Handle, 30, 12, ERR)

9.3.5 Destroying a Control

You can destroy a control by calling the Destroy subroutine. This deletes any internal

record of the control and removes it from its parent's client area. The following example

shows how this is done:

CALL Destroy(Context.Handle, Control.Handle, ERR)

Note

UIMS automatically destroys a control when its parent is destroyed.

9.4 Button Controls

A button control is a small window used for input of the simple yes/no, on/off type. The

following button controls are available:

• Titled Button.

• Check Button.

• Option Buttons and Exclusive Groups.

9.4.1 Titled Buttons

A titled button is a button that the user selects to carry out an action; the button

contains text or a graphic that indicates what it does. When the user clicks a titled

button, the application normally carries out the associated action immediately. For

example, if the user clicks the Cancel button in a dialog box, the application immediately

removes the dialog box and cancels any changes the user may have made to the dialog.

As with other contacts, you can create a titled button either in your resource script or

while your application is running. The following examples both create a TitledButton

contact with the title 'Cancel'.

The first example shows how this is done in the resource script:

EQUATE Win1 TO 100

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 117 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

EQUATE CancelButton TO 101

APPWINDOW = Win1

{

.

. /* definition for Win1 */

.

TITLEDBUTTON = CancelButton

{

TITLE = 'Cancel'

POSITION = 80, 24

SIZE = 60, 18

}

.

. /* further definitions for Win1 */

.

}

The three TitledButton attributes shown above (TITLE, POSITION and SIZE) must be

specified. If any of these is missing, your resource script will not compile.

Note

You cannot create a titled button containing a graphic in your resource script.

Within your application, you use the CreateTitledButton subroutine:

CALL CreateTitledButton(CONTEXT, ...

 101, ...

 "c:\rfw\vcrend.bmp", ...

 80, 24, ...

 60, 18, ...

 WIN1, ...

 VCREND)

In this example:

The first parameter is the handle of the application context.

The second parameter is a number by which the button can be identified.

The third parameter is the title that will be displayed on the button or, in this case, the

name of a graphics file.

The next two parameters specify the position of the button relative to the top left-hand

corner of its parent window. These values will be interpreted as character or pixel units,

depending on the current coordinate mode of the application context. In this case the

top left corner of the button will be 80 units to the right of and 24 units down from the

top left corner of the parent window.

The sixth and seventh parameters specify the size of the button. As in the case of the

position parameters, these values will be interpreted as character or pixel units,

depending on the current coordinate mode of the application context. In this case the

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 118 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

button will be 60 units wide and 18 units high. Note that if these parameters are both

zero, the size of the button will be calculated automatically.

The eighth parameter is the handle of the parent window. If you wish to change any of

the button's default attributes before displaying it, you can create the button without a

parent by passing a null string instead of a handle. You can then make the changes you

require before attaching the button to its parent with AddChild or AddChildren.

The final parameter is a variable in which to return the handle to the newly created

button.

Note

Because the button created in this example does not form part of a dialog box, the application
must carry out the actions appropriate to the button, such as (in this case) removing the button
from the screen and discarding changes.

A titled button responds to mouse and keyboard input by sending a message to the

application. Mouse clicks and SPACEBAR operations generate

UIMS.MSG.BUTTONPRESS messages and all other key operations generate

UIMS.MSG.KEYPRESS messages.

9.4.2 Default Titled Buttons

A default titled button is normally used so that the user can signal the completion of

some activity without having to specifically select the button concerned. An typical

example is in a dialog box that asks the user for a file name. When the file name has

been typed into an edit control, the user can simply press RETURN to complete the

action, instead of having to specifically select the default, OK button.

The default titled button is normally indicated to the user by a thickened border, which is

specified by including the style THICK in the contact definition. The following resource

script example creates an OK button with a thickened border:

TITLEDBUTTON = 115 {

TITLE = 'OK'

POSITION = 240, 80

SIZE = 60, 18

STYLE = THICK

}

If you create a titled button while your application is running, you cannot specify the

style with CreateTitledButton. Instead, you must change the style after the button has

been created by using the TitledButtonSetStyle subroutine. The example below creates

an OK button with no parent, gives it a thickened border and then attaches it to a

window:

CALL CreateTitledButton(CONTEXT, 115, "OK", 240, 80, 60, 18, "", ...

 OK.BUTTON)

CALL TitledButtonSetStyle(CONTEXT, OK.BUTTON, UIMS.TB.THICK, ERR)

CALL AddChild(CONTEXT, WIN1, -1, OK.BUTTON, ERR)

This line attaches the OK button to a child of the window WIN1. The second parameter (-

1) specifies that the button is to be added to the end of the list of children for WIN1.

Note

The final parameter to both TitledButtonSetStyle and AddChild is a variable in which to return
a completion code. In a practical application, this variable would be tested to detect any errors.

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 119 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

9.4.3 Check Buttons

A check button typically allows the user to select an option to use in the current task. By

convention, within a group of check buttons, the user can select more than one option.

To present options that are mutually exclusive, use option buttons (see page 9-10).

For example, you might present a group of check buttons to let the user choose the font

style for the selected text. The user could choose both bold and italic by choosing both

the 'Bold' and 'Italic' check buttons.

The following resource script example creates an Italic check button.

CHECKBUTTON = 217 {

TITLE = 'Italic'

POSITION = 80, 64

SIZE = 67, 16

}

Note

The TITLE, POSITION and SIZE attributes must be specified.

Within your application, you create a check button with the CreateCheckButton

subroutine:

CALL CreateCheckButton(CONTEXT, 217, "Italic", 80, 64, 0 , 0 , ...

WINDOW, ITALIC.CHECK)

These two parameters respectively specify the width and height of the check button. If

both are zero (as in this case), size of the check button will be calculated automatically.

A check button responds to mouse and keyboard input in the same way as a titled

button. A UIMS.MSG.BUTTONPRESS message is generated when the user clicks the

control or presses the SPACEBAR. However, an additional function of a check button is to

display a check (an X) in its box to show that the option it represents is currently

selected.

To display a check in a check button, use the CheckButtonSetSelected subroutine.

Similarly, to find out whether a check button has a check displayed, use

CheckButtonGetSelected. The following example places a check in a check button:

CALL CheckButtonSetSelected(CONTEXT, CHECK.BUTTON , TRUE , ERR)

In this example:

The first parameter is the handle of the check button.

The second parameter must be TRUE to display a check, or FALSE to remove it. The

final parameter is a variable in which to return a completion code.

If you prefer, you can ask UIMS to do some of the work by enabling auto-toggle for the

check button. The button will then automatically display or remove its check (as

appropriate) whenever it is actioned. Auto-toggle can be selected in the resource script

or by using the CheckButtonSetToggle subroutine.

9.4.4 Option Buttons

Option buttons work in a similar way to check buttons, but are usually grouped to

represent

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 120 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

mutually exclusive options. For example, you might use a group of option buttons to let

the user specify the unit of measure used by a publishing program (inches, centimetres,

points or picas). The option buttons would allow the user to select only one type of unit

at a time.

You create an option button in the same way as you would any other button, either in

your resource script or by using the CreateOptionButton subroutine. The examples

that follow both create an OptionButton contact with the title 'Inches'.

In the resource script:

OPTIONBUTTON = 284 {

TITLE = 'Inches'

POSITION = 306, 120

SIZE = 80, 16

}

The TITLE, POSITION and SIZE attributes must be specified.

While your application is running:

CALL CreateOptionButton(CONTEXT, 284, "Inches", 306, 120, 0 , ...

 0 , WINDOW, INCHES.OPT)

These two parameters respectively specify the width and height of the option button. If

both are zero (as in this case), size of the option button will be calculated automatically.

As in the case of check buttons, option buttons can be 'checked' (a solid circle is

displayed instead of an X) by calling the appropriate function

(OptionButtonSetSelected in this case) and can be set to auto-toggle by calling

OptionButtonSetToggle. Note that, since option buttons are mutually exclusive, when

you check an option button you should also clear the check on the previously selected

button (if any). You can determine which option button in a group is checked by calling

OptionButtonGetSelected for each button.

9.4.4.1 Exclusive Groups

If you wish, you can make your option buttons into an exclusive group. The advantage of

this is that UIMS will do the work of clearing the check on the previously selected button

when the user makes a new selection. You can also enclose the group in a box and give

it a title.

You create an exclusive group in your resource script or with the CreateExGroup

subroutine and attach the appropriate option buttons as its children. The following

examples create an exclusive group with the title Size, containing option buttons entitled

Small, Medium and Large. The group is enclosed in a box.

In the resource script:

EQUATE ExgrpSize TO 350

EQUATE ObutnSizeSmall TO 351

EQUATE ObutnSizeMedium TO 352

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 121 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

EQUATE ObutnSizeLarge TO 353

EXCLUSIVEGROUP = ExgrpSize

{

TITLE = 'Size'

POSITION = 246, 13

SIZE = 110, 65

STYLE = BORDER

OPTIONBUTTON = ObutnSizeSmall

{

TITLE = 'Small'

POSITION = 10, 12

SIZE = 69, 16

}

OPTIONBUTTON = ObutnSizeMedium

{

TITLE = 'Medium'

POSITION = 10, 29

SIZE = 87, 16

SELECTED = TRUE

}

OPTIONBUTTON = ObutnSizeLarge

{

TITLE = 'Large'

POSITION = 10, 46

SIZE = 72, 16

}

}

The exclusive group must be large enough to contain all the option buttons, even if its

border is not displayed.

This line specifies the style of the box enclosing the group. The BORDER style gives a

single box with square corners.

The positions of the option buttons must be given relative to the origin of the exclusive

group. Note that the origin is aligned with the top of the title text and the left-hand edge

of the box.

This line selects the Medium option button as the initial selection.

Note

There is no need to set auto-toggle mode for the option buttons. Within an exclusive group,

option buttons are always selected automatically when actioned.

To achieve the same while your application is running:

CALL CreateExGroup(CONTEXT, 350, "Size", 246, 13, 110, 65, ...

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 122 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 UIMS.BORDER , "", SIZE)

CALL CreateOptionButton(CONTEXT, 351, "Small", 10, 12, SIZE, ...

 SIZE.SMALL)

CALL CreateOptionButton(CONTEXT, 352, "Medium", 10, 29, SIZE, ...

 SIZE.MEDIUM)

CALL CreateOptionButton(CONTEXT, 353, "Large", 10, 46, SIZE, ...

 SIZE.LARGE)

CALL OptionButtonSelect(CONTEXT, SIZE.MEDIUM, ERR)

CALL AddChild(CONTEXT, WINDOW, -1, SIZE, ERR)

This parameter specifies the style of the exclusive group. The UIMS.BORDER style

encloses the group in a box.

Note the use of the OptionButtonSelect subroutine as an alternative to

OptionButtonSetSelected.

You can find out which button in an exclusive group is selected by calling the

ExGroupGetSel subroutine.

CALL ExGroupGetSel(CONTEXT, 350, SELECTION)

The handle of the selected option button is returned in this variable.

9.5 Static Controls

A static control is a small window that contains text or graphics. These are typically used

to label other controls or to create boxes and lines to separate one group of controls

from another.

Static controls do not respond to user input; that is, they do not generate UIMS events

when selected. However, you can change the appearance and location of a static control

at any time by calling the appropriate subroutine (refer to the UIMS DATA/BASIC API,

Reference Manual). For example, you can change the text associated with a Text contact

by calling the TextSetContent subroutine.

There are three types of static control: the Text, Line and Rectangle contacts.

9.5.1 Text

As with other controls, you can create a Text contact either in your resource script or by

using the CreateText subroutine. In both cases you must specify the text string to be

displayed and the position and size of the containing window. Unless changed, the

contact will use the same drawrule as its parent. The amount of text displayed is limited

by the size of the containing window; text that will not fit into this window is clipped.

When first created, the text is left-aligned relative to its containing window. If required,

it can be changed to right aligned, centred or justified (both left and right aligned), by

calling the TextSetJustification subroutine.

The following example creates a Text contact without a parent, sets it to right-aligned

and then attaches it to a window:

TEXT = "This text is right-aligned"

CALL CreateText(CONTEXT, 324, TEXT , 198 , 53 , 100 , 0 , "", ...

 RTEXT)

CALL TextSetJustification(CONTEXT, RTEXT, UIMS.JUST.RIGHT , ERR)

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 123 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL AddChild(CONTEXT, WIN1, -1, RTEXT, ERR)

The third parameter to CreateText defines the text to be displayed.

These two parameters specify the position of the text within the window.

These two parameters specify the size (width, height) of the text contact. In this case,

the height is zero – UIMS will therefore make the text window tall enough to display all

the text within the specified width.

The style UIMS.JUST.RIGHT specifies right-alignment.

When displayed, the text will appear similar to the following:

9.5.2 Lines and Rectangles

Lines and rectangles are created in a similar way to static text. For example, the

following creates a rectangle with a diagonal line from bottom left to top right:

CALL CreateRect(CONTEXT, ...

 257 , ...

 80, 80 , ...

 240, 240 , ...

 0 , ...

 WIN1, ...

 RECT) CALL CreateLine(CONTEXT, ...

 258 , ...

 80, 240 , ... 240, 80 , ...

 0 , ...

 WIN1, ...

 DIAG)

In both cases, the second parameter to the create subroutine is a numeric identifier.

The top left-hand corner of the rectangle.

The size of the rectangle (width, height).

In both cases, the seventh parameter to the create subroutine is provided for future use.

It must be present, but its value will be ignored.

The position of the start of the line (coincides with the bottom left-hand corner of the

rectangle).

The position of the end of the line relative to its start. A line can be thought of as the

diagonal of an imaginary box; with these parameters specifying the size (width and

height) of that box.

9.6 List Boxes

A list box is a box that contains a list of selectable items, such as filenames. You would

typically use a list box to display a list of items from which the user can select one or

more, but where the items available might change. You can also scroll a list box to see

items that will not fit into the box, so a list box is useful where you have a large number

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 124 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

of choices. If you have a short list which is always the same, you would probably use

option buttons or check buttons instead.

You can create a list box in your resource script, or by calling the CreateListBox

subroutine. If you use CreateListBox, the contact is created without any contents; this

must be added using the ListBoxAddContents subroutine. The following examples both

create a list box containing a list of text fonts.

In the resource script:

EQUATE FontTitle TO 51

EQUATE FontList TO 52

TEXT = FontTitle {

POSITION = 24, 64 SIZE = 40, 13

CONTENT = 'Font:'

}

LISTBOX = FontList {

POSITION = 24, 77

SIZE = 110, 96

CONTROLS = NONE

CONTENT = 'Courier','Helvetica','Times'

}

If you want your list box to have a title, you must use a Text contact.

While your application is running:

EQUATE AM TO CHAR(254)

EQUATE FontTitle TO 51

EQUATE FontList TO 52 .

.

.

CALL CreateText(CONTEXT, FontTitle, "Font:", 24, 64, 40, 13, ...

 "", FONT.TITLE)

CALL CreateListBox(CONTEXT, FontList, 24, 64, 110, 96, ...

 UIMS.NONE , "", FONT.LIST)

FONTS = "Courier":AM:"Helvetica":AM:"Times"

CALL ListBoxAddContents(CONTEXT, FONT.LIST, 0 , FONTS, ERR)

CALL AddChild(CONTEXT, WIN1, -1, FONT.TITLE, ERR) CALL AddChild(CONTEXT,

WIN1, -1, FONT.LIST, ERR)

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 125 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

In both examples, this parameter defines the type of list box. NONE (in the resource

script) and UIMS.NONE (in your application) both specify a standard list box which allows

only one item to be selected at a time.

The items to be displayed in the list box must be in the form of a dynamic array, with

one item in each attribute.

This parameter indicates where to add the new items relative to any existing list. In this

case there is no existing list, so a position of 0 is used.

In this case the list box is large enough to display all the items at the same time. If,

however, there are too many items to show at once, the list box will include a scroll bar.

This appears automatically when needed and you should allow for this when setting the

width of the contact. For example:

9.6.1 Changing the Contents of a List Box

As can be seen from the example above, you add items to a list box by calling the

ListBoxAddContents subroutine. A second subroutine, ListBoxAddContent, allows

you to add a single item to the list box. In both cases, the new items are added before

the specified existing item, the first item in the list being numbered 0. Specifying a

position of -1 adds the new items to the end of the list.

Note that the ListBox contact cannot sort the list. If you want the items presented in

alphabetical or any other logical order, you must sort them before calling

ListBoxAddContents. If you want to add items to a sorted list, you will need to ensure

that new items are added in the correct position. One way of doing this is to fetch the

contents of the list box, add the new items to the array and then sort the modified list.

The old list can then be removed and replaced by the new one. The following example

illustrates this:

REM fetch the current list box contents

CALL ListBoxGetContents(CONTEXT, FONT.LIST, FONTSŒ, ERR)

REM add the new items to the end of the list

FONTS<-1> = "Symbol"

FONTS<-1> = "Palatino"

.

. REM routine to sort the list

.

REM remove the old list

CALL ListBoxRemoveContents(CONTEXT, FONT.LIST, 0•, -1•, ERR)

REM replace it with the revised list

CALL ListBoxAddContents(CONTEXT, FONT.LIST, 0, FONTS, ERR)

This is a variable in which to return the list of items. On return this will contain a

dynamic array with one item in each attribute.

These two parameters respectively specify the position of the first item and the number

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 126 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

of items to be removed. The values shown will remove the complete list.

9.6.2 Using Standard List Boxes

The standard list box allows the selection of only one item at a time. If the user clicks an

item or presses the SPACEBAR in the list box, the list box selects the item concerned

(removing the selection from the previously selected item, if any) and indicates the

selection by inverting the item text. At the same time, UIMS.MSG.LBOX.DESELECT

and UIMS.MSG.LBOX.SELECT messages are generated, giving the positions in the list

of the items that have changed.

9.6.3 Multiple-selection List Boxes

If you want to allow the user to make multiple selections in a list box, you must change

the style of the list box, either by setting the CONTROLS attribute to MULTISELECT in

your resource script, or by specifying this style when you call the CreateListBox

subroutine. The examples which follow illustrate these two methods.

In your resource script:

EQUATE FruitList TO 78

LISTBOX = FruitList

{

POSITION = 56, 40

SIZE = 96, 48

CONTROLS = MULTISELECT

CONTENT = 'Apple','Lemon','Lime','Orange','Strawberry'

}

While your application is running:

EQUATE AM TO CHAR(254)

EQUATE FruitList TO 78

.

.

.

CONTROLS = UIMS.LBOX.MULTISELECT

CALL CreateListBox(CONTEXT, FruitList, 56, 40, 96, 48, ...

 CONTROLS, "", FRUIT.LIST)

FRUIT = "Apple":AM:"Lemon":AM:"Lime":AM:"Orange":AM:"Strawberry"

CALL ListBoxAddContents(CONTEXT, FRUIT.LIST, 0, FRUIT, ERR)

CALL AddChild(CONTEXT, WIN1, -1, FRUIT.LIST, ERR)

This parameter specifies a multiple-selection list box.

A multiple-selection list box is essentially the same as a standard list box, except that

the user can select more than one item at a time. As each new item is clicked, it is

added to those already selected.

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 127 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

9.7 Edit Controls

An edit control is a rectangular window in which the user can enter and edit text. There

are two types of edit control: a single-line EditBox contact, and a multi-line TextEditor.

9.7.1 Edit Box

The EditBox contact allows the entry of a single line of text. Various styles and

attributes are available for the contact, set when the edit box is created or by calling

different subroutines (refer to the UIMS DATA/BASIC API, Reference Manual for full

details).

The following example shows how to define an edit box in your resource script:

EQUATE EBox = 72

EDITBOX = EBox

{

POSITION = 136, 80

SIZE = 72, 18

STYLE = BORDER

MASK = ''

}

You must specify a style for the edit box. BORDER encloses the contact in a rectangular

box.

The MASK attribute is for use in the future – you must specify a null string.

The same contact can be created from within your application by calling the

CreateEditBox subroutine:

CALL CreateEditBox(CONTEXT, ...

 72 , ...

 136, 80, ...

 72, 18, ...

 UIMS.EBOX.BORDER , ...

 "" , ...

"" , ...

EBOX)

This parameter is the numeric identifier for the new edit box.

This parameter specifies the style of the edit box. UIMS.EBOX.BORDER encloses the

contact in a rectangular box.

This parameter (Mask attribute) is for use in the future – you must specify a null string.

This parameter specifies the parent of the edit box. A null string specifies that the

contact should have no parent.

The contents of an edit box can be obtained by calling EditBoxGetContent. If it is

necessary to set the contents to a default value, this can be done with

EditBoxSetContent.

A typical use for an edit box is in combination with a list box, so that the user can select

an item from the list box for editing. A link can be set up between the list box and the

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 128 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

edit box by calling the ListBoxSetLink subroutine; a selection made in the list box will

then be automatically copied into the edit box.

9.7.2 Text Editor

If you want to allow the user to type more than one line of text, you must use the

TextEditor contact. The contact has various attributes which can be set when the text

editor is created or by calling different subroutines (refer to the UIMS DATA/BASIC API,

Reference Manual for full details).

When the user selects text within a TextEditor contact, a message sent to the

application. This message includes details of the line number, and the starting and

finishing character positions within that line.

9.8 Scroll Bars

Scroll bars are most frequently seen in association with other contacts: application

windows, child windows and list boxes for instance. They can, however, also be used as

independent controls positioned anywhere in a parent window. They allow the user to

select a value from an unbroken range of values. Whenever the user clicks within the

scroll bar with the mouse, or the moves the thumb with the keyboard, a message is sent

to the application. The application can use this message to determine the value selected

by the user and to carry out the appropriate actions.

A scroll bar is created by calling the CreateScrollBar subroutine, specifying whether

you require a vertical or a horizontal scroll bar. If you are using graphics coordinate

mode you can set the width (of a vertical scroll bar) or height (of a horizontal scroll bar)

to match the size of a window scroll bar by calling DisplayGetMetrics to fetch the

required value. The following example creates a vertical scroll bar the same width as a

standard window scroll bar:

CALL GetDefaults(SCRN, PRINTER, TYPEFACE, ERR)

CALL DisplayGetMetrics(CONTEXT, SCRN, P3, P4, P5, P6, P7, P8, ...

 VSWIDTH, HSHEIGHT, ERR)

WIN1.SCRL = 72

STYLE = UIMS.SCROLLBAR.VERT

CALL CreateScrollBar(CONTEXT, WIN1.SCRL, STYLE, 25, 20, VSWIDTH, ...

 84, WIN1, WIN1.SCRL)

This line fetches the handles of the default screen, printer and typeface. In this case we

are only interested in the screen handle.

DisplayGetMetrics returns the sizes of various window elements. In this case we are

only interested in the width of a vertical scroll bar, which is returned in the ninth

parameter (VSCRLWIDTH). If we wanted the height of a horizontal scroll bar, we would

use the value returned in the tenth parameter. Parameters P3 to P8 are variables Scroll

Bars

which return the sizes of other elements – refer to the UIMS DATA/BASIC API, Reference

Manual for full details.

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 129 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This line creates a standard width vertical scroll bar 84 pixels high and positions it 25

pixels across and 20 pixels down within window WIN1.

When a scroll bar control is operated UIMS.MSG.SCROLL messages are generated. For

these messages, on return from GetMsg the vData2 variable will contain details of the

type of movement and vData4 the new thumb position. UIMS automatically repositions

the thumb, but your application must carry out any other actions. Scroll bars can

operate in tracking and non-tracking modes (set by calling ScrollBarSetTracking).

When tracking is enabled, the thumb position is continually reported as it is dragged; if it

is disabled the position is reported only when the thumb is released.

When a scroll bar is created, the minimum and maximum values that it represents are

both 0; to establish the required range of values, you must call the ScrollBarSetRange

subroutine. Similarly, the line and page increments are initially set to 0 and must be set

to appropriate values with ScrollBarSetInc. For example, if your application has a scroll

bar with which the user can select an hour in the day, you would call

ScrollBarSetRange to set the range to 24 hours, and ScrollBarSetInc to set a line

increment of 1:

CALL ScrollBarSetRange(CONTEXT, SCROLLBAR, 0, 23, ERR)

CALL ScrollBarSetInc(CONTEXT, SCROLLBAR, 3, 1, ERR)

In this example, ScrollBarSetRange sets the minimum value to 0 and the maximum to

23, and ScrollBarSetInc a page increment of 3 and a line increment of 1.

Note that while UIMS automatically positions the thumb as it is moved with the mouse or

the keyboard, if the range is changed your application must reposition the thumb to

reflect the new values. Also, if your application allows the user to change the value

represented by the thumb position without using the scroll bar (by typing in an edit

control, for instance), your application must reposition the thumb as necessary.

9.9 Inclusive Groups

Inclusive groups are similar to exclusive groups in that they provide a way of grouping

related controls. Unlike exclusive groups, however, they allow the user to make multiple

selections and can include several different types of control in the same group.

An inclusive group is created in much the same way as any other control; you can define

it in your resource script or use CreateIncGroup within your application. The following

examples create an inclusive group containing controls that allow the user to set a short

format for displaying dates:

In the resource script:

EQUATE SDate TO 320

EQUATE SDate_Order TO 321

EQUATE SDate_MDY TO 322

EQUATE SDate_DMY TO 323

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 130 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

EQUATE SDate_YMD TO 324

EQUATE SDate_Sep TO 325

EQUATE SDate_Day TO 326

EQUATE SDate_Month TO 327

EQUATE SDate_Cent TO 328

INCLUSIVEGROUP = SDate

{

TITLE = 'Short Date Format'

POSITION = 20, 14

SIZE = 328, 125

STYLE = BORDER

TEXT = 0 {

CONTENT = 'Order:'

POSITION = 9, 18

SIZE = 51, 12

}

EXCLUSIVEGROUP = SDate_Order {

TITLE = ''

POSITION = 93, 10

SIZE = 220, 30

STYLE = NONE

OPTIONBUTTON = SDate_MDY {

TITLE = 'MDY'

POSITION = 5, 6

SIZE = 65, 16

}

OPTIONBUTTON = SDate_DMY {

TITLE = 'DMY'

POSITION = 78, 6

SIZE = 65, 16

SELECTED = TRUE

}

OPTIONBUTTON = SDate_YMD {

TITLE = 'YMD'

POSITION = 151, 6

SIZE = 65, 16

}

}

TEXT = 0

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 131 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

{

CONTENT = 'Separator:'

POSITION = 9, 42

SIZE = 84, 12

}

EDITBOX = SDate_Sep {

POSITION = 98, 39

SIZE = 27, 18

STYLE = BORDER

JUSTIFICATION = LJUST

MASK = '1?'

}

CHECKBUTTON = SDate_Day

{

TITLE = 'Day Leading Zero (07 vs 7)'

POSITION = 9, 65

SIZE = 236, 16

TOGGLE = TRUE

SELECTED = TRUE

}

CHECKBUTTON = SDate_Month

{

TITLE = 'Month Leading Zero (02 vs 2)'

POSITION = 9, 83 SIZE = 253, 16

TOGGLE = TRUE

SELECTED = TRUE

}

CHECKBUTTON = SDate_Cent

{

TITLE = 'Century (1990 vs 90)'

POSITION = 9, 101

SIZE = 187, 16

TOGGLE = TRUE

}

}

Note

The two static text objects both have an identifier of zero, and will therefore be assigned handles
by UIMS. This should only be done for objects to which the application will never require access,
since there is no way of discovering the values of these handles.

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 132 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

While your application is running:

SDATE = 320

SDATE.ORDER = 321

SDATE.MDY = 322

SDate.DMY = 323

SDate.YMD = 324

SDate.Sep = 325

SDate.Day = 326

SDate.Month = 327

SDate.Cent = 328

.

.

.

TITLE = "Short Date Format"

CALL CreateIncGroup(CONTEXT, ...

 SDATE, ...

 TITLE, ...

 20, 14, ...

 328, 125, ...

 UIMS.BORDER, ...

 "", ...

 SDATE)

CALL CreateText(CONTEXT, ...

 0, ... "Order:", ...

 9, 18, ...

 51, 12, ...

 SDATE, ...

 SDATE.ORDTXT)

CALL CreateExGroup(CONTEXT, ...

 SDATE.ORDER, ...

 "", ...

 93, 10, ...

 220, 30, ...

 UIMS.NONE, ...

 SDATE, ...

 SDATE.ORDER) CALL CreateOptionButton(CONTEXT, ...

 SDATE.MDY, ...

 "MDY", ...

 5, 6, ...

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 133 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 0, 0, ...

 SDATE.ORDER, ...

 SDATE.MDY) CALL CreateOptionButton(CONTEXT, ...

 SDATE.DMY, ...

 "DMY", ...

 78, 6, ...

 0, 0, ...

 SDATE.ORDER, ...

 SDATE.DMY) CALL CreateOptionButton(CONTEXT, ...

 SDATE.DMY, ...

 "YMD", ...

 151, 6, ...

 0, 0, ...

 SDATE.ORDER, ...

 SDATE.DMY)

CALL OptionButtonSelect(CONTEXT, SDATE.DMY, ERR)

CALL CreateText(CONTEXT, ...

 0, ...

 "Separator:", ...

 9, 42, ...

 84, 12, ...

 SDATE, ...

 SDATE.SEPTXT)

STYLE = UIMS.EBOX.RECT

JUST = UIMS.EBOX.LJUST CALL CreateEditBox(CONTEXT, ...

 SDATE.SEP, ...

 98, 39, ...

 27, 18, ...

 STYLE, ...

 "", ...

 SDATE, ...

 SDATE.SEP)

TITLE = "Day Leading Zero (07 vs 7)" CALL CreateCheckButton(CONTEXT, ...

 SDATE.DAY, ...

 TITLE, ...

 9, 65, ...

 0, 0, ...

 SDATE, ...

 SDATE.DAY)

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 134 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL CheckButtonSetToggle(CONTEXT, SDATE.DAY, TRUE, ERR)

CALL CheckButtonSelect(CONTEXT, SDATE.DAY, ERR)

TITLE = "Month Leading Zero (02 vs 2)" CALL CreateCheckButton(CONTEXT, ...

 SDATE.MONTH, ...

 TITLE, ...

 9, 83, ...

 0, 0, ...

 SDATE, ...

 SDATE.MONTH)

CALL CheckButtonSetToggle(CONTEXT, SDATE.MONTH, TRUE, ERR)

CALL CheckButtonSelect(CONTEXT, SDATE.MONTH, ERR)

TITLE = "Century (1990 vs 90)" CALL CreateCheckButton(CONTEXT, ...

 SDATE.CENT, ...

 TITLE, ...

 9, 101, ...

 0, 0, ...

 SDATE, ...

 SDATE.CENT)

CALL CheckButtonSetToggle(CONTEXT, SDATE.MCENT, TRUE, ERR)

Note

If you specify zero for both the width and height of an option or check button its size will be
calculated automatically.

9.10 An Example Application: EditCtrl

This example application illustrates some ways of using controls in an application's main

window. It you shows how to:

• Create a button bar to make commonly used commands more accessible.

• Use a TextEditor to provide multiple-line text entry and editing.

• Use a Text control to display status messages.

The EditCtrl application places a button bar at the top of the window and a status line at

the bottom, and fills the rest of the client area with a TextEditor. It then monitors the

size of the client area to ensure that the TextEditor always just fits and the status line is

always at the bottom.

EditCtrl is an extension of the EditMenu application described in Chapter 8. To create the

EditCtrl application, copy and rename the source files of the EditMenu application and

then make the following changes.

1. Add new constant definitions to the header file.

2. Define TitledButton, TextEditor and Text resources.

3. Enable update and size messages.

4. Change the colour of the App window's client area.

5. Add the status-line Text contact as a Child of the main application window.

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 135 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6. Add new variables.

7. Determine the sizes of the button bar and the status line, for use when

positioning and resizing the TextEditor.

8. Add a UIMS.MSG.ENTER case to the message loop.

9. Add a UIMS.MSG.SIZE case to the message loop.

10. Add a UIMS.MSG.BUTTONPRESS case to the message loop.

11. Compile the resource file and the DATA/BASIC program.

9.10.1 Add New Constant Definitions

You will need identifiers for the additional resources defined in the resource script. These

must be available to both the resource script and the DATA/BASIC source, so add the

following to your header file:

EQUATE TxtEd1 TO 20

EQUATE Text1 TO 30

* Buttons

EQUATE SaveButton TO 202

EQUATE CutButton TO 204

EQUATE CopyButton TO 205

EQUATE PasteButton TO 206

EQUATE UndoButton TO 208

Ensure that the new header file is available on both the host and the PC.

9.10.2 Define New Resources

The application window will contain five TitledButton contacts for the button bar, a Text

contact for the status line and a TextEditor contact. The TextEditor must allow you to

scroll to any part of the text and will therefore need horizontal and vertical scroll bars.

Note that the Text And TextEditor contacts are given arbitrary the sizes and positions;

the correct values will be set within the application before these controls are mapped.

Add the following lines to the definition for Win1 in the file EDITCTRL.UCL:

 TITLEDBUTTON = SaveButton

 {

 POSITION = 0, 0

 SIZE = 96, 0

 TITLE = 'Save File'

 }

 TITLEDBUTTON = CutButton

 {

 POSITION = 106, 0

 SIZE = 96, 0

 TITLE = 'Cut'

 }

 TITLEDBUTTON = CopyButton

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 136 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 {

 POSITION = 202, 0

SIZE = 96, 0

 TITLE = 'Copy'

 }

 TITLEDBUTTON = PasteButton

 {

 POSITION = 298, 0

 SIZE = 96, 0

 TITLE = 'Paste'

 ENABLED = FALSE

 }

 TITLEDBUTTON = UndoButton

 {

 POSITION = 404, 0

 SIZE = 96, 0

 TITLE = 'Undo'

 }

 TEXTEDITOR = TxtEd1

 {

 POSITION = 0, 40

 SIZE = 700, 500

 STYLE = AUTOSCROLL, BORDER, HSCROLLBAR, VSCROLLBAR

 MAPPED = FALSE

 }

 TEXT = Text1

 {

 POSITION = 0, 480

 SIZE = 1000, 0

 CONTENT = ' Current status:'

 MAPPED = FALSE

 }

You will also need to increase the initial size of the main App window. Find the line which

reads

SIZE = 500, 417

and change it to

SIZE = 700, 500

9.10.3 Enable Enter and Size Messages

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 137 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

When you start your application, size and enter messages will be disabled. To enable

them, add the following code to the DATA/BASIC source after signing on to UIMS, but

before loading the resources.

* Enable size and enter messages if not already enabled

CALL GetEventMask(CONTEXT, CONTEXT, EVENTMASK)

CALL BitTest(EVENTMASK, UIMS.EM.SIZE, ENABLED)

IF NOT(ENABLED) THEN EVENTMASK = EVENTMASK + UIMS.EM.SIZE

CALL BitTest(EVENTMASK, UIMS.EM.ENTER, ENABLED)

IF NOT(ENABLED) THEN EVENTMASK = EVENTMASK + UIMS.EM.ENTER

CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)

There is no need to enable button-press messages, as the default event mask has these

enabled.

9.10.4 Change the Window's Colour

To help distinguish the different parts of the application's window, the background of the

main application window will be given a different colour. Add the following lines after to

the DATA/BASIC source after the resources have been loaded, but before adding Win1

as a child of the application context.

* Change the colour of Win1's client area

CALL GetDrawrule(CONTEXT, CONTEXT, DRAWRULE1)

CALL DrawruleSetColour(CONTEXT, DRAWRULE1, UIMS.BLACK, UIMS.GREY,

ERR)

9.10.5 Add New Variables

You will need five new variables in the EditCtrl application. Add the following to the

DATA/BASIC source code after the line which adds Win1 as a child of the application

context:

* Mapped flag - resources are not yet mapped

MAPPED = 0

* Get heights of button bar and status line

CALL GetSize(CONTEXT, SaveButton, BUTTON.WIDTH, BUTTON.HEIGHT, ERR)

CALL GetSize(CONTEXT, Text1, STAT.WIDTH, STAT.HEIGHT, ERR)

The heights of the button bar and status line will be used to set the position of the status

line, and the size and position of the TextEditor. BUTTON.WIDTH and STAT.WIDTH are in

fact unused, but must be present in the calls to GetSize.

9.10.6 Add the Enter Case

Whenever the focus is moved from one contact to another, a UIMS.MSG.ENTER

message is generated. In the EditCtrl application, the TextEditor must always have the

focus, so that the user can enter and edit text. Enter messages will therefore be used to

pass the focus to the TextEditor.

Note

However, in the case of the TitledButton contacts, changing the focus too quickly can prevent the
button-press message being generated. The focus is therefore only returned to the TextEditor
once the button-press message has been received (see below).

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 138 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Add the following to the CASE statement in the HANDLE.WIN1.MESSAGES subroutine.

CASE MSG.TYPE = UIMS.MSG.ENTER

 * If the contact is not a button, set the focus back to

 * the text editor.

 IF MSG.CONTACT < SaveButton THEN

 CALL SetContactFocus(CONTEXT, TxtEd1, ERR)

 END

9.10.7 Add the Size Case

A UIMS.MSG.SIZE message is generated whenever the size of a window is changed,

and also when the window is displayed by giving it a parent. In EditCtrl, size messages

will be used to set the position of the status line, and the size and position of the

TextEditor. Add the following to the CASE statement in the HANDLE.WIN1.MESSAGES

subroutine.

CASE MSG.TYPE = UIMS.MSG.SIZE

 * Win1's size has changed - so must TxtEd1's

 CALL Resize(CONTEXT, TxtEd1, INT(DATA1 / 65536), ...

 DATA2 - BUTTON.HEIGHT - STAT.HEIGHT, ERR)

 * Position the status line at the foot of the window

 CALL Move(CONTEXT, Text1, 0, DATA2 - STAT.HEIGHT, ERR)

 * If TxtEd1 and Text1 are not yet mapped -

 IF NOT(MAPPED) THEN

 * Move TxtEd1 to below the button bar

 CALL Move(CONTEXT, TxtEd1, 0, BUTTON.HEIGHT, ERR)

 * Map TxtEd1 and Text1

 CALL Map(CONTEXT, TxtEd1, ERR)

 CALL Map(CONTEXT, Text1, ERR)

 MAPPED = 1

 END

This sets the width of the TextEditor to be the same as that of the client area of Win1, as

returned in the DATA1 parameter (note that this must be divided by 65536 to obtain the

correct value). The required height for the TextEditor is calculated by subtracting the

heights of the button bar and the status line from the height of the Win1 client area.

Similarly, the status line is moved to the foot of the window, by subtracting its height

from that of the Win1 client area and using this as the new horizontal position.

TxtEd1 and Text1 are created are created unmapped so that their positions and sizes

can be set before they are displayed. When the first size message is received (generated

when Win1 is made a child of the application context), the MAPPED variable will be zero;

the TextEditor is therefore moved to its correct position, just below the button bar, and

TxtEd1 and Text1 are then mapped (thus displaying them within Win1). The MAPPED

variable is set to prevent these operations taking place on subsequent size messages.

9.10.8 Add the ButtonPress Case

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 139 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The EditCtrl application is intended to demonstrate how to use controls in a window.

Therefore, instead of performing tasks, the buttons at the top of the window display the

message "Command not implemented!".

Note

Once the message has been processed, the focus is passed to the TextEditor so that the user can
continue editing.

In your DATA/BASIC source, add the following to the CASE statement in the

HANDLE.WIN1.MESSAGES subroutine.

CASE MSG.TYPE = UIMS.MSG.BUTTONPRESS ;* user has clicked a button

 GOSUB HANDLE.WIN1.BUTTONS

Then add the following subroutine at any convenient point:

*

* SUBROUTINE: HANDLE.WIN1.BUTTONS

*

* PURPOSE: Process Win1 button press messages

*

* COMMENTS:

* This routine takes action according to which button was

* pressed by the user.

*

HANDLE.WIN1.BUTTONS:

 BEGIN CASE ;* Switch on the contact in which the event occurred

*

* File actions

 CASE MSG.CONTACT = SaveButton

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "EditCtrl Example Application", ...

 "Command not implemented!", ...

 "", ...

 OK, ...

 ERR)

 * Edit actions

 CASE MSG.CONTACT = CutButton OR ...

 MSG.CONTACT = CopyButton OR ...

 MSG.CONTACT = PasteButton OR ...

 MSG.CONTACT = UndoButton

 CALL CreateMessageBox(CONTEXT, ...

Section 9: Controls

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 140 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 UIMS.INFO, ...

 "EditCtrl Example Application", ...

 "Command not implemented!", ...

 "", ...

 OK, ...

 ERR)

 END CASE

 * Return the focus to TxtEd1

 CALL SetContactFocus(CONTEXT, TxtEd1, ERR)

RETURN

9.10.9 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. When run,

the application should look like this:

Figure 9-1. The EditCtrl Application

Whenever the application is active, the TextEditor will be given the focus, allowing you

toenter and edit text. You can also select text with the keyboard and the mouse (see the

UIMS DATA/BASIC API, Reference Manual for a full description of the TextEditor). If you

change the size of the application's main window, the TextEditor will be resized to suit,

and the status line will be repositioned at the foot of the window.

The central part of the client area
is a single TextEditor control.

Button Bar

Status Line

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 141 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 10: Dialog Boxes
Dialog Boxes are windows that applications use to interact with the user. Typically a

dialog box will contain one or more of the controls described in the previous chapter.

This chapter covers the following topics:

• What is a dialog box.

• Creating and using the different types of dialog box.

• Using controls in dialog boxes.

This chapter also explains how to create an example application which shows how to

build and use a dialog box which contains controls.

10.1 What is a Dialog Box

A dialog box is a window that an application uses to display or prompt for information.

Dialog boxes are typically used to prompt the user for the information needed to

complete a command. A dialog box will contain one or more controls with which the user

can type text, choose options, and direct the action of a particular command.

The About box in the Generic Application described in Chapter 3 is an example of a

dialog box. It contains static text controls that provide information about the application,

and a push button control that the user must use to close the dialog box and return to

the main window.

A dialog box is normally displayed in response to a menu selection. For example, the

Open and Save As commands on a File menu both require additional information to

complete their tasks. Both display dialog boxes to prompt for a file name and a

directory.

There are two types of dialog box: modal and modeless. These are described below

10.1.1 Modal Dialog Boxes

A modal dialog box temporarily disables the parent window and forces the user to

complete the requested action before continuing. Modal dialog boxes are particularly

useful for gathering information your application requires in order to proceed. For

example, most applications display a modal dialog box when the user chooses the Open

command from the File menu. The application cannot proceed until the user has entered

the name of the file to open.

There are two types of modal dialog box: application-modal and system-modal. An

application-modal dialog box disables only the current application; the user can use

other applications while the dialog box is displayed. A system-modal dialog box disables

the complete user interface; the user can do nothing until he has responded to the

dialog.

10.1.2 Modeless Dialog Boxes

A modeless dialog box does not disable the parent window. This means that the user can

continue to work with the application while the dialog box is displayed. For example, a

drawing application might include a command that allows the user to choose a colour

with which to fill graphic elements; the dialog box which appears when this command is

selected might be modeless so that the colours of several elements could be changed

without having to choose the Colour command each time.

10.1.3 Message Boxes

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 142 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A message box is a special type of application-modal dialog box which is predefined as

containing only a graphic icon, static text and command buttons. There are four pre-

defined types of message box: Information, which has a single OK button; Warning,

which has OK and Cancel, or Yes, No and Cancel buttons; Alert, which has either Retry

and Cancel, or Abort, Retry and Ignore buttons; and Query, which displays a question

mark and has 'OK' and 'Cancel', or 'Yes', 'No' and 'Cancel' buttons. The titles of the

buttons can be changed if required. The graphic icon displayed depends on the type of

message box selected. You can also define your own combination of icon and buttons.

10.2 Using a Dialog Box

You create a dialog box in much the same way as any other contact: either while your

application is running by calling the CreateDlgBox subroutine, or in a separate resource

script. Both the following examples create a dialog box containing some static text and

an OK button.

In the resource script:

EQUATE Fnf_Dlg TO 830

EQUATE Fnf_OK TO 831

DIALOGBOX = Fnf_Dlg {

TITLE = 'UIMS'

POSITION = 63, 42

SIZE = 148, 92

STYLE = SYSMENU

TEXT = 0

{

CONTENT = 'File not found.'

POSITION = 28, 31

SIZE = 116, 12

}

TITLEDBUTTON = Fnf_OK

{

TITLE = 'OK'

POSITION 46, 55

SIZE = 60, 18

}

}

In this example:

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 143 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The SYSMENU style gives the dialog box a system menu.

An identifier of zero asks UIMS to assign a handle to the text contact.

While your application is running:

FNF.DLG = 830

FNF.OK = 831

TITLE = "UIMS"

STYLE = UIMS.WIN.SYSMENU

CALL CreateDlgBox(CONTEXT, FNF.DLG, TITLE, 63, 42, 148, 92, ...

 STYLE, "" , FNF.DLG)

CALL SetMapped(CONTEXT, FNF.DLG, FALSE, ERR)

CONTENT = "File not found."

CALL CreateText(CONTEXT, 0 , CONTENT, 18, 31, 116, 12, FNF.DLG, ...

 FNF.TXT)

CALL CreateTitledButton(CONTEXT, FNF.OK, "OK", 46, 55, 60, 18, ...

 FNF.DLG, FNF.OK) CALL AddChild(CONTEXT, WIN1, -1,

FNF.DLG, ERR)

In this example:

The dialog box is initially created without a parent so that it will not be displayed.

This line sets the dialog upmappable, so that it can be attached to its parent without

being displayed. Note that its children do not need to be set unmappable.

An identifier of zero asks UIMS to assign a handle to the text contact.

When you first create a dialog box it is always application-modal; if you want to change

its mode you must call the DlgBoxSetMode subroutine.

When you need the dialog box, there are several ways in which you can display it:

• You could attach the dialog box to its parent, but set it unmappable (by calling

the SetMapped subroutine) so that it will not normally be displayed. When you

need the box you simply change it to mappable and change it back again when

you have finished.

• You could create or load the dialog box as an orphan and attach it to its parent

window when needed. When you have finished with the dialog you would remove

it from its parent's list of children.

• You could create or load the dialog box resource only when it is needed and

destroy it again when you have finished.

The first of these is the simplest and quickest method to use.

10.2.1 Using Controls in Dialog Boxes

You use controls in a dialog box in much the same way as in an AppWindow or a

ChildWindow. You will need a routine to handle messages generated within the window

and call this from the window case statement in your application's message loop.

There are three ways in which the user can leave a dialog box:

• By operating one of the titled buttons.

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 144 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• By pressing return while in one of the other controls, and thus actioning the

default titled button.

Note

Within a dialog box, you do not need to specially create a default titled button. You can
call the DlgBoxSetDefButton subroutine to do this for you and the dialog box routines

will then change the button borders as necessary.

• If the dialog box has a system menu, the user can choose the Close command.

In the first two cases, a UIMS.MSG.BUTTONPRESS message is generated, and this

specifies which button was operated. In the third case, a UIMS.MSG.CLOSE message is

generated, specifying the dialog box as the window to be closed. Note that in either

case, the event window is the dialog box itself; events which occur within a dialog box

can therefore be handled separately from those which occur in other windows. The

following example illustrates this:

LOOP UNTIL USER.WANTS.TO.EXIT DO

CALL GetMsg(0, ...

 MSG.CONTEXT, ...

 MSG.WINDOW, ...

 MSG.CONTACT, ...

 MSG.TYPE, ...

 TIMESTAMP, ...

 DATA1, ...

 DATA2, ...

DATA3, ...

 DATA4)

BEGIN CASE CASE MSG.WINDOW=WIN1

.

. REM handle messages for WIN1 .

CASE MSG.WINDOW=DLG1

* handle messages for the dialog box

* we are only interested in button-press and close messages

BEGIN CASE

CASE MSG.TYPE=UIMS.MSG.BUTTONPRESS

GOSUB HANDLE.DLG1.BUTTONS

CASE MSG.TYPE=UIMS.MSG.CLOSE

* for a close message, simply unmap the dialog box

CALL UnMap(CONTEXT, DLG1, ERR)

END CASE

END CASE

REPEAT

.

.

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 145 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

.

HANDLE.DLG1.BUTTONS:

BEGIN CASE

CASE MSG.CONTACT = DLG1.CANCEL

* if the cancel button was operated, unmap the dialog box

CALL UnMap(CONTEXT, DLG1, ERR)

CASE MSG.CONTACT = DLG1.OK .

. REM carry out requested action .

.

. REM handle any other titled buttons .

END CASE

RETURN

10.3 Using a Message Box

A message box can only be created while your application is running, by calling the

CreateMessageBox subroutine. The message box is always displayed immediately and

destroyed when the user operates one of its buttons.

When creating a message box, you must provide the following:

• The handle of the application context.

• A value that specifies –

1. The number of buttons.

2. The type of icon (Information, Warning, Alert or Query) to be displayed in

the message box.

3. Which button will be the default.

• The title of the message box, if any.

• The text of the message.

• A list of titles for the buttons.

• Variables in which to return the response to the message (which button was

operated) and a completion code.

10.3.1 Style Parameter

The style of the message box is determined by a value that is made up of three different

elements:

1. A value from 1 to 3 that determines the number of buttons.

2. A value from 16 to 64 in steps of 16, that determines the type of icon to be

displayed in the message box. You can use any one of four icons:

Value Purpose Icon

16 Information

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 146 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

32 Warning

48 Alert

64 Query

3. A value from 0 to 512 in steps of 256, that determines which button is the

default.

For example, the value 34 (2 + 32 + 0) specifies two buttons, a Warning icon and the

first button as the default, while 323 (3 + 64 + 256) specifies three buttons, a Query

icon and the second button as the default.

10.3.2 Button Titles

The button titles must be listed in a dynamic array, with one title in each attribute. Note

that if you specify a null string for any of the titles, the appropriate button will be given a

predetermined default title. This is particularly useful when using the pre-defined

message box styles (see below).

10.3.3 Pre-defined Styles

A number of pre-defined styles are available. These specify the number of buttons, the

icon used and the titles of the buttons. You must specify the required pre-defined style

instead of the number of buttons and the icon, and use a null string instead of the array

of button titles. For example, the style UIMS.ALERT2 specifies a message box with an

Alert icon and two buttons labelled "Retry" and "Cancel":

If you wish, you can combine a pre-defined style with a default button specification. For

example:

UIMS.ALERT2 + 256

specifies the same message box as above, but with the second, "Cancel" button as the

default.

If necessary, you can use a button title array to replace one or more of the pre-defined

titles.

10.3.4 Example

The following example creates a warning message which might be displayed when you

attempt to delete a file:

FILE = "C:\UIMS\TRYIT.TXT"

MESSAGE = "Delete file ":FILE:"?"

TYPE = 3 + 32 + 256

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 147 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

TITLE = "File Manager"

BUTTONS = "Yes":AM:"No":AM:"Cancel" CALL CreateMessageBox(CONTEXT, ...

 TYPE, ...

 TITLE, ...

 MESSAGE, ...

 BUTTONS, ...

 RESPONSE, ...

 ERR)

In this example:

This parameter specifies a message box with three buttons (3) and a warning icon (32),

in which the second button is the default.

This parameter defines the titles of the buttons in the message box.

10.4 An Example Application: SendMsg

This example application shows you how to create and use an application-modal dialog

box to provide access to one of the standard REALITY commands: MESSAGE. The

application has a Utilities menu containing a Send Message command. This displays the

dialog box shown in Figure 10-1.

Figure 10-1. The Send Message Dialog Box

The dialog box contains the following controls:

• An EditBox control in which the user types the message to be sent.

• An ExclusiveGroup containing three OptionButton controls – these allow the user

to choose whether to send the message to another user, to a specified account or

to a specified port on the host system.

• A ListBox control which lists the users that are currently logged on, or the

accounts or ports that are currently in use. The contents of this control change as

the user chooses from the ExclusiveGroup.

Static text EditBox control

ListBox control

CheckButton control

containing OptionButtons

TitledButton controls

ExclusiveGroup control

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 148 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• A CheckButton control which allows the user to send the message to every

account on the host system.

• A default TitledButton control labelled "Send". This lets the user tell the

application to send the message.

• A button labelled "Cancel" that lets the user cancel the Send Message command.

• A button labelled "Help" that in a real application would offer the user help on

using the Send Message command. In the example application, this is not

implemented and a message box is displayed instead.

• Two static Text controls that label the EditBox and the ListBox.

To create the SendMsg application, copy and rename the source files for the Generic

application as described in Chapter 4. Then make the following changes:

1. Add new constant definitions to the header file.

2. Define a Utilities menu and a Send Message menu item.

3. Define the Send Message dialog box and its controls.

4. Modify the menu item case in the message loop.

5. Add the Send Message window case to the main message loop.

6. Add a HANDLE.DLG1.MESSAGES subroutine.

7. Add subroutines to support the message-handling routines.

8. Compile the resource file and the DATA/BASIC program.

10.4.1 Add New Constant Definitions

You will need identifiers for the additional resources defined in the resource script. These

must be available to both the resource script and the DATA/BASIC source, so add the

following to your header file:

* Utilities menu

EQUATE UtilSendMsg TO 101

* Dialog Box

EQUATE Dialog1 TO 200

EQUATE Text1 TO 210

EQUATE Edit1 TO 211

EQUATE Text2 TO 220

EQUATE List1 TO 222

EQUATE ExGroup TO 230

EQUATE Option1 TO 231

EQUATE Option2 TO 232

EQUATE Option3 TO 233

EQUATE Check1 TO 240

EQUATE OKButton TO 250

EQUATE CancelButton TO 251

EQUATE HelpButton TO 252

Ensure that the new header file is available on both the host and the PC.

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 149 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

10.4.2 Define Resources

In order to use the Send Message command, the user must be able to select it from a

menu. Find the definition of Win1's menu bar in the resource script and add the following

after the opening brace:

 MENU = 0

 {

 TITLE = '&Utilities'

 CHILDREN = 'Send &Message...' = UtilSendMsg

 }

Although the dialog box will not be displayed until the user selects the Send Message

command, it will be created in the resource script as a child of Win1. To prevent it being

displayed all the time, its Mapped attribute will be set to FALSE. Then, when the dialog

box is required all that is necessary is to Map it.

Add the following to the resource script, just before the final closing brace of the

definition for Win1:

 DIALOGBOX = Dialog1

 {

 TITLE = 'Send Message'

 POSITION = 235, 300

 SIZE = 698, 549

 STYLE = CLOSABLE, MOVABLE

 MAPPED = FALSE

 TEXT = Text1

 {

 CONTENT = 'Message:'

 POSITION = 16, 29

 SIZE = 0, 0

 }

EDITBOX = Edit1

 {

 POSITION = 125, 21

 SIZE = 538, 69

 STYLE = BORDER

 MASK = ''

 }

 EXCLUSIVEGRP = ExGroup

 {

 TITLE = 'Send to'

 POSITION = 16, 126

 SIZE = 203, 235

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 150 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 BORDER = BORDER

 OPTIONBUTTON = Option1

 {

 TITLE = 'User'

 POSITION = 16, 5

 SIZE = 0, 0

 SELECTED = TRUE

 }

 OPTIONBUTTON = Option2

 {

 TITLE = 'Account'

 POSITION = 16, 63

 SIZE = 0, 0

 }

 OPTIONBUTTON = Option3

 {

 TITLE = 'Port'

 POSITION = 16, 120 SIZE = 0, 0

 }

 }

 CHECKBUTTON = Check1

 {

 TITLE = 'All accounts'

 POSITION = 16, 383

 SIZE = 0, 0

}

 TEXT = Text2

 {

 CONTENT = 'Users:'

 POSITION = 281, 126

 SIZE = 216, 0

 }

 LISTBOX = List1

 {

 POSITION = 281, 171

 SIZE = 219, 228

 CONTROLS = NONE

 }

 TITLEDBUTTON = SendButton

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 151 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 {

 TITLE = '&Send'

 POSITION = 556, 137

 SIZE = 110, 69

 }

 TITLEDBUTTON = CancelButton

 {

 TITLE = '&Cancel'

 POSITION = 556, 223

 SIZE = 110, 69

 }

 TITLEDBUTTON = HelpButton

 {

 TITLE = '&Help'

 POSITION = 556, 366

 SIZE = 110, 69

 }

 DEFBUTTON = SendButton

 }

The user will be able to move the dialog box around the screen and to close it from the

system menu, as well as with the Cancel button.

In the definition of the EditBox control, the MASK attribute is intended for future use. It

must be included, however, and should be set to a null string.

The ExclusiveGroup control has its own title, and does not need a static text control.

The position of each contact must be specified relative to its parent, so the three

OptionButton controls must be positioned relative to the ExclusiveGroup. All other

controls are positioned relative to the DialogBox window.

The style of the list box is set to NONE. This will allow only one item to be selected at a

time.

The Send button is made the default.

Note

There is no need to set the mode of the DialogBox, since the default is applicationmodal.

10.4.3 Modify the Menu Item Case

The SendMsg application has a Utilities menu containing the Send Message command, so

you will need add this to the message loop. Edit the DATA/BASIC source code and add

the following to the CASE structure in the HANDLE.WIN1.MENU subroutine:

* Send Message command

 CASE MSG.CONTACT = UtilSendMsg

* Return the dialog to its default state

 GOSUB SETUP.DIALOG1

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 152 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* Now display the dialog box

 CALL Map(CONTEXT, Dialog1, ERR)

* Give the message edit box the focus

 CALL SetContactFocus(CONTEXT, Edit1, ERR)

* Select the whole of any previous message

 CALL EditBoxSetSelected(CONTEXT, Edit1, 0, 0, TRUE, ERR)

The SETUP.DIALOG1 subroutine sets the dialog to its default state. This is necessary

because each time the dialog is used, there might be different users logged on.

The Map subroutine displays the dialog box. Once this has been done, the focus can be

set to the Message edit box; if this is not done, the user will have to click in the edit box

before starting to type (note that this cannot be done until the dialog box has been

mapped, as it is not possible to give the focus to an unmapped contact). Finally, the

whole of any text already in the edit box is selected; this will allow to user to delete it by

simply starting to type a new message.

10.4.4 Add the Dialog1 Case

For messages generated while the Send Message dialog box is displayed, the event

window parameter will be the handle of the dialog box. You will therefore need to add

the following to the CASE structure in the main message loop:

CASE MSG.WINDOW = Dialog1

 GOSUB HANDLE.DLG1.MESSAGES

Then add the subroutine HANDLE.DLG1.MESSAGES at any convenient point in your

DATA/BASIC source code:

*

* SUBROUTINE: HANDLE.DLG1.MESSAGES

*

* PURPOSE: Process messages for the Send Message dialog box

*

* COMMENTS:

* The dialog box is closable, so Close messages must be processed.

* Otherwise, only button-press messages are processed.

*

HANDLE.DLG1.MESSAGES:

 BEGIN CASE ;* switch on the type of message

*

 CASE MSG.TYPE = UIMS.MSG.BUTTONPRESS

*

 BEGIN CASE ;* Switch on the contact in which the event occurred

*

 * Send button

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 153 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CASE MSG.CONTACT = SendButton

* Get the message to be sent

 CALL EditBoxGetContent(CONTEXT, Edit1, MESSAGE, VALID, ERR)

 IF MESSAGE = "" THEN

 * If no message, beep and set focus to the message edit box

 CALL SoundSpeaker(1024, 50, 1, 0, ERR)

 CALL SetContactFocus(CONTEXT, Edit1, ERR)

 END ELSE

 * Otherwise, send the message

 GOSUB SEND.MSG

 * Hide the dialog box

 CALL UnMap(CONTEXT, Dialog1, ERR)

 END

 * Cancel button

 CASE MSG.CONTACT = CancelButton

 * Hide the dialog box

 CALL UnMap(CONTEXT, Dialog1, ERR)

 * Help button

 CASE MSG.CONTACT = HelpButton

 * Help is not implemented, so display a message

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "Dialog Box Example Application", ...

 "Command not implemented!", ...

 "", ...

 OK, ...

 ERR)

 CASE MSG.CONTACT = Check1

 * Find out the new state of the All Accounts button

 CALL CheckButtonGetSelected(CONTEXT, Check1, CHECK1.SEL)

 ENABLED = NOT(CHECK1.SEL)

 * If selected, the Ex-group and the list box must be

 * disabled; otherwise they are enabled.

 CALL SetEnabled(CONTEXT, ExGroup, ENABLED, ERR)

 CALL SetEnabled(CONTEXT, Option1, ENABLED, ERR)

CALL SetEnabled(CONTEXT, Option2, ENABLED, ERR)

 CALL SetEnabled(CONTEXT, Option3, ENABLED, ERR)

 CALL SetEnabled(CONTEXT, List1, ENABLED, ERR)

 CASE MSG.CONTACT = Option1 OR ...

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 154 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 MSG.CONTACT = Option2 OR ...

 MSG.CONTACT = Option3

 * New destination-type selection - fetch the appropriate list

 DEST.TYPE = MSG.CONTACT

 GOSUB GET.DEST

 END CASE

 * Close item on the system menu

 CASE MSG.TYPE = UIMS.MSG.CLOSE

 * Hide the dialog box

 CALL UnMap(CONTEXT, Dialog1, ERR)

 END CASE

RETURN

This routine handles two types of message: UIMS.MSG.BUTTONPRESS messages from

the three titled buttons, the three option buttons and the check button; and

UIMS.MSG.CLOSE messages generated by selecting Close from the system menu, or by

double clicking the system menu box.

10.4.4.1 Send Button

When the Send button is operated, the application uses EditBoxGetContent to fetch

the message that the user has typed. If there is no message, an alarm is sounded by

calling the SoundSpeaker subroutine and the focus is then moved to the Message edit

box.

If there is a message to send, the SEND.MSG subroutine is called to send the message

and, when it has been sent, the dialog box is hidden.

10.4.4.2 Cancel Button

If the Cancel button is selected, the dialog box is simply hidden.

10.4.4.3 Help Button

There is no on-line help available for the SendMsg application, so a message is

displayed, saying that the command is not implemented.

10.4.4.4 "All Accounts" Check Button

If the user operates the All Accounts check button, the application calls the

CheckButtonGetSelected subroutine to find out the new state of the button, and then

uses SetEnabled to enable or disable, as appropriate, the Send To group and the

Destination list box. Note that in the case of the exclusive group, each option button

must be enabled or disabled separately; if this is not done, when the group is disabled,

there will be no indication to the user that these buttons cannot be used.

10.4.4.5 " Send To" Exclusive Group

When the user selects one of the option buttons in this group, the application changes

contents of the Destination list box. First it sets the variable DEST.TYPE to the handle of

the selected button, and then it calls the GET.DEST subroutine to get an up-to-date list

of users, accounts or ports, as appropriate.

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 155 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

10.4.4.6 Close Messages

Selecting Close from the system menu, or double-clicking the system menu box, is the

same as operating the Cancel button – the dialog box is simply hidden.

10.4.5 Add Support Subroutines

You need to add several subroutines to your DATA/BASIC source file to support the

dialog box operations. These are:

SETUP.DIALOG1 This sets the Send Message dialog box to its default state.

GET.DEST This fetches the current list of users, accounts or ports and displays

it in the list box.

SEND.MSG This sends the message entered by the user to selected user,

account or port, or to all accounts.

10.4.5.1 SETUP.DIALOG1 Subroutine

The subroutine calls CheckButtonDeselect to deselect the All Accounts check button,

and then uses the Enable subroutine to enable the Send To exclusive group and its

option buttons, and the list box. The Users option button is then selected.

Next the DEST.TYPE variable is set to the handle of the Users option button and the

GET.DEST subroutine is called; this fills the List1 list box with the list of current users.

Finally, the Send titled-button is made the default.

*

* ROUTINE: SETUP.DIALOG1

*

* PURPOSE:

* Sets the Send Message dialog box to its default state.

*

SETUP.DIALOG1:

 * Deselect the All Accounts option and enable the Ex-group and

 * list box

 CALL CheckButtonDeselect(CONTEXT, Check1, ERR)

 CALL Enable(CONTEXT, ExGroup, ERR)

 CALL Enable(CONTEXT, Option1, ERR)

 CALL Enable(CONTEXT, Option2, ERR)

 CALL Enable(CONTEXT, Option3, ERR)

 CALL Enable(CONTEXT, List1, ERR)

 * Select the Users option

 CALL OptionButtonSelect(CONTEXT, Option1, ERR)

 * Get the list of current users and put it in the list box

 DEST.TYPE = Option1

 GOSUB GET.DEST

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 156 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * Make the Send button the default

 CALL DlgBoxSetDefButton(CONTEXT, Dialog1, SendButton, ERR)

RETURN

10.4.5.2 GET.DEST Subroutine

This subroutine fetches the list of current users, or of the accounts or ports that are in

use, and displays the result in the Destination list box.

A list of users, accounts and ports is obtained by using the PERFORM statement to

execute the TCL LISTU command. The data is returned in the form of a table, consisting

of a header and a line of information for each port that is in use. The columns of this

table contain:

1. The port number (characters 1 to 4).

2. The user-id of the user logged on via this port (characters 6 to 16).

3. The account being used by that user (characters 17 to 37).

The remaining columns contain additional information which is not needed by the

SendMsg application.

The required list is built-up by extracting the appropriate columns from each line of the

table (ignoring the header and the summary information at the end), and appending

these to a dynamic array, DEST.LIST. When the list is complete, all spaces and the

trailing attribute mark are removed, (if the trailing attribute mark is not removed, the list

will have an extra, null item when displayed in the list box). The previous contents of the

list box are then removed by calling ListBoxRemoveContents and the new list is

inserted with ListBoxAddContents.

Next, the title of the list box (that is, the contents of the Text2 static text control) is

changed to correspond to the contents of new list, and finally, the ListBoxAddSelection

subroutine is called to select the first item in the list.

*

* ROUTINE: GET.DEST

*

* PURPOSE:

* Fetches the Ports that are currently in use, or the Users or

* Accounts that are currently using them. The result is displayed* in

the List1 list box.

*

* COMMENTS:

* The type of destination is specified by the DEST.TYPE variable.

* The current list is available in the DEST.LIST dynamic array.

*

GET.DEST:

* get the list of users

 PERFORM "LISTU" CAPTURING SYSDATA

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 157 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* initialise dynamic array

 DEST.LIST = ""

* separate out the required info: ports, users or accounts

 FOR N = 6 TO DCOUNT(SYSDATA, CHAR(254))-2

* ignore this port and entries with no port number

 IF SYSDATA<N>[1,1] <> "*" AND SYSDATA<N>[1,4] <> SPACE(4) THEN

 BEGIN CASE

 CASE DEST.TYPE = Option1

 DEST.LIST<-1> = SYSDATA<N>[6,10]

 CASE DEST.TYPE = Option2

 DEST.LIST<-1> = SYSDATA<N>[17,20]

 CASE DEST.TYPE = Option3

 DEST.LIST<-1> = SYSDATA<N>[1,4]

 END CASE

 END

 NEXT N

* remove spaces from the list

 DEST.LIST = TRIM(DEST.LIST, " ", "A")

* remove the trailing attribute mark

 DEST.LIST = TRIM(DEST.LIST, CHAR(254), "T")

* Put the list into the list box

 CALL ListBoxRemoveContents(CONTEXT, List1, 0, -1, ERR)

 CALL ListBoxAddContents(CONTEXT, List1, -1, DEST.LIST, ERR)

* Set the title of the list box

 BEGIN CASE

 CASE DEST.TYPE = Option1

 CALL TextSetContent(CONTEXT, Text2, "Users:", ERR) CASE DEST.TYPE =

Option2

 CALL TextSetContent(CONTEXT, Text2, "Accounts:", ERR)

 CASE DEST.TYPE = Option3

 CALL TextSetContent(CONTEXT, Text2, "Ports:", ERR)

 END CASE

* Select the first item

 CALL ListBoxAddSelection(CONTEXT, List1, 0, ERR)

RETURN

10.4.5.3 SEND.MSG Subroutine

This subroutine sends the message entered by the user to the selected destination or

destinations.

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 158 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

First, the application finds out whether the message is to be sent to all accounts by

calling CheckButtonGetSelected to interrogate the All Accounts check button. If this

option is selected, the CMND variable is set to an asterisk ("*").

If All Accounts is not selected, the type of destination is obtained by calling

ExGroupGetSel to find out which of the Send To option buttons is selected. Next, the

user-id, account name or port number is obtained by calling ListBoxGetSelections to

find out which item in the list box is selected, and then setting the CMND variable to the

corresponding attribute from the DEST.LIST array. The appropriate destination-type

character is then added to the beginning of the CMND string: an exclamation mark ("!")

for a port number; or an "@" character for a user-id. No prefix is required for an account

name.

The message is then sent by using the PERFORM statement to execute the TCL

MESSAGE command, using the CMND variable as the first parameter. The MESSAGE

variable contains the message to be sent.

The screen output that results from sending the message is captured in the RESULT

variable. After trimming off the leading and trailing attribute marks, the section following

the first attribute mark is extracted. If the MESSAGE command was successful, the

resulting string begins with the number of messages sent. This is tested to see whether

one or more messages were sent, and the string is changed to read "MESSAGE" or

"MESSAGES" as appropriate (if the MESSAGE command was unsuccessful, the error

string which resulted remains unchanged). The resulting status message is then

displayed in a message box.

*

* ROUTINE: SEND.MSG

*

* PURPOSE: Send a message to another user, account or port

*

* COMMENTS:

* SEND.TO - type of destination (user, account or port).

* DEST.LIST - list of destinations.

* MESSAGE - message to send.

*

SEND.MSG:

 * Is the message to go to all accounts?

 CALL CheckButtonGetSelected(CONTEXT, Check1, SEND.TO)

 IF SEND.TO = TRUE THEN

 CMND = "*"

 END ELSE

 * If not, get the type of destination

 CALL ExGroupGetSel(CONTEXT, ExGroup, SEND.TO)

 * Get the destination

 CALL ListBoxGetSelections(CONTEXT, List1, LIST1.SEL, ERR)

Section 10: Dialog Boxes

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 159 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* set up destination parameter

 CMND = DEST.LIST<LIST1.SEL>

 BEGIN CASE

 CASE SEND.TO = Option1

 CMND = "@":CMND

 CASE SEND.TO = Option3

 CMND = "!":CMND

 END CASE

 END

 * send the message

 PERFORM "MESSAGE ":CMND:" ":MESSAGE CAPTURING RESULT

 * process the resulting completion message

 RESULT = TRIM(RESULT, CHAR(254), "B")

 RESULT = RESULT[INDEX(RESULT, CHAR(254), 1)+1, LEN(RESULT)]

 IF RESULT[1,2] = "1 " THEN

 RESULT = RESULT[1, INDEX(RESULT, "(S)", 1)-1]:...

 RESULT[INDEX(RESULT, ")", 1)+1,LEN(RESULT)]

 END ELSE

 RESULT = CONVERT(RESULT, "()", "")

 END

 * display the result in a message box

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "Send Message", ...

 RESULT, ...

 "", ...

 OK, ...

 ERR)

RETURN

10.4.6 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. When you

run SendMsg and select the Send Message command from the Utilities menu, you will

see a dialog box similar to that shown in Figure 10-1. Type a message in the edit box,

select a destination and then click Send to send the message

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 160 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 11: The Clipboard
The UIMS Clipboard object provides access to the Windows clipboard, thus allowing

data to be copied and moved within a UIMS application, and exchanged between UIMS

applications and other Windows applications.

This chapter covers the following topics:

• Copying text to the clipboard.

• Pasting text from the clipboard.

• Controlling the Cut, Copy and Paste items on the Edit menu.

It also describes an example application that illustrates many of the concepts explained

in this chapter.

11.1 Using the Clipboard

The clipboard provides a temporary storage location for data which is being transferred

from one place to another. Typically, the user will select the data to be transferred and

then either cut or copy it to the clipboard. The destination for the data, in the same or a

different application, is then selected and the data is pasted in.

The user normally carries out these operations by means of either the Edit menu

commands, or by standard key-combinations. To add an Edit menu to your application,

follow the steps described in Chapter 8.

At present, the UIMS Clipboard object only supports data in ASCII text format.

However, other formats will be supported in the future, and you must therefore specify

the format required when using the clipboard.

11.1.1 Copying Text to the Clipboard

There are several ways of copying text to the clipboard:

1. You can use the ClipboardSetContent subroutine to copy a specified text string to

the clipboard.

2. You can use the Copy subroutine to copy text to the clipboard from an EditBox or

TextEditor contact.

3. You can use the Cut subroutine to delete text from an EditBox or TextEditor

contact, and transfer it to the clipboard.

The first of these is the simplest to use. For example:

CLIP = "Text for transfer"

CALL ClipboardSetContent("TEXT" , CLIP , LEN(CLIP) , ERR)

This parameter specifies the format of the data which is being placed on the clipboard.

At present only "TEXT" format is supported.

This parameter is the text to be placed on the clipboard.

This parameter must specify the length of the data.

This parameter specifies the name of a variable in which a completion code can be

returned.

If you need to transfer data to the clipboard from an edit control, you must specify the

start and end positions of the data to be transferred. For example:

CALL Copy(CONTEXT, TextEd1 , 5 , 1 , 15 , 1 , ERR)

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 161 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The second parameter is the handle of the edit control; in this case a text editor.

These two parameters specify the position of the first character to be copied. The third

parameter is the character number, counting from the start of the line specified in the

fourth parameter.

Note that lines number from zero, so setting the fourth parameter to 1 specifies the

second line. If the contact were an EditBox, this would be ignored, since edit boxes can

have only one line.

These two parameters specify the position of the last character to be copied.

In order to use the Cut and Copy subroutines, you will need to keep track of any text

selections made by the user within your edit controls. This can be done by monitoring

UIMS.MSG.SELECT messages. For example:

CASE MSG.TYPE = UIMS.MSG.SELECT

 BEGIN CASE

 CASE MSG.CONTACT = TextEd1

 TEXTED1.START.CHAR = DATA2

 TEXTED1.START.LINE = INT(DATA1 / 65536)

 TEXTED1.END.CHAR = DATA4

 TEXTED1.END.LINE = INT(DATA3 / 65536)

 END CASE

The values returned in the DATA1 and DATA3 parameters are offset by 65536, and must

be adjusted to obtain the true value.

When the user selects the Cut or Copy menu item, these values can be used in the

appropriate subroutine call. If all four values are zero, no text is selected.

Note

1. You will only need to use the Cut and Copy subroutines when processing the Cut and
Copy menu items. When the cut (SHIFT+DELETE) and copy (CTRL+INSERT) key Using
the Clipboard combinations are used in an edit box or a text editor, the data is
automatically transferred to the clipboard by UIMS.

2. If you prefer, you can cut or copy the text that is currently selected in the edit control.
To do this, set all four start- and finish-position parameters to -1. Alternatively you can
cut or copy all the text by setting these parameters to 0.

11.1.2 Pasting Text from the Clipboard

There are two ways of fetching data from the clipboard:

1. The ClipboardGetContent subroutine can be used to place the data in a

variable. The contents of the variable can then be displayed in the client area.

2. The Paste subroutine can be used to paste text into an edit box or a text editor.

You should let the user paste only if there is text available on the clipboard. You can find

out if there is text on the clipboard by calling the ClipboardGetSize subroutine.

The following example shows how to fetch text from the clipboard and display it in the

client area:

* Find out if there is text available

CALL ClipboardGetSize("TEXT", CLIP.SIZE)

* If there is, fetch the text

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 162 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

IF CLIP.SIZE THEN

 CALL ClipboardGetContent("TEXT", CLIP.DATA, CLIP.LENGTH) END

* Display it in the client area

CALL DrawTextString(CONTEXT, Win1, CLIP.DATA, 10, 10, ERR)

In this example:

The ClipboardGetSize subroutine returns the amount of data on the clipboard. The first

parameter is the required data format, and the second a variable in which to return the

size.

When calling the ClipboardGetContent subroutine, you must specify the data format

(first parameter) and provide variables in which the data and the data length can be

returned.

When you use the Paste subroutine to transfer text from the clipboard to an edit control,

you must specify the position in the control at which to insert the text. For example:

CALL Paste(CONTEXT, TextEd1 , 5 , 1 , ERR)

This parameter is the handle of the edit control.

These two parameters specify the position at which the text will be inserted. The third

parameter is the character number, counting from the start of the line specified in the

fourth parameter. Note that lines number from zero, so setting the fourth parameter to 1

specifies the second line. If the contact were an EditBox, this would be ignored, since

edit boxes can have only one line.

If you set both these parameters to -1, the text is inserted at the current cursor position,

replacing any selected text.

Note

You will only need to use the Paste subroutine when processing the Paste menu item. When the
paste (SHIFT+INSERT) key combination is used in an edit box or a text editor, the data is
automatically transferred from the clipboard by UIMS.

11.2 Controlling the Edit Menu

You should only allow the user to transfer data to and from the clipboard if there is data

available for transfer. This means that you should only enable the Cut and Copy

commands on the Edit menu when the user has made a selection. Similarly, the Paste

command should only be enabled if there is data available on the clipboard.

The following sections describe how to control the items on the Edit menu when you are

using edit controls.

11.2.1 The Cut and Copy Items

Since a Select message is generated whenever the user makes a text selection in an edit

control, these messages can be used to enable and disable the Cut and Copy menu

items. For example:

CASE MSG.TYPE = UIMS.MSG.SELECT

 BEGIN CASE

 CASE MSG.CONTACT = TextEd1

 TEXTED1.START.CHAR = DATA2

 TEXTED1.START.LINE = INT(DATA1 / 65536) Œ

 TEXTED1.END.CHAR = DATA4

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 163 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 TEXTED1.END.LINE = INT(DATA3 / 65536) Œ

 IF TEXTED1.END.CHAR = 0 AND TEXTED1.END.LINE = 0 THEN •

 CALL Disable(CONTEXT, EditCut, ERR)

 CALL Disable(CONTEXT, EditCopy, ERR)

 ELSE

 CALL Enable(CONTEXT, EditCut, ERR)

 CALL Enable(CONTEXT, EditCopy, ERR)

 END

 END CASE

The values returned in the DATA1 and DATA3 parameters are offset by 65536, and must

be adjusted to obtain the true value.

If there is no selection, all four character-position parameters are zero. In practice,

however, only the end-position parameters need be tested.

Note

1. Since it is unlikely that any text will be selected when your application starts, you
should disable the Cut and Copy menu items in your resource script.

2. Text in an edit box can also be selected by calling the EditBoxSetSelected subroutine.
This does not, however, generate a Select message. If you use this subroutine, you
should enable or disable the Cut and Copy menu items as appropriate.

11.2.2 The Paste Item

You will need to enable the Paste menu item when there is data available on the

clipboard, and disable it when there is none. Within your application, this can be done

whenever you call the ClipboardSetContent, Cut or Copy subroutines. However, other

applications can also place data on the clipboard and your application must test the

contents of the clipboard whenever another application has had control.

The easiest way to do this is to process the UIMS.MSG.ENTER message. Change your

message loop to include the following:

USER.WANTS.TO.EXIT = FALSE

LOOP UNTIL USER.WANTS.TO.EXIT DO

 CALL GetMsg(0, ...

 MSG.CONTEXT, ...

 MSG.WINDOW, ...

 MSG.CONTACT, ...

 MSG.TYPE, ...

 TIMESTAMP, ...

 DATA1, ...

 DATA2, ...

 DATA3, ...

 DATA4)

 BEGIN CASE Œ

 CASE MSG.TYPE = UIMS.MSG.ENTER

 CALL ClipboardGetSize("TEXT", CLIP.SIZE) •

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 164 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 IF CLIP.SIZE = 0 THEN

 CALL Disable(CONTEXT, EditPaste, ERR)

 ELSE

 CALL Enable(CONTEXT, EditPaste, ERR)

 END

 END CASE

 BEGIN CASE

 CASE MSG.WINDOW = Win1

 .

 . REM processing for Win 1

 .

END CASE

 .

 . REM processing for other windows

 .

REPEAT

Because any contact might be selected when the application receives the focus, all Enter

messages must be processed. This is done by processing them outside the case

statements for the individual windows.

The amount of text on the clipboard is tested by calling ClipboardGetSize. If there is

text available, the Paste menu item is enabled; otherwise it is disabled.

11.3 An Example Application: ClipEdit

This example application illustrates how to cut and copy to, and paste from the

clipboard. To create the ClipEdit application, copy and rename the source files for the

EditCtrl application, and then make the following changes:

1. In the resource script, set initial states for the Cut, Copy, Paste and Clear menu

items, and the Cut, Copy and Paste buttons.

2. Enable select messages.

3. Add new variables.

4. Modify the UIMS.MSG.ENTER case to test whether there is any text on the

clipboard.

5. Add a UIMS.MSG.SELECT case to the message loop.

6. Modify the HANDLE.WIN1.MENUS subroutine to process the Cut, Copy, Paste and

Clear commands.

7. Modify the HANDLE.WIN1.BUTTONS subroutine to process the Cut, Copy and

Paste button operations.

8. Add subroutines to support the Edit commands.

9. Compile the resource file and the DATA/BASIC program.

11.3.1 Modify the Resource Script

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 165 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

When you start the ClipEdit application, no text will be selected; the Cut, Copy and Clear

commands on the Edit menu must therefore be disabled. The Paste menu item can also

be disabled, though its state will in fact be set within the DATA/BASIC program.

Edit the resource script, and add plus signs to the titles of the Cut, Copy, Paste and Clear

items on the Edit menu as shown below. At the same time, you can remove the plus sign

from the Undo menu item.

MENU = 0

{

 TITLE = '&Edit'

 CHILDREN = '&Undo' = EditUndo,

 '-' = 0,

 'Cu&t+' = EditCut, /* disabled */

 '&Copy+' = EditCopy, /* disabled */

 '&Paste+' = EditPaste, /* disabled */

'C&lear+' = EditClear /* disabled */

}

Since the Cut, Copy and Paste menu items will be disabled, the corresponding buttons

must also be disabled. Find the definitions for the Cut, Copy and Paste buttons and add

the following line to each:

ENABLED = FALSE

11.3.2 Enable Select Messages

Your application will need to monitor Select messages in order to keep track of any text

selection within the TextEditor. Find the following line in your DATA/BASIC source:

CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)

and add the following lines just before it:

CALL BitTest(EVENTMASK, UIMS.EM.SELECT, ENABLED)

IF NOT(ENABLED) THEN EVENTMASK = EVENTMASK + UIMS.EM.SELECT

11.3.3 Add New Variables

You will need four variables to store the start and finish positions of any text selection.

Add the following lines to your DATA/BASIC source anywhere before the start of the

message loop:

* Initialise the text selection variables

TEXTED1.START.CHAR = 0

TEXTED1.START.LINE = 0

TEXTED1.END.CHAR = 0

TEXTED1.END.LINE = 0

11.3.4 Modify the Enter Case

The Paste commands (that is, the Paste button and the Paste item on the Edit menu) will

be enabled and disabled depending on whether or not there is any text on the clipboard.

The application must call ClipboardGetSize to test the contents of the clipboard and

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 166 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

then use SetEnabled (or Enable and Disable) to set the relevant contacts to the

appropriate state.

In the ClipEdit application, this will be done whenever a UIMS.MSG.ENTER message is

received. Find the following case statement in the HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.ENTER

and add the following just after it:

* Find out if there is any text on the clipboard and

* enable or disable the Paste commands as appropriate

CALL ClipboardGetSize("TEXT", CLIP.SIZE)

CALL SetEnabled(CONTEXT, EditPaste, (CLIP.SIZE # 0), ERR)

CALL SetEnabled(CONTEXT, PasteButton, (CLIP.SIZE # 0), ERR)

11.3.5 Add the Select Case

The Cut, Copy and Clear commands must be enabled when text is selected, and disabled

otherwise. This is done by monitoring select messages. Add the following to the case

statement in the HANDLE.WIN1.MESSAGES subroutine:

CASE MSG.TYPE = UIMS.MSG.SELECT

 BEGIN CASE

 CASE MSG.CONTACT = TxtEd1

 TEXTED1.START.CHAR = DATA2

 TEXTED1.START.LINE = INT(DATA1 / 65536)

 TEXTED1.END.CHAR = DATA4

 TEXTED1.END.LINE = INT(DATA3 / 65536)

 SELECTED = (TEXTED1.END.CHAR # 0) OR (TEXTED1.END.LINE # 0)

 CALL SetEnabled(CONTEXT, EditCut, SELECTED, ERR)

 CALL SetEnabled(CONTEXT, EditCopy, SELECTED, ERR)

 CALL SetEnabled(CONTEXT, EditClear, SELECTED, ERR)

 CALL SetEnabled(CONTEXT, CutButton, SELECTED, ERR) CALL

SetEnabled(CONTEXT, CopyButton, SELECTED, ERR)

 END CASE

The line numbers returned in the DATA1 and DATA3 variables are offset by 65536 and

must be divided by this value to obtain the true line numbers.

This line sets the SELECTED variable to TRUE (1) if both finish-position parameters are

non-zero (text selected), or to FALSE (0) if they are both zero (no text selected). The

resulting value is used in the calls to SetEnabled to set the Cut, Copy and Clear

commands to the appropriate state.

11.3.6 Modify the Edit Menu Commands

In the EditCtrl application, all the Edit menu commands display the message 'Command

not implemented!'. In ClipEdit, these commands must be changed to carry out the

appropriate operations.

Find the Edit menu commands in the HANDLE.WIN1.MENU subroutine, and replace them

with the following:

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 167 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* Edit menu commands

 CASE MSG.CONTACT = EditUndo

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "ClipEdit Example Application", ...

 "Command not implemented!", ...

 "", ...

 OK, ...

 ERR) Œ

 CASE MSG.CONTACT = EditCut

 CALL Cut(CONTEXT, TxtEd1, -1, -1, -1, -1, ERR) •

 CALL Enable(CONTEXT, EditPaste, ERR) Ž

 CALL Enable(CONTEXT, PasteButton, ERR) Ž

 CASE MSG.CONTACT = EditCopy

 CALL Copy(CONTEXT, TxtEd1, -1, -1, -1, -1, ERR) •

 CALL Enable(CONTEXT, EditPaste, ERR) Ž

 CALL Enable(CONTEXT, PasteButton, ERR) Ž

 CASE MSG.CONTACT = EditPaste

 GOSUB EDIT.PASTE

 CASE MSG.CONTACT = EditClear

 GOSUB EDIT.CLEAR

The Undo command remains unimplemented, so an appropriate message is displayed

when this command is selected.

The Cut and Copy commands will operate on the currently selected text, so the start-

and finish-position parameters are all set to -1.

The Cut and Copy commands place text on the clipboard, so the Paste commands must

be enabled.

11.3.7 Modify the Edit Button Actions

In the EditCtrl application, all the Edit buttons display the message 'Command not

implemented!'. In ClipEdit, these commands must be changed to carry out the

appropriate operations.

Find the Edit button commands in the HANDLE.WIN1.BUTTONS subroutine, and replace

them with the following:

 * Edit actions

 CASE MSG.CONTACT = CutButton

 CALL Cut(CONTEXT, TxtEd1, -1, -1, -1, -1, ERR)

 CALL Enable(CONTEXT, EditPaste, ERR)

 CALL Enable(CONTEXT, PasteButton, ERR)

 CASE MSG.CONTACT = CopyButton

 CALL Copy(CONTEXT, TxtEd1, -1, -1, -1, -1, ERR)

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 168 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CALL Enable(CONTEXT, EditPaste, ERR)

 CALL Enable(CONTEXT, PasteButton, ERR)

 CASE MSG.CONTACT = PasteButton

 GOSUB EDIT.PASTE

CASE MSG.CONTACT = UndoButton

 CALL CreateMessageBox(CONTEXT, ...

 UIMS.INFO, ...

 "ClipEdit Example Application", ...

 "Command not implemented!", ...

 "", ...

 OK, ...

 ERR)

Each of these commands is a duplicate of the corresponding command on the Edit menu.

11.3.8 Add Support Subroutines

You need to add subroutines to your DATA/BASIC source file to support the Paste and

Clear commands. These are:

EDIT.PASTE This pastes text from the clipboard into the TextEditor.

EDIT.CLEAR This deletes the selected text from the TextEditor. This subroutine

is called when the Clear command is selected.

11.3.8.1 EDIT.PASTE Subroutine

This subroutine pastes the text from the clipboard at the current cursor position, by

calling the Paste subroutine with both position parameters set to -1. If any text was

selected, this will be replaced and the cursor will be positioned at the end of the new

text, with no text selected; the Cut, Copy and Clear commands must therefore be

disabled. Finally, the TEXTED1.END.CHAR and TEXTED1.END.LINE variables are set to

zero to show that no text is selected.

*

* SUBROUTINE: EDIT.PASTE

*

* PURPOSE: Pastes text from the clipboard into the TextEditor

*

* COMMENTS:

* After pasting no text will be selected, so the Cut, Copy

* and Clear commands must be disabled.

*

 * Paste at the current cursor position

 CALL Paste(CONTEXT, TxtEd1, -1, -1, ERR)

 * No text is now selected, so disable the Cut, Copy and Clear

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 169 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * commands

 CALL Disable(CONTEXT, EditCut, ERR)

 CALL Disable(CONTEXT, EditCopy, ERR)

 CALL Disable(CONTEXT, EditClear, ERR)

 CALL Disable(CONTEXT, CutButton, ERR)

 CALL Disable(CONTEXT, CopyButton, ERR)

 * Cursor is now an insertion point

 TEXTED1.END.CHAR = 0

 TEXTED1.END.LINE = 0

RETURN

11.3.8.2 EDIT.PASTE Subroutine

This subroutine fetches the contents of the TextEditor by calling the

TextEditorGetContent subroutine. It then uses the position parameters set by the last

select message to calculate the character positions for the start and finish of the text to

be deleted. Next, it constructs a new text string by concatenating the text from the

beginning of the string to the start of the deleted section, with the text from the end of

the deleted section to the end of the string. Finally, TextEditorSetContent is called to

insert the new string into the TextEditor, replacing the previous contents.

*

* SUBROUTINE: EDIT.CLEAR

*

* PURPOSE: Deletes text without copying it to the Clipboard

*

* COMMENTS:

* On exit, the cursor will be positioned at the start of the

* text.

*

EDIT.CLEAR:

 * Get the contents of the edit control.

 CALL TextEditorGetContent(CONTEXT, TxtEd1, TEXT, ERR)

 * Delete the currently selected text.

 * The selection details are provided by the latest Select message.

 STARTPOS = INDEX(TEXT, CHAR(254), TEXTED1.START.LINE) + ...

 TEXTED1.START.CHAR

 ENDPOS = INDEX(TEXT, CHAR(254), TEXTED1.END.LINE) + ...

 TEXTED1.END.CHAR - 1

 TEXT = TEXT[1, STARTPOS]:TEXT[ENDPOS+2, LEN(TEXT)-ENDPOS]

 * Restore the contents of the edit control.

Section 11: The Clipboard

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 170 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CALL TextEditorSetContent(CONTEXT, TxtEd1, TEXT, ERR)

RETURN

11.3.9 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. When you

run ClipEdit, you will be able to use the Cut, Copy, Paste and Clear commands to edit

text within the TextEditor control. Note that the Cut, Copy and Clear commands are only

enabled if text is selected, and that the Paste command is only enabled if there is text on

the clipboard.

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 171 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 12: Fonts
UIMS allows you to improve the look of your applications by using different fonts. A font

is a collection of characters that have a unique combination of height, width, typeface,

character set, and other attributes. An application uses fonts to display text in various

typefaces and sizes. For example, a word processor uses fonts to give a 'what-you-see-

is-what-you-get' interface.

This chapter describes how to use fonts in your application and explains how to create an

example application that illustrates these concepts.

12.1 Writing Text

There are two ways of writing text in a window:

• You can write text directly onto the client area, or the text canvas if the window

has one, by using the DrawTextString subroutine.

• You can create a Text contact containing the text you wish to display.

In the first case, the font used will be that attached to the window's Drawrule, whereas a

Text contact can have its own Drawrule, and thus its own font.

The default font is the system font, a variable width font representing characters in the

ANSI character set. The typeface used for the system font is called 'System'. UIMS uses

the system font for menus, window titles and other text.

12.1.1 Using Colour when Writing Text

You can use any colour for the text you write by setting the foreground and background

colours for the window's or text object's Drawrule. The foreground colour determines the

colour of the character to be written, while the background colour determines the colour

of everything else in the character cell (the rectangle enclosing the character). A

character cell usually has the same width and height as the character.

The foreground and background colours can be set when the Drawrule is created, or by

calling the DrawruleSetColour subroutine. The following example sets the foreground

colour to red and the background to green:

CALL DrawruleSetColour(CONTEXT, ...

 Drawrule1, ...

 UIMS.RED, ...

 UIMS.GREEN, ...

 ERR)

The background colour is only used if the drawrule's text mode is set to opaque. The text

mode determines whether or not the background colour in the character cell effects what

is already on the display. If the mode is opaque, the background colour overwrites

anything already on the display; if it is hollow, anything on the display that would

otherwise be overwritten by the background is preserved. You set the text mode when

you create your Drawrule.

Note

Although you can write text on the client area using different colours, if you have a text canvas,
the text will always be redrawn in a single colour. Refer to page 12-7 for details of how to use
multiple fonts and colours.

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 172 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

12.2 Creating a Font

If you want to use more than one font in your application, you will need to create a Font

object for each combination of typeface, style and point size. You create a new Font

object with the CreateDrawFont subroutine, specifying the typeface, style and point

size required. Once created a Font object must be attached to a Drawrule before it can

be used.

The following example creates a bold 10pt Times font:

CALL CreateDrawFont(CONTEXT, ...

 TimesFont, ...

 UIMS.FONT.BOLD, ...

 Times , ...

 10, ...

 TIMES.FONT)

CALL DrawruleSetFont(CONTEXT, Drawrule1, TimesFont, ERR)

This parameter must be the handle of a TypeFace object. Refer to the next section for

how to find out which typefaces are available.

12.2.1 TypeFaces

UIMS fonts can only use the typefaces that are available on Windows. You can find out

which typefaces are available by using the GetTypeFaces subroutine to obtain a list of

handles to these typefaces. You can use the TypeFaceGetName subroutine to find out

the name of a particular typeface.

For example, the following finds out whether the Helvetica typeface is available on your

PC:

CALL GetTypeFaces(TYPEFACES , ERR)

NAME = ""

FOR I = 1 TO DCOUNT(TYPEFACES, CHAR(254)) WHILE NAME <> "Helvetica"

 HANDLE = TYPEFACES<I>

 CALL TypeFaceGetName(CONTEXT, HANDLE, NAME, ERR)

NEXT I

IF NAME <> "Helvetica" THEN AVAIL = "Helvetica is not available"...

ELSE AVAIL = "Helvetica is available"

CALL DrawTextString(CONTEXT, Win1, AVAIL, 10, 10, ERR)

The list of typeface handles is returned as a dynamic array, with one handle to each

attribute.

12.2.1.1 Point Sizes

When setting the point size for a font, you should ideally use a size that is available in

the selected typeface. You can use the TypeFaceGetPointSizes subroutine to obtain a list

of point sizes for a specific typeface. Note, however, that you can generally choose any

point size – if the required size is not available, UIMS will try to create it by scaling one

of the available sizes; if this cannot easily be done, the nearest equivalent will be

selected.

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 173 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

Some typefaces (for example, the TrueType fonts supplied with Windows 3.1) can be scaled to
any size. In this case, TypeFaceGetPointSizes returns only a single size.

12.2.1.2 Type Styles

Most typefaces are also available in a range of styles. UIMS allows you to choose any

combination of normal, bold, italic, underlined, strikeout and outline. Where a particular

style is available for the typeface concerned, UIMS will use it; otherwise UIMS will try to

synthesise the style. If the style cannot be easily be synthesised, the nearest equivalent

will be selected.

Note

Some styles are particularly difficult to synthesise. In particular, outline cannot generally be used

unless the typeface concerned includes an outline style. Similarly, for some typefaces, it may not
be possible to use strikeout style.

12.3 Getting Information about a Font

Once you have created a Font object, you can obtain the handle of its TypeFace by

calling the FontGetTypeFace subroutine. You can also find out the current point size

and style with FontGetPointSize and FontGetStyle respectively.

Two other subroutines, FontGetMetrics and FontGetTextLen, give you details of your

particular combination of typeface, point size and style. FontGetMetrics returns the

dimensions of the font in pixels – the following example obtains the dimensions of the

font with the identifier Font1:

CALL FontGetMetrics(CONTEXT, ...

 Font1, ...

 HEIGHT , ... ASCENT , ...

 DESCENT , ... LEADING , ...

 LCWIDTH , ...

 UCWIDTH , ...

 MAXWIDTH , ...

 ERR)

The parameters (with the exception of the first two and the last) must be variables in

which to return the following information.

The total height of the font – the ascent plus the descent (see below).

The ascent – the height above the base line of the tallest characters.

The descent – the height of the longest descender.

The leading – the distance between the descenders of one row of characters and the top

of the tallest characters in the next row.

The average width of the lower case characters in a proportionally spaced font. For fixed

pitch fonts this is the width of a single character.

The average width of the upper case characters in a proportionally spaced font. For fixed

pitch fonts this is the width of a single character.

The width of the widest character.

These dimensions are illustrated in Figure 12-1.

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 174 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 12-1. Font Metrics

In proportionally spaced fonts, each character is a different width. This means that,

although FontGetMetrics can tell you the average widths of the lower- and upper-case

characters in the font, different strings will be of different lengths when displayed, even

though they might have the same number of characters. The FontGetTextLen subroutine

returns the length in pixels of a specified string, when displayed using a specified font

object. For example, the following obtains the length of the string "Hello, world!" when

displayed in the font identified by Font1:

CALL FontGetTextLen(CONTEXT, Font1, "Hello, world!", LENGTH)

The length is returned in the final parameter.

12.4 Using Multiple Fonts in a Window

If you are developing an application that uses a variety of fonts, you may need to use

more than one font in the same window. If you have a number of independent text

items, each in a different font, your task is easy – simply make each item a different

Text contact, or create a child window to hold the text. If, however, you want to use

more than one font in the same line of text, your task is more difficult.

There are two ways of approaching this problem: you can monitor update messages and

redraw the window when necessary, or you can give your window a text canvas for the

bulk of the text and use text contacts for the items that are in a different font. In either

case, you will need to keep track of the length of the line as each text item is displayed,

so that you know where to start the next part of the line. If you are using a

proportionally spaced typeface, each character has a different width, making it difficult

to calculate the length of a string. However, UIMS provides the FontGetTextLen

subroutine, which computes the length of a given string when printed in a specified font.

12.4.1 Redrawing when Necessary

One way to draw a line of text that contains multiple fonts is to use FontGetTextLen after

each call to DrawTextString, and add the length to the current position. The following

example shows how to write the string "This is an example string.", using italic

characters for the word "example", and normal characters for all the others:

CALL GetDrawrule(CONTEXT, Win1, WIN1.DRAWRULE)

CALL DrawruleGetFont(CONTEXT, WIN1.DRAWRULE, WIN1.FONT)

.

.

.

X = 10 ;* horizontal start point

CALL FontSetStyle(CONTEXT, WIN1.FONT, UIMS.NONE, ERR)

TEXT = "This is an "

CALL DrawTextString(CONTEXT, Win1, TEXT, X, 10, ERR)

Ascent

Descent
Base line

Base line

Leading

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 175 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL FontGetTextLen(CONTEXT, WIN1.FONT, TEXT, LENGTH)

X = X + LENGTH ;* update the print position

CALL FontSetStyle(CONTEXT, WIN1.FONT, UIMS.FONT.ITALIC, ERR)

TEXT = "example"

CALL DrawTextString(CONTEXT, Win1, TEXT, X, 10, ERR)

CALL FontGetTextLen(CONTEXT, WIN1.FONT, TEXT, LENGTH)

X = X + LENGTH ;* update the print position

CALL FontSetStyle(CONTEXT, WIN1.FONT, UIMS.NONE, ERR)

TEXT = " string"

CALL DrawTextString(CONTEXT, Win1, TEXT, X, 10, ERR)

In this example, the line is divided in to sections and for each, FontSetStyle sets

normal or italic style, and DrawTextString prints the text. The length of the printed

text is then calculated and added to the current position to set the starting location for

the next section.

As an alternative to using FontSetStyle, you could create an italic Font with

CreateDrawFont, and use DrawruleSetFont to change fonts as required, or create

both a Font and a Drawrule, and use SetDrawrule to change Drawrules.

12.4.2 Using a Text Contact

You would use the method shown above to redraw the window each time your

application receives an update message. Alternatively, you could use a text canvas to

manage the normal text, and create a Text contact for the italic text. As before, you

must position the normal text to allow for that in italics:

X = 10 ;* horizontal start point

TEXT = "This is an "

CALL DrawTextString(CONTEXT, Win1, TEXT, X, 10, ERR)

CALL FontGetTextLen(CONTEXT, NormalFont, TEXT, LENGTH)

X = X + LENGTH ;* update the print position

TEXT = "example"

CALL CreateText(CONTEXT, ...

 ItalicText, ...

 TEXT, ...

 X, 10, ...

 0, 0, ...

 "", ...

 ITALIC.TEXT)

CALL SetDrawrule(CONTEXT, ItalicText, ItalicDrawrule, ERR)

CALL AddChild(CONTEXT, Win1, -1, ItalicText, ERR)

CALL FontGetTextLen(CONTEXT, ItalicFont, TEXT, LENGTH)

X = X + LENGTH ;* update the print position

TEXT = " string"

CALL DrawTextString(CONTEXT, Win1, TEXT, X, 10, ERR)

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 176 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

These two parameters specify the position of the Text contact. The horizontal position is

set as in the previous example; that is by adding the length of the preceding text to a

known position.

These two parameters specify the size of the Text contact. A width and height of zero

instruct the contact to set its size to that of its contents; that is, the text "example".

Note, however, that the size will not be calculated until the contact is given a parent,

and this allows the Font to be changed first.

This line sets the Drawrule (and thus the italic Font) for the Text contact.

This line makes the Text contact a child of Win1, thus displaying it in the window.

It is assumed that the necessary Drawrules and Fonts will have been previously created.

12.4.3 Printing in Different Colours

The techniques described above can also be used if you want to use different colours for

different parts of a line of text. For example, to change colours while redrawing the client

area, you would use the DrawruleSetColour subroutine to change colours as required.

12.5 An Example Application: ShowFont

The example application, Showfont, illustrates how to use different typefaces, and

demonstrates the two methods discussed above for using more than one font in a line of

text.

Showfont is an extension of the Output application described in Chapter 5. To create the

Showfont application, copy and rename the source files of the Output application and

then make the following modifications:

Add new constant definitions.

1. Define a Drawrule resource.

2. Modify the UIMS.MSG.CREATE case.

3. Modify the UIMS.MSG.UPDATE case.

4. Compile the resource file and the DATA/BASIC program.

12.5.1 Add New Constant Definitions

You will need identifiers for the additional resources defined in the resource script. These

must be available to both the resource script and the DATA/BASIC source, so add the

following to your header file:

EQUATE ItalicText TO 200 EQUATE Drawrule2 TO 210

EQUATE ItalicFont TO 211

Ensure that the new header file is available on both the host and the PC.

12.5.2 Define New Resources

You will need an additional Drawrule for the italic font and this can be created in the

resource script. Add the following lines to the file SHOWFONT.UCL:

DRAWRULE = Drawrule2

{

 FOREGROUND = BLACK

 BACKGROUND = WHITE

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 177 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 DRAWMODE = COPY

 TEXTMODE = OPAQUE

}

Font objects cannot be created in the resource script, so the italic font must be created

in the application by calling CreateDrawFont.

12.5.3 Modify the Create Case

In the Output application, the UIMS.MSG.CREATE message is used to draw text and

display objects in the left-hand Child window, Child1. In Showfont, it will also create the

italic font, and create and position a text object.

In the HANDLE.WIN1.CREATE subroutine in your DATA/BASIC source, find the lines

which read:

CALL GetDrawrule(CONTEXT, Child1, DEFAULT.DRAWRULE)

CALL DrawruleGetFont(CONTEXT, DEFAULT.DRAWRULE, DEFAULT.FONT)

and immediately after them, add the following.

* Change the default font to 12pt Times normal

CALL GetTypeFaces(TYPEFACES, ERR)

NAME = ""

FOR I = 1 TO DCOUNT(TYPEFACES, CHAR(254)) UNTIL NAME[1, 5] = "Times"

 CALL TypeFaceGetName(CONTEXT, TYPEFACES<I>, NAME, ERR)

NEXT I

* If Times not available, use the system typeface

IF I > DCOUNT(TYPEFACES, CHAR(254)) THEN

 CALL GetDefaults(P1, P2, TIMES.TFACE, ERR)

END ELSE

 TIMES.TFACE = TYPEFACES<I-1>

END

CALL FontSetTypeFace(CONTEXT, DEFAULT.FONT, TIMES.TFACE, ERR)

CALL FontSetPointSize(CONTEXT, DEFAULT.FONT, 12, ERR)

CALL FontSetStyle(CONTEXT, DEFAULT.FONT, UIMS.NONE, ERR)

* Create the italic font

CALL CreateDrawFont(CONTEXT, ...

 ItalicFont, ...

 UIMS.FONT.ITALIC, ...

 TIMES.TFACE, ...

 12, ...

 ITALIC.FONT)

* Attach it to Drawrule 2, which was loaded from the resource file

CALL DrawruleSetFont(CONTEXT, Drawrule2, ItalicFont, ERR)

Then find the lines which read:

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 178 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

TEXT = "Canvas and UIMS therefore manages"

CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)

VPOS = VPOS + VSPACE

and replace them with:

* The next line will include text in the italic font

* Print the first part

TEXT = "Canvas and "

CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)

* Set the horizontal position for the italic text

CALL FontGetTextLen(CONTEXT, DEFAULT.FONT, TEXT, LENGTH)

HPOS = HPOS + LENGTH

* Create a Text contact without a parent

TEXT = "UIMS"

CALL CreateText(CONTEXT, ...

 ItalicText, ...

 TEXT, ...

 HPOS, VPOS, ...

 0, 0, ...

 "", ...

 ITALIC.TEXT)

* Set its Drawrule to that with the italic font

CALL SetDrawrule(CONTEXT, ItalicText, Drawrule2, ERR)

* Attach it to the child window

CALL AddChild(CONTEXT, Child1, -1, ItalicText, ERR)

* Calculate the horizontal position for the rest of the line

CALL FontGetTextLen(CONTEXT, ItalicFont, TEXT, LENGTH)

HPOS = HPOS + LENGTH

* Print the rest of the line

TEXT = " therefore manages"

CALL DrawTextString(CONTEXT, Child1, TEXT, HPOS, VPOS, ERR)

* Set the drawing position for the next line

VPOS = VPOS + VSPACE

HPOS = UCWIDTH

12.5.4 Modify the Update Case

In the Output application, the UIMS.MSG.UPDATE message is used to draw text and

graphics in the right-hand Child window, Child2. In Showfont, this is modified to draw

some of the text in the italic font.

In the subroutine HANDLE.CHILD2.MESSAGES find the lines which read:

TEXT = "time an Update message is received."

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 179 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

VPOS = VPOS + VSPACE

and replace them with:

* The next line will include text in the italic font

* Print the first part

TEXT = "time an "

CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

* Set the horizontal position for the italic text

CALL FontGetTextLen(CONTEXT, DEFAULT.FONT, TEXT, LENGTH)

HPOS = HPOS + LENGTH

* Change to the italic style

CALL FontSetStyle(CONTEXT, DEFAULT.FONT, UIMS.FONT.ITALIC, ERR)

* Print the italic text

TEXT = "Update"

CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

* Calculate the horizontal position for the rest of the line

CALL FontGetTextLen(CONTEXT, DEFAULT.FONT, TEXT, LENGTH)

HPOS = HPOS + LENGTH

* Restore the original style

CALL FontSetStyle(CONTEXT, DEFAULT.FONT, UIMS.NONE, ERR)

* Print the rest of the line

TEXT = " message is received."

CALL DrawTextString(CONTEXT, Child2, TEXT, HPOS, VPOS, ERR)

* Set the drawing position for the next line

HPOS = UCWIDTH

VPOS = VPOS + VSPACE

12.5.5 Compile

When you have made these changes, you can compile the resource script and

DATA/BASIC program as described in Chapter 4 for the Generic application. When run,

the application should look like this:

Section 12: Fonts

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 180 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 12-2. The Showfont Application

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 181 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 13: Dynamic Data Exchange
UIMS provides two ways of communicating and sharing information with other Windows

applications. Chapter 11 describes how to use the Cut, Copy and Paste subroutines to

transfer data via the Windows Clipboard. However, a more flexible method is to use

Dynamic Data Exchange (DDE). This allows you to extract information from other

Windows applications, to automatically update them with new information, and even to

send commands to manipulate them by remote control.

13.1 Introduction

Dynamic Data Exchange (DDE) is a mechanism provided by Microsoft Windows that

enables two Windows applications to communicate with each other. DDE automates the

manual cutting and pasting of information between applications, thus making manual

intervention unnecessary.

DDE can be used in four ways:

• You can request information from an application. For example, in a DDE

conversation with Microsoft Word for Windows, a UIMS application can request

the contents of part or all of a Word document.

• You can send information to an application. For example, in a DDE conversation

with Microsoft Word, a UIMS application can send text to a specified location in a

document.

• You can send commands to an application. For example, in a DDE conversation

with Microsoft Word, a UIMS application can send a command to open a

document from which it requires information. Commands sent to an application

must be in a form the application can recognise.

• An 'advise' link can be established, over which an application will send updated

information each time a change occurs.

Note

Not all Windows applications support DDE. Consult the documentation for your Windows
applications to see if they support DDE.

13.2 An Overview of DDE

13.2.1 Clients, Servers and Conversations

Two applications exchange information by engaging in a DDE conversation. In a DDE

conversation, the application that initiates and controls the conversation is called the

client and the application that responds is the server. The client application requests

information from the server and sends information and commands to it. The server

application, as its name implies, serves the needs of the client application by returning

information, accepting information and carrying out commands. There is nothing special

about an application that makes it a client or a server; they are simply the roles that an

application can adopt. In fact, an application can be engaged in several DDE

conversations at the same time, acting as the client in some and the server in others.

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 182 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This chapter describes how to use your UIMS application as a DDE client. UIMS

applications cannot be used as servers. However, provided it is not running a UIMS

application, RealLink for Windows can be used as a DDE server – refer to the RealLink

for Windows User Manual for details.

Note

Some applications and programming languages refer to the DDE client as the destination, and to
the server as the source.

13.2.2 Applications, Topics and Items

When a client application initiates a DDE conversation, it must specify two things:

• The name of the application with which it wishes to communicate (the server).

• The subject of the conversation (the topic).

When a server application receives a request for a conversation about a topic that it

recognises, it responds and the conversation commences. Once established, a

conversation cannot change to a different application or topic. If communication is

required with another application or on a different topic, a new conversation must be

started.

During the conversation, the client and server can exchange information about one or

more items. An item is a reference to data that is meaningful to the server application.

Both the client and the server can change the item during the conversation.

13.2.2.1 Applications

Every Windows application that supports DDE has a unique DDE application name. This

is usually, but not always, the name of the executable file for that application, without

the .EXE filename extension. For example, The DDE application name for Microsoft Excel

is Excel, and that for Word for Windows is WinWord. However, the DDE application name

for RealLink for Windows is RFWDDE, not RFW. If you are not sure what an application's

DDE application name is, look in the documentation for that application.

Note

DDE application names are not case sensitive.

13.2.2.2 Topics

Every DDE conversation is on a topic that the server application recognises. Most

applications support the names of open files as topics. Some possible topics are a

Microsoft Excel worksheet (for example, ACCOUNTS.XLS), a Word for Windows document

(for example, MEMO.DOC), or a RealLink for Windows configuration file (for example,

STAFF.CFG).

DDE Conversation

Server
Application

Carries out commands
Supplies information

Accepts information

Client
Application

Initiates conversation
Sends commands

Requests information
Sends information
Ends conversation

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 183 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A special topic that many applications recognise is "System". This provides a list of the

other topics that are currently available and other information about the application.

Unlike other topics, which may or may not be available, depending on whether a file is

open, the System topic is always available.

13.2.2.3 Items

Given the server's application name and a topic name, a client can initiate a DDE

conversation. However, for a client to exchange information with a server, one other

essential piece of information is needed: the items available in the topic of the DDE

conversation. An item is a sub-topic that identifies the information actually being

exchanged during the DDE conversation. For example, Microsoft Excel recognises cell

references (such as R1C1) as items in a conversation. In Word for Windows, a bookmark

is an item, while in RealLink for Windows, the Cursor, Row, Table and RxBuff keywords

are items. Refer to the documentation for your application to find out what items are

recognised.

13.2.2 'Advise' Data Links

An advise data link is one in which the server notifies the client of any changes to a

given data item. This notification process continues until the DDE conversation is

terminated.

Windows provides two kinds of advise DDE link: 'hot' links, in which the server

immediately sends the changed data to the client; and 'warm' links, in which the server

advises the client that the data has changed, but does not actually send the data until

the client requests it. The UIMS DDE mechanism is similar to a warm link, in that the

server application must poll the link to find out when updated data is available.

13.3 Using the UIMS DDE Subroutines

The UIMS DATA/BASIC API provides six DDE commands:

DDE.PEEK Requests data from a server application.

DDE.POKE Sends data to a server application.

DDE.EXECUTE Sends one or more commands to a server application.

DDE.OPENADVISE Establishes an advise DDE link to a Windows application.

DDE.ADVISE Obtains data from an advise DDE link.

DDE.CLOSEADVIS Closes an advise DDE link.

Each of the first three subroutines initiates a conversation with the specified application,

carries out the appropriate action, and then terminates the conversation. There are no

separate subroutines that initiate and terminate DDE conversations. As a result, the each

conversation is uni-directional and passes information about a single item only.

The other three subroutines must be used in combination. Call DDE.OPENADVISE to

create the link, and then periodically call DDE.ADVISE to find out whether the data has

changed and obtain any changes. When the link is no longer required, terminate it with

DDE.CLOSEADVISE.

13.3.1 Requesting Information

To request information from a DDE server, you use the DDE.PEEK subroutine. You must

provide the name of the application, a topic recognised by that application and an item

within that topic. You must also provide two variables in which the requested information

and the completion status of the subroutine can be returned. For example, if you need to

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 184 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

ask Microsoft Excel for a list of the currently supported topics, you would use the

following DATA/BASIC statement.

CALL DDE.PEEK("Excel" , "System" , "Topics" , TOPICS , ERR)

This is Microsoft Excel's DDE application name.

This parameter specifies the System topic.

"Topics" is the name of an item that Excel provides in the System topic. It lists all the

topics that are currently available.

This parameter is a variable in which the requested data will be returned.

This parameter is a variable in which the completion status of the subroutine will be

returned.

The topic names returned are separated by tabs. If you want to display the list in a

message box, you should convert these to line feeds as follows:

TOPICS = CHANGE(TOPICS, CHAR(9), CHAR(10)) CALL CreateMessageBox(CONTEXT,

...

 UIMS.INFO, ...

 "Microsoft Excel - DDE Topics", ...

 TOPICS, ...

 "", ...

 OK, ...

 ERR)

Similarly, if you want to display the list in a list box, you should convert the tabs to

attribute marks.

Note

If the requested item is not recognised by the server application, an empty string is returned.

Although the client in a DDE conversation usually requests information from the server, the client
can also send information to the server. To do this, you use the DDE.POKE subroutine. You must
provide the name of the application, a topic recognised by that application, an item within that
topic and the information to be sent. You must also provide a variable in which the completion
status of the subroutine can be returned.

The following example adds a title to the beginning of a Microsoft Word document:

CALL DDE.POKE("winword" , ...

 "STAFF.DOC" , ...

 "\StartOfDoc" , ...

 "Staff Expenses":CHAR(13) , ...

 ERR)

This is Microsoft Word's DDE application name.

This parameter specifies the topic – in this case, the name of the Word document.

"\StartOfDoc" is a built-in bookmark that marks the beginning of any Word document.

Word recognises bookmark names as DDE items within document topics.

This parameter specifies the information to be sent – in this case, the text "Staff

Expenses" followed by a carriage return. Because the item specified is the \StartOfDoc

bookmark, this text will be inserted at the beginning of the document.

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 185 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This parameter is a variable in which the completion status of the subroutine will be

returned.

Caution

If the specified item is not recognised by the server application, the DDE.POKE operation will fail.
No error code will be returned, however.

13.3.2 Sending Commands

The DDE.EXECUTE subroutine allows you to send one or more commands to the server

application. You must provide the name of the application, a topic recognised by that

application and a string containing one or more server commands. You must also provide

a variable in which the completion status of the subroutine can be returned.

Many Microsoft applications, such as Excel and Word for Windows, recognise macro

language statements and functions (refer to the documentation for your application for

details of the commands you can use). For example, in Word for Windows, the

WordBASIC command that creates a new document is FileNew. To send the same

command via DDE, you would use the following:

CALL DDE.EXECUTE("winword", ...

 "System", ...

 '[FileNew .NewTemplate = 0, .Template = "Normal"]'Ž, ...

 ERR)

This is Microsoft Word's DDE application name.

This parameter specifies the topic. This would normally be the name of the Word

document, but in this case we are creating a new document, so we can use the System

topic.

This is the command to be executed. Note that Microsoft Word requires that each

command received via DDE be enclosed in square brackets.

Note also that because WordBASIC requires the template name in the form of a string

enclosed in double quotes, the command string has been constructed within single

quotes.

This parameter is a variable in which the completion status of the subroutine will be

returned.

If required, you can send several commands at once. Each separate command must be

enclosed in square brackets. For example, the following tells Microsoft Word to create a

new document and then close it without saving:

COMMAND = '[FileNew .NewTemplate = 0, .Template = "Normal"]':...

 '[FileClose 2]'

CALL DDE.EXECUTE("winword", "System", COMMAND, ERR)

Note that there must be no spaces between bracketed commands in a single

DDE.EXECUTE call, or an error will occur.

The preceding example could have been sent as two separate commands as follows:

COMMAND = '[FileNew .NewTemplate = 0, .Template = "Normal"]'

CALL DDE.EXECUTE("winword", "System", COMMAND, ERR)

COMMAND = '[FileClose 2]'

CALL DDE.EXECUTE("winword", "System", COMMAND, ERR)

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 186 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

13.3.3 Using Advise Links

An advise link is different to the DDE operations described above, in that you must

establish it before you can use it to obtain data, and you must terminate it when it is no

longer required.

13.3.3.1 Establishing a Link

You establish an advise link by calling the DDE.OPENADVISE subroutine. You must

provide the name of the application, a topic recognised by that application and an item

within that topic. You must also provide two variables in which a link identifier and the

completion status of the subroutine can be returned. For example, the following

establishes a

link to a cell in an Excel spreadsheet:

CALL DDE.OPENADVISE("Excel", ...

 "C:\EXCEL\EXAMPLES\BUDGET.XLS", ...

 "R1C1", ...

 LINKIDENT, ...

 ERR)

This is Microsoft Excel's DDE application name.

This parameter specifies the required topic – in this case the name of an Excel

spreadsheet.

"R1C1" identifies the first cell in the spreadsheet as the item for the DDE conversation.

This parameter is a variable in which a link identifier will be returned. This identifier must

be used when obtaining data from the link, and when closing it again.

This parameter is a variable in which the completion status of the subroutine will be

returned. A return value of zero indicates successful completion.

13.3.3.2 Obtaining Data via a Link

Once the link has been established, you can call DDE.ADVISE to obtain the item data.

DDE.ADVISE requires the link identifier and two variables: one to return the data, and a

second to return the status of the link.

Note: Because only changed data is returned, DDE.ADVISE will not normally return any

data when the link is first established. To obtain the initial state of the item, use the

DDE.PEEK subroutine.

The following obtains data from the link established in the previous example:

CALL DDE.ADVISE(LINKIDENTŒ, DATA, STATUS)

This is the link identifier returned by DDE.OPENADVISE.

This parameter is a variable in which to return the link data.

This parameter is a variable in which to return the status of the link. There are three

return values that indicate success:

ADV.NODATA The conversation item has not changed since DDE.ADVISE was last

called.

Section 13: Dynamic Data Exchange

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 187 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

ADV.MOREDATA The conversation item has changed more than once since

DDE.ADVISE was last called. The data returned is the result of the first change. To

obtain the result of the next change, call DDE.ADVISE again.

ADV.LASTDATA The conversation item has changed once since DDE.ADVISE was last

called. The data returned is the result of this change.

Any other value indicates that an error has occurred. Note that if the returned status is

ADV.NODATA, the data returned should be ignored.

Your application should call DDE.ADVISE periodically to obtain updated data. This could

be done in a loop or, if your application has an event loop, by creating a timer and calling

DDE.ADVISE each time a timer message is received.

13.3.3.3 Terminating a Link

When your no longer need your advise link, you should close it by calling the

DDE.CLOSEADVISE subroutine. You must supply the identifier for the link you wish to

close and a variable in which to return a status code. The following shows how to close

the link used in the previous example:

CALL DDE.CLOSEADVISE(LINKIDENT, ERR)

This is the link identifier returned by DDE.OPENADVISE.

This parameter is a variable in which the completion status of the subroutine will be

Returned.

13.4 Example DDE Application

The UIMS-EXAMPLES file contains a simple example application – DDE – that

demonstrates the use of all the DDE subroutines. This example does not require a

header file or a resource script.n.

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 188 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 14: Hybrid Applications
This chapter describes how to enhance existing applications by creating UIMS modules

with their own message loops. It also shows you how to add a UIMS dialog box to the

NewView application that was developed in Chapter 3.

14.1 Introduction

Chapter 3 describes how you can use NewView to add a graphical user interface to an

existing character-based application. There are limits to what can be achieved with

NewView, however, and you might like to use some of the UIMS features described in

the previous chapters.

An application in which the user interface combines the character-based elements used

on normal terminals with UIMS graphical objects is called a Hybrid application. A

NewView application is the simplest form of hybrid application, in that it does not require

a message loop. In writing more complex hybrid applications, you will need to provide

one or more message loops for the UIMS elements of the user interface, while retaining

the conventional PRINT, CRT and INPUT statements for the character-based elements.

When writing a hybrid application, you should not assume that the user will have UIMS,

or even RealLink available. In the NewView example described in Chapter 3, the

application carries out different actions depending on whether or not UIMS is available –

some commands are only provided if it is. If you are writing UIMS versions of existing

routines, character-based alternatives will already exist, but for new features you must

decide whether to write both UIMS and character-based versions.

14.1.1 UIMS Modules

It is best to keep UIMS features separate from the character-based code. This can be

done by creating UIMS modules – subroutines dedicated to the UIMS processing. These

subroutines can be part of the main program or separately cataloged.

The components of a UIMS module are similar to those of a complete UIMS application:

• An initialisation routine to save the main application's environment and set up the

UIMS environment required by the module.

• A routine to create the resources needed by the module. This can be done

dynamically, as part of the initialisation procedure, or can simply consist of

loading a pre-defined resource file.

• A message loop to process messages relating to the module.

• A closing routine to destroy the module's resources and restore the environment

to that required by the calling application.

Note that in most cases it will not be necessary to sign on to UIMS, since this will have

been done by the calling application. Instead, the main application should pass its

application context handle to the UIMS module (either via a global or common variable,

or by passing it as a parameter to a cataloged subroutine), together with any other

parameters such as the handle of the main App window.

14.1.1.1 Resources

The resources required by a UIMS module should, in general, be kept separate from

those in the main application. However, this can result in a delay before any window or

dialog box is displayed, due to the time taken to create the resources. If this is

unacceptable, you could load the resources at the same time as those for the main

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 189 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

application, but keep them unmapped until needed. This will, however, increase the time

taken to start the main application.

Note that the identifier values used by a UIMS module's resources must be unique. If the

values used conflict with those in the main program, the resources will not load.

14.1.2 Combining Terminal Data and Messages

Character-based applications transfer data to and from the terminal as streams of

characters.

For example, when you type the command 'WHO' and press RETURN, the characters 'W',

'H', 'O', CHAR(13) are sent to the host. When a UIMS application is running, however,

these key operations are converted in to keypress messages that are passed to the

application by means of the GetMsg subroutine. A hybrid application combines these two

modes of operation, with some routines using character-based data, while others have a

message loop and therefore expect to receive keypress messages.

For a hybrid application to function correctly, RealLink must always be in the correct

mode of operation, returning character-based data or UIMS messages as required. It is

important that the correct operating mode is selected – if GetMsg is called while

character mode is active, no key presses will be returned to the application.

In most cases this gives no problems – using character-based data switches RealLink

into character mode, and calling a UIMS subroutine selects message mode. There are

some UIMS subroutines that do not select message mode, however, and it is, of course,

possible to call GetMsg without first calling another UIMS subroutine.

The SetUimsMode subroutine is provided to overcome this problem. If you are not

receiving the keypress messages that you expect and think that RealLink may be in the

wrong mode, you can call SetUimsMode before calling GetMsg.

To help you decide whether to use SetUimsMode, the following sections list the

circumstances in which character mode and message mode are selected.

14.1.2.1 Character Mode

Character mode is selected when an application uses any of the following:

• Any of the NewView subroutines.

• The Execute, SendKeys, or SystemCommand subroutines.

• DATA/BASIC commands that send data to or receive data from the terminal

(PRINT, CRT, etc.).

14.1.2.2 Message Mode

All UIMS subroutines select message mode, with the exception of the following:

• GetMsg

• BitTest

• HiByte

• LoByte

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 190 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

14.2 An Example Application: MENUDLG

The MENUDLG application illustrates the concepts described above. It is similar to the

MENUNV NewView application, but the Options menu has an additional command, Send

Message. This displays the same dialog box as the SendMsg application described in

Chapter 10. The Send Message command is implemented as a self-contained cataloged

subroutine with its own message loop.

To create the MENUDLG application, copy and rename the following source files:

Source New name

MENUNV.H MENUDLG.H

MENUNV.UCL MENUDLG.UCL

MENUNV.DB MENUDLG.DB

SENDMSG.H SMSGDLG.H

SENDMSG.UCL SMSGDLG.UCL

SENDMSG.DB SMSGDLG.DB

Then make the following changes:

1. Make the changes described in the section on using the Generic application as a

template in Chapter 4.

2. Add new constant definitions to the application's header file.

3. Add a Send Message item to the application's Options menu.

4. Add the Send Message command to the application's Option menu group

5. Add the Send Message command to the application's response loop.

6. Delete unwanted constant definitions from the SMSGDLG subroutine's header file,

and change the remaining definitions so that they do not conflict with those used in

the main application.

7. Delete the definition of the App window from the subroutine's resource script.

8. Change the definition of the Send Message dialog box so that it will be displayed

when it is attached to its parent.

9. Add a SUBROUTINE statement at the beginning of the SMSGDLG subroutine.

10. Delete unnecessary code from the SMSGDLG subroutine source file.

11. Change the subroutine's main routine to set up and display the dialog box.

12. Change the initialisation procedure in the subroutine's main routine.

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 191 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

13. Change the subroutine's exit procedure to restore the state required by the main

application.

14. Change the commands that unmap the dialog box, so that they cause the subroutine

to return to the main application instead.

15. Compile the resource files and the DATA/BASIC programs.

14.2.1 Add New

You will need identifiers for the additional resources defined in the application's resource

script. These must be available to both the resource script and the DATA/BASIC source,

so add the following to the header file, MENUDLG.H:

EQU APPMENUMSG TO 153

EQU MSG.RESP TO 'MSG

14.2.2 Define Application Resources

To use the Send Message command, the user must be able to select it from a menu.

Find the definition of the Option menu in the MENUDLG.UCL resource script and change

it to the following:

* The Options menu has Diary, Calculator, Swap and

* Send Message commands

MENU = APPMENUOPTIONS

{

 TITLE = '&Options'

 ENABLED = FALSE

 CHILDREN = '&Diary' = APPMENUDIARY,

 '&Calculator' = APPMENUCALC,

 '&Swap strings' = APPMENUCHANGE,

 'Send &Message' = APPMENUMSG

}

Note that the line that defines the Swap strings item must now end with a comma

14.2.3 Modify the Option Menu Group

In a NewView application, a menu command must be part of a NewView group. Find the

MENUITEM.GROUPS subroutine in the file MENUDLG.DB, and change the definition of

group 2 to the following:

* Responses for group 2 (Options menu)

* This contains Diary, Calculator, Swap and Send Message commands

MENU2GRP.RESP = DIARY.RESP:CRET:AM:...

 CALC.RESP:CRET:AM:...

 SWAP.RESP:CRET:AM:...

 MSG.RESP:CRET

* Create the group

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 192 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL CreateNVContactGroup(CONTEXT, ...

 MENU2GRPID, ...

 APPMENUDIARY, ...

 4, ...

 MENU2GRP.RESP, ...

 ERR)

14.2.4 Modify the Response Loop

The MENUDLG application must display a dialog box in response to the Send Message

command. To do this, you will need an additional CASE statement in the application's

response loop.

Find the CASE structure within the response loop in the main routine of MENUDLG.DB,

and add the following:

CASE ANS = MSG.RESP

 IF UIMS.CAPABLE THEN

 CALL SMSGDLG(CONTEXT, APPWIN)

 CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

 END ELSE

 * otherwise the option is invalid

 ERRMSG = "Invalid entry : ":ANS ;* error message

 GOSUB ERRSUB ;* handle the error

 END

 ANS = 0 ;* continue with this menu

*

Because MENUDLG will already be signed on to UIMS, you must pass the handle of the

application context to the SMSGDLG subroutine. The dialog box will be attached to the

main application window, so the handle of this must also be supplied. Note that a dialog

box can only be made a child of an App window or the application context.

When the SMSGDLG subroutine returns, the focus must be returned to the terminal

window, CHILDWIN. If this is not done, the user will be unable to enter selections from

the keyboard.

14.2.5 Modify Constant Definitions

The file SMSGDLG.H will define the constants used in the SMSGDLG subroutine. Because

each object used in a UIMS application must have a unique identifier, you will need to

delete unused constants and change the values of those for the Send Message dialog

box. If this is not done, it will not be possible to load the dialog resources.

Edit the subroutine header file, SMSGDLG.H, and delete the following lines:

EQUATE Win1 TO 10

* Help menu

EQUATE HelpAbout TO 121

* Utilities menu

EQUATE UtilSendMsg TO 101

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 193 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Then change the remaining constant definitions to the following:

EQUATE Dialog1 TO 1000

EQUATE Text1 TO 1010

EQUATE Edit1 TO 1011

EQUATE Text2 TO 1020

EQUATE List1 TO 1022

EQUATE ExGroup TO 1030

EQUATE Option1 TO 1031

EQUATE Option2 TO 1032

EQUATE Option3 TO 1033

EQUATE Check1 TO 1040

EQUATE SendButton TO 1050

EQUATE CancelButton TO 1051

EQUATE HelpButton TO 1052

Note

The values listed above have been chosen because none of the identifiers used in the MENUDLG
application are greater than 1000.

14.2.6 Modify Subroutine's Resources

The SendMsg application, on which the SMSGDLG subroutine is based, has its own

application window. This is not required in the subroutine and must be removed from the

resource script. Edit SMSGDLG.UCL and delete the following lines from the beginning of

the file:

APPWINDOW = Win1

{

 TITLE = 'SendMsg Example Application'

 STYLE = CLOSABLE, SIZABLE, MOVABLE, ICONISABLE

 BDRSTYLE = BORDER

 POSITION = 125, 167

 SIZE = 500, 417

 MENUBAR = 0

 {

 MENU = 0

 {

 TITLE = '&Utilities'

 CHILDREN = 'Send &Message...' = UtilSendMsg

 }

 MENU = 0

 {

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 194 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 TITLE = '&Help'

 CHILDREN = '&About SendMsg...' = HelpAbout

 }

 }

Then move to the end of the file and delete the final closing brace.

In the SendMsg application, the Send Message dialog box is created as a child of the

main App window, but is kept in an unmapped state until required. In the MENUDLG

application, the dialog resources are only loaded when needed; the dialog can therefore

be created in the mapped state. To do this, delete the following line from the definition

of the Dialog Box:

MAPPED = FALSE

14.2.7 Add the SUBROUTINE Statement

You will need to convert SMSGDLG into a catalogued subroutine. Add the following line

at the very beginning of the source file:

SUBROUTINE SMSGDLG(CONTEXT, WINDOW)

The CONTEXT and WINDOW parameters will allow the main application to pass the

handles of the application context and the main App window to the subroutine.

You must also make sure that the subroutine can return to the main application. Find the

following line in the source file:

STOP ;* return to TCL

and replace it with:

* Return to the main application

RETURN

14.2.8 Delete Unnecessary Code

Much of the SendMsg application is concerned with processing messages for the main

App window and its menus. This code will not be needed in the SMSGDLG subroutine and

can be deleted.

You can delete the following routines from the file SMSGDLG.DB:

• HANDLE.WIN1.MESSAGES

• HANDLE.WIN1.MENU

• SHOW.ABOUT.BOX

You can also delete the Win1 case in the message loop. Find and delete the following

lines:

CASE MSG.WINDOW = Win1

 GOSUB HANDLE.WIN1.MESSAGES

The main application is using the terminal window, so your subroutine will not need to

hide it. Find the following lines and delete them:

* Hide the RealLink window

* This can be done at any time, but it's more reassuring to the

* user if we wait until the application's window has appeared.

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 195 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL SetTeWindow(0, 0, UIMS.NONE, ERR)

14.2.9 Set up and Display the Dialog Box

You should already have changed the call to LoadAppRes to load the subroutine's

resources. Once the resources have been loaded, the dialog box must be set up and then

displayed by attaching it as a child of the main application's App window. Find the

following lines:

* Add Win1 as a child of the context returned by the SignOn call.

* This has the effect of 'drawing' Win1 and its children.

CALL AddChild(CONTEXT, CONTEXT, -1, Win1, ERR)

and replace them with:

* Set up the dialog

GOSUB SETUP.DIALOG1

* Add Dialog1 as a child of the context returned by the SignOn call.

* This has the effect of 'drawing' Dialog1 and its children.

CALL AddChild(CONTEXT, WINDOW, -1, Dialog1, ERR)

The handle of the application's App window will be passed to the subroutine in the

WINDOW variable.

14.2.10 Initialise the Subroutine

The initialisation procedure for a UIMS subroutine is different to that for a complete

UIMS application. Where the main application uses NewView, it will already be signed on

to UIMS and the coordinate mode will have been set. However, you may need to change

the error handling mode, and the primary and secondary event masks.

Find the following lines:

* Sign on to UIMS

CALL InitialiseUims

CALL SignOn("SENDMSG", CONTEXT)

IF NOT(CONTEXT) THEN

 PRINT "Failed to Signon"

 STOP

END

* Screen positions and contact sizes will be specified in pixels

CALL SetCoordMode(CONTEXT, UIMS.COORD.GRAPHIC, ERR)

and replace them with:

CALL SetSync(CONTEXT, FALSE, ERR)

* Enable messages

CALL GetEventMask(CONTEXT, CONTEXT, EVENTMASK)

OLD.EVENTMASK = EVENTMASK

CALL BitTest(EVENTMASK, UIMS.EM.NOTIFY, ENABLED)

IF NOT(ENABLED) THEN EVENTMASK = EVENTMASK + UIMS.EM.NOTIFY

CALL BitTest(EVENTMASK, UIMS.EM.MOTION, ENABLED)

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 196 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

IF ENABLED THEN EVENTMASK = EVENTMASK - UIMS.EM.MOTION

CALL SetEventMask(CONTEXT, CONTEXT, EVENTMASK, ERR)

CALL SetSecondaryEventMask(CONTEXT, EVENTMASK, FALSE, FALSE, ERR)

Because the calling, NewView application does not have a message loop, errors are

handled synchronously. In the SMSGDLG subroutine, it will be simpler to handle them

asynchronously.

This line saves the main application's event mask for restoration when the subroutine

returns.

The NewView event mask used by the main application disables Notify messages. If

errors are to be handled asynchronously, Notify messages must be enabled.

The NewView event mask used by the main application enables mouse Motion messages.

These are not required by the SMSGDLG subroutine.

Since the main application does not have a message loop, the secondary event mask is

set to stop any messages reaching the application. The SMSGDLG subroutine, however,

must receive all messages that are enabled by the primary mask. The secondary event

mask is therefore set to the same value as the primary mask.

14.2.11 Restore the Previous State

On returning to the main application, the subroutine must restore the previous error

handling, and primary and secondary event mask states. The dialog box must also be

destroyed before returning.

Find the following lines in the main routine:

* re-display the RealLink window

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR)

CALL SignOff(CONTEXT, ERR) ;* sign off from UIMS

and replace them with:

* Restore synchronous error handling

CALL SetSync(CONTEXT, TRUE, ERR)

* Restore the old event mask

CALL SetEventMask(CONTEXT, CONTEXT, OLD.EVENTMASK, ERR)

* Prevent any more messages reaching the application

CALL SetSecondaryEventMask(CONTEXT, 0, FALSE, FALSE, ERR)

* Destroy the dialog box

CALL Destroy(CONTEXT, Dialog1, ERR)

14.2.12 Change the Unmap Commands

In the SendMsg application, when the Send Message dialog box is no longer needed, it is

hidden by setting it to the unmapped state. The SMSGDLG subroutine must instead

return to the main application.

The Send and Cancel button commands, and the Close command on the System menu,

must each be changed. Find every occurrence of the following lines:

* Hide the dialog box

CALL UnMap(CONTEXT, Dialog1, ERR)

Section 14: Hybrid Applications

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 197 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

and replace them with:

* close the application

USER.WANTS.TO.EXIT = TRUE

14.2.13 Compile

When you have made these changes, you can compile the resource scripts and

DATA/BASIC programs as described in Chapter 4 for the Generic application. When

youmrun the MENUDLG application, the Options menu will initially be disabled. Select

any item from the main menu and then select the Send Message command from the

Options menu on the menu bar. You will see a dialog box similar to that described in

Chapter 10 for the SendMsg application. Type a message in the edit box, select a

destination and then click Send to send the message.

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 198 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 15: Appendix A NewView Examples
This appendix gives the source code listings for the MENUEX and MENUNV programs

described in Chapter 3.

15.1 MENUEX

DATA/BASIC

Source Code

*

* PROGRAM: MENUEX

*

* PURPOSE: Example application for demonstating NewView conversion

*

* ROUTINES:

* Main routine - initialises the application and processes user input

* BUILD - builds a menu to display

* ERRSUB - processes errors

*

 *** Constant definitions ***

* responses common to all menus

EQU MAIN.RESP TO 'M' ;* return to main menu

EQU BACK.RESP TO 'E' ;* return to previous menu

EQU EXIT.RESP TO 'OFF' ;* return to TCL

* item attributes in the menu definition file

EQU MOPT.NO TO 1 ;* item number or identifier

EQU MCOL TO 2 ;* screen column

EQU MROW TO 3 ;* screen row

EQU MTITLE TO 4 ;* item title

EQU MLINK TO 5 ;* links to sub-menus

EQU MHEADING TO 6 ;* menu heading

* Open the menu definitions file

OPEN "MENUDEFS" TO MENUDEFS ELSE CRT "No MENUDEFS file"; STOP

ID = "MAIN" ;* start with the main menu

PREVID = '' ;* initialise history

PROMPT " " ;* we don't want a prompt character for input statements

*** Main loop ***

OK = 1 ;* initialise loop control variable

LOOP WHILE OK DO

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 199 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 GOSUB BUILD ;* build the selected menu

 IF SCR # '' THEN

 CRT SCR: ;* display the menu

 INS ID BEFORE PREVID<1> ;* add this menu to the history

 END

 *** Response loop ***

 ANS = 0 ;* initialise loop control variable

 LOOP WHILE ANS = 0 DO

 * get the user's selection

 CRT @(SELCOL,SELROW): ;* position the cursor

 CRT @(-4) ;* clear previous selection

 CRT @(SELCOL,SELROW): ;* reposition the cursor

 INPUT ANS,10: ;* get the user's choice

 BEGIN CASE

*

 CASE ANS = BACK.RESP ;* go back to the previous menu

 DEL PREVID<1> ;* delete current id from history

 ID = PREVID<1> ;* get the id of the previous menu

 DEL PREVID<1> ;* delete this id as well

 IF ID = '' THEN ID = "MAIN" ;* if already at main menu, stay there

*

 CASE ANS = MAIN.RESP ;* back to the main menu

 ID = "MAIN" ;* set the current id

 PREVID = '' ;* re-initialise the history

*

 CASE ANS = EXIT.RESP ;* return to TCL

 OK = 0 ;* clear the control variable for the main loop

*

 CASE ANS >= START.OPT.NO AND ANS <= END.OPT.NO ;* valid menu item

 ID = MENUREC<MLINK,ANS> ;* point to the selected sub-menu

*

 CASE 1 ;* the response was none of the above

 ERRMSG = "Invalid entry :":ANS ;* error message

 GOSUB ERRSUB ;* handle the error

 ANS = 0 ;* clear the loop control so that we continue with this menu

*

 END CASE

*

 REPEAT ;* end of response loop

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 200 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

REPEAT ;* end of main loop

 *** Exit program ***

CRT @(-1) ;* clear the screen

STOP ;* return to TCL

*

* SUBROUTINE: BUILD

*

* PURPOSE: Build a menu for display

*

* COMMENTS:

* ID specifies the menu required. The menu structure is read

* from the menu definition file.

* On exit the following variables are set:

* SCR - The completed menu for display

* START.OPT.NO - The number of the first item

* END.OPT.NO - The number of the last item

* SELCOL, SELROW - The screen position for the INPUT

* statement in the main loop

*

BUILD:

 SCR = '' ;* clear any previous menu

 * read the specified menu from the open menu definition file

 READ MENUREC FROM MENUDEFS,ID ELSE ERRMSG = "No menu record" ; GOSUB

ERRSUB ; RETURN

 *** Start building the menu ***

 SCR = @(-1) ;* clear the screen

 * position and text for menu heading

 SCR = SCR:@(MENUREC<MHEADING,1>,MENUREC<MHEADING,2>):MENUREC<MHEADING,3>

 START.OPT.NO = 0; END.OPT.NO = 0 ;* initialise the range of valid items

 OPT.NO = 0 ;* current item

X = 0 ;* start counting items from 0

 * for each item on the menu

 LOOP X = X+1 WHILE MENUREC<MOPT.NO,X> # '' DO

 * fetch item parameters

 COL = MENUREC<MCOL,X> ;* screen column

 ROW = MENUREC<MROW,X> ;* screen row

 TITLE = MENUREC<MTITLE,X> ;* item title

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 201 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 OPT.NO = MENUREC<MOPT.NO,X> ;* item number or identifier

 * if the item has a number

 IF OPT.NO MATCHES '0N' THEN

 * if not already set, set the start of the valid range

 IF START.OPT.NO = 0 THEN START.OPT.NO = OPT.NO

 END.OPT.NO = OPT.NO ;* extend the end of range to include this item

 END

 IF OPT.NO = 'S' THEN

 * if the item is the selection prompt

 * set the position for user input

 SELCOL = COL+LEN(TITLE); SELROW = ROW

 * append the position and text for the selection prompt to the menu

 SCR = SCR:@(COL,ROW):TITLE

 END ELSE

 * otherwise append the position and text for this item to the menu

 SCR = SCR:@(COL,ROW):OPT.NO:@(COL+5,ROW):TITLE

 END

 REPEAT ;* repeat for the next item

RETURN

*

* SUBROUTINE: ERRSUB

*

* PURPOSE: Display an error message and wait for a response

*

* COMMENTS:

* The ERRMSG variable contains the message to display

*

ERRSUB:

 CRT @(LEN(ERRMSG)+4,23): ;* position the cursor

 CRT @(-128): ;* video attributes off

 * print the error message in reverse video

 CRT @(0,23):@(-132):" ":ERRMSG:" ":@(-128):

 INPUT ANS,1: ;* wait for the user to respond

 CRT @(0,23):@(-4): ;* clear the error message

RETURN

END

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 202 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

15.1.1 Menu Definition File

The following items must be created on the host in a file called MENUDEFS. This must be

in the same account as the compiled and cataloged version of MENUEX.

In the item details that follow, REALITY value marks (X'FD') are shown as closing square

brackets (]).

15.1.2 MAIN Item

Attribute 1: 1]2]3]4]5]6]7]8]S

Attribute 2: 25]25]25]25]25]25]25]25]25

Attribute 3: 5]7]9]11]13]15]17]19]22

Attribute 4: Personal Updates]Personal Enquiries]Background

Files]Reporting Facilities]Bulk Amendments]

Daily/Weekly/Monthly Procedures]Additional

Facilities]System Administration]Selection or 'OFF':

Attribute 5: SUB1]SUB2]SUB3]SUB4

Attribute 6: 30]2]MAIN MENU

15.1.3 SUB1 Item

Attribute 1: 1]2]3]4]5]6]7]8]9]10]S

Attribute 2: 1]1]1]1]1]40]40]40]40]40]25

Attribute 3: 5]7]9]11]13]5]7]9]11]13]22

Attribute 4: Personal (i)]Personal (ii)]Pay Details]Benefits]Private

Health Scheme]Additional Details]Qualifications]

Training Requirements]Training History]Career

History]Selection, 'M' or 'E':

Attribute 5: SUB5]

Attribute 6: 30]1]PERSONNEL UPDATES

15.1.4 SUB2 Item

Attribute 1: 1]2]3]4]5]6]7]8]9]10]S

Attribute 2: 1]1]1]1]1]40]40]40]40]40]25

Attribute 3: 5]7]9]11]13]5]7]9]11]13]22

Attribute 4: Personal (i)]Personal (ii)]Pay Details]Benefits]Private

Health Scheme]Additional Details]Qualifications]

Training Requirements]Training History]Career History]

Selection, 'M' or 'E':

Attribute 5:

Attribute 6: 30]1]PERSONNEL ENQUIRIES

15.1.5 SUB3 Item

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 203 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attribute 1: 1]2]3]4]5]6]S

Attribute 2: 25]25]25]25]25]25]25

Attribute 3: 8]10]12]14]16]18]22

Attribute 4: Standard Narrative Tables]Bespoke Narrative Tables]

User-Defined Tables]Job Details]Establishment

Structure]Reasons for Change]Selection, 'M' or 'E':

Attribute 5:

Attribute 5: 30]1]BACKGROUND FILES

15.1.6 SUB4 Item

Attribute 1: 1]2]3]4]5]S

Attribute 2: 25]25]25]25]25]25

Attribute 3: 8]10]12]14]16]22

Attribute 4: Report Generator]Standard Letters]Record Sheets]English

Reports]Bonus Procedures]Selection, 'M' or 'E':

Attribute 5: MAIN]MAIN]MAIN]MAIN]

Attribute 6: 30]1]REPORTING FACILITIES

15.1.7 SUB5 Item

Attribute 1: 1]2]3]4]5]6]7]8]S

Attribute 2: 1]1]1]1]40]40]40]40]25

Attribute 3: 5]7]9]11]5]7]9]11]22

Attribute 4: Personal]Family]Financial]Medical History]Contacts]

Relatives]Travel]Organizations]Selection, 'M' or 'E':

Attribute 5:

Attribute 6: 30]1]PERSONAL DETAILS

15.2 MENUNV

DATA/BASIC

Source Code

The DATA/BASIC source can be created on the host with a REALITY text editor (ED or

SE). Alternatively it can be created on the PC with a text editor such as Windows

Notepad, and then copied onto the host with one of the RealLink file transfer utilities

(LanFTU or HOST-WS).

*

* PROGRAM: MENUNV

*

* PURPOSE: NewView example application

*

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 204 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* ROUTINES:

* Main routine - initialises the application and processes

* user input

* BUILD - builds a menu to display

* ERRSUB - processes errors

* SETUP.NEWVIEW - signs on to UIMS and sets up the NewView

* environment

* BUTTON.GROUPS - creates button groups and assigns response

* strings to them

* MENUITEM.GROUPS - creates menuitem groups and assigns

* response strings to them

* SIGNOFF - tidies up UIMS and NewView before returning

* to TCL

* CREATE.HOTSPOTS - creates the hotspots for a menu

* SWAP.BUTTONS - demonstrates how NewView buttons can be changed

* in response to a menu selection

* CHANGE.MENUBAR - demonstrates how the commands on the application's

* menu bar can be changed, according to the menu

* displayed.

*

*** NewView additions ***

* UIMS and RealLink constant definitions

INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-TOOLS

INCLUDE RFWDEFS FROM UIMS-TOOLS

* application-specific constant definitions

INCLUDE MENUNV.H

*** End of NewView additions ***

 *** Constant definitions ***

* responses common to all menus

EQU MAIN.RESP TO 'M' ;* return to main menu

EQU BACK.RESP TO 'E' ;* return to previous menu

EQU EXIT.RESP TO 'OFF' ;* return to TCL

* item attributes in the menu definition file

EQU MOPT.NO TO 1 ;* item number or identifier

EQU MCOL TO 2 ;* screen column

EQU MROW TO 3 ;* screen row

EQU MTITLE TO 4 ;* item title

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 205 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

EQU MLINK TO 5 ;* links to sub-menus

EQU MHEADING TO 6 ;* menu heading

* Open the menu definitions file

OPEN "MENUDEFS" TO MENUDEFS ELSE CRT "No MENUDEFS file"; STOP

*** NewView additions ***

* Try to initialise UIMS. This will tell us whether the terminal and

* account support UIMS.

UIMS.CAPABLE = FALSE ;* assume no UIMS support until we've tried

* Now see if the InitialiseUims subroutine exists. If it does, call it.

OPEN "MD" TO ACCMD THEN

 READ ACCREC FROM ACCMD,"InitialiseUims" THEN CALL InitialiseUims

 CLOSE ACCMD

END

* If UIMS is supported, we can set up UIMS and NewView

IF UIMS.CAPABLE THEN GOSUB SETUP.NEWVIEW

*** End of NewView additions ***

ID = "MAIN" ;* start with the main menu

PREVID = '' ;* initialise history

PROMPT " " ;* we don't want a prompt character for input statements

*** NewView additions ***

HOTSPOTS = 0 ;* non-zero once NewView hotspots have been created

SWITCH = 0 ;* buttons haven't been swapped (Change command)

*** End of NewView additions ***

 *** Main loop ***

OK = 1 ;* initialise loop control variable

LOOP WHILE OK DO

 GOSUB BUILD ;* build the selected menu

 IF SCR # '' THEN

 CRT SCR: ;* display the menu

 *** NewView additions ***

 IF UIMS.CAPABLE THEN GOSUB CREATE.HOTSPOTS ;* create its hotspots

 *** End of NewView additions ***

 INS ID BEFORE PREVID<1> ;* add this menu to the history

 END

 *** Response loop ***

 ANS = 0 ;* initialise loop control variable

 LOOP WHILE ANS = 0 DO

 * get the user's selection

 CRT @(SELCOL,SELROW): ;* position the cursor

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 206 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CRT @(-4) ;* clear previous selection

 CRT @(SELCOL,SELROW): ;* reposition the cursor

 INPUT ANS,10: ;* get the user's choice

 BEGIN CASE

*

 CASE ANS = BACK.RESP ;* go back to the previous menu

 DEL PREVID<1> ;* delete current id from history

 ID = PREVID<1> ;* get the id of the previous menu

 DEL PREVID<1> ;* delete this id as well

 IF ID = '' THEN ID = "MAIN" ;* if already at main menu, stay there

*

 CASE ANS = MAIN.RESP ;* back to the main menu

 ID = "MAIN" ;* set the current id

 PREVID = '' ;* re-initialise the history

*

 *** NewView additions ***

*

 CASE ANS = SWAP.RESP ;* change the buttons around

 IF UIMS.CAPABLE THEN

 GOSUB SWAP.BUTTONS ;* if we have a UIMS terminal swap the buttons

 END ELSE

 * otherwise the option is invalid

 ERRMSG = "Invalid entry : ":ANS ;* error message

 GOSUB ERRSUB ;* handle the error

 END

 ANS = 0 ;* clear the loop control so that we continue with this menu

*

 CASE ANS = CALC.RESP ;* start the windows calculator

 IF UIMS.CAPABLE THEN

 GOSUB RUN.CALC

 END ELSE

 * otherwise the option is invalid

 ERRMSG = "Invalid entry : ":ANS ;* error message

 GOSUB ERRSUB ;* handle the error

 END

 ANS = 0 ;* clear the loop control so that we continue with this menu

*

 *** End of NewView additions ***

*

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 207 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CASE ANS = EXIT.RESP ;* return to TCL

 OK = 0 ;* clear the control variable for the main loop

*

 CASE ANS >= START.OPT.NO AND ANS <= END.OPT.NO ;* valid menu item

 ID = MENUREC<MLINK,ANS> ;* point to the selected sub-menu

*

 CASE 1 ;* the response was none of the above

 ERRMSG = "Invalid entry : ":ANS ;* error message

 GOSUB ERRSUB ;* handle the error

 ANS = 0 ;* clear the loop control so that we continue with this menu

*

 END CASE

*

 REPEAT ;* end of response loop

*** NewView additions ***

 * different menus have different commands available

 IF UIMS.CAPABLE THEN GOSUB CHANGE.MENUBAR

 *** End of NewView additions ***

REPEAT ;* end of main loop

 *** Exit program ***

CRT @(-1) ;* clear the screen

*** NewView changes ***

IF UIMS.CAPABLE THEN GOSUB SIGNOFF ;* tidy up UIMS and NewView

*** End of NewView changes ***

STOP ;* return to TCL

*

* SUBROUTINE: BUILD

*

* PURPOSE: Build a menu for display

*

* COMMENTS:

* ID specifies the menu required. The menu structure is read

* from the menu definition file.

* The HOTSPOTS variable specifies whether there is a hotspot

* group already in existence. If there is, it must be

* destroyed before the new one can be created.

* On exit the following variables are set:

* SCR - The completed menu for display

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 208 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* START.OPT.NO - The number of the first item

* END.OPT.NO - The number of the last item

* SELCOL, SELROW - The screen position for the INPUT

* statement in the main loop

* HOTSPOTS - The number of hotspots to be created

* XPOS, YPOS - Hotspot positions

* WIDTH, HEIGHT - Hotspot sizes

* RESP - Hotspot response strings

*

BUILD:

 SCR = '' ;* clear any previous menu

 * read the specified menu from the open menu definition file

 READ MENUREC FROM MENUDEFS,ID ELSE ERRMSG = "No menu record" ; GOSUB

ERRSUB ; RETURN

 *** NewView additions ***

 IF UIMS.CAPABLE THEN

 * destroy any previous hotspot group

 IF HOTSPOTS # 0 THEN CALL DestroyNVGroup(CONTEXT, HOTGRPID, ERR)

 * reset hotspot attribute arrays

 XPOS = '' ; YPOS = '' ;* positions

 WIDTH = '' ; HEIGHT = '' ;* sizes

 RESP = '' ;* responses

 HOTSPOTS = 0 ;* no hotspots now exist

 END

*** End of NewView additions ***

 *** Start building the menu ***

 SCR = @(-1) ;* clear the screen

 * position and text for menu heading

 SCR = SCR:@(MENUREC<MHEADING,1>,MENUREC<MHEADING,2>):MENUREC<MHEADING,3>

 START.OPT.NO = 0; END.OPT.NO = 0 ;* initialise the range of valid items

 OPT.NO = 0 ;* current item

 X = 0 ;* start counting items from 0

 * for each item on the menu

 LOOP X = X+1 WHILE MENUREC<MOPT.NO,X> # '' DO

 * fetch item parameters

 COL = MENUREC<MCOL,X> ;* screen column

 ROW = MENUREC<MROW,X> ;* screen row

 TITLE = MENUREC<MTITLE,X> ;* item title

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 209 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

OPT.NO = MENUREC<MOPT.NO,X> ;* item number or identifier

 * if the item has a number

 IF OPT.NO MATCHES '0N' THEN

 * if not already set, set the start of the valid range

 IF START.OPT.NO = 0 THEN START.OPT.NO = OPT.NO

 END.OPT.NO = OPT.NO ;* extend the end of range to include this item

 END

 IF OPT.NO = 'S' THEN

 * if the item is the selection prompt

 * set the position for user input

 SELCOL = COL+LEN(TITLE); SELROW = ROW

 * append the position and text for the selection prompt to the menu

 SCR = SCR:@(COL,ROW):TITLE

 END ELSE

 * otherwise append the position and text for this item to the menu

 SCR = SCR:@(COL,ROW):OPT.NO:@(COL+5,ROW):TITLE

 *** NewView additions ***

 * the hotspot will be created when the menu is displayed,

 * but its attributes are set up now

 IF UIMS.CAPABLE THEN

 * each attribute is added to the appropriate dynamic array

 XPOS<-1> = COL ; YPOS<-1> = ROW ;* position

 WIDTH<-1> = LEN(TITLE)+5 ; HEIGHT<-1> = 1 ;* size

 RESP<-1> = OPT.NO:CRET ;* response

 HOTSPOTS = HOTSPOTS+1 ;* increment the hotspot counter

 END

 *** End of NewView additions ***

 END

 REPEAT ;* repeat for the next item

RETURN

*

* SUBROUTINE: ERRSUB

*

* PURPOSE: Display an error message and wait for a response

*

* COMMENTS:

* The ERRMSG variable contains the message to display

*

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 210 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

ERRSUB:

 IF UIMS.CAPABLE THEN

 CALL CreateMessageBox(CONTEXT, UIMS.INFO, "Error", ERRMSG, "", REPLY, ERR)

 * Set the focus back to the terminal window

 CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

 END ELSE

 CRT @(LEN(ERRMSG)+4,23): ;* position the cursor

 CRT @(-128): ;* video attributes off

 * print the error message in reverse video

 CRT @(0,23):@(-132):" ":ERRMSG:" ":@(-128):

 INPUT ANS,1: ;* wait for the user to respond

 CRT @(0,23):@(-4): ;* clear the error message

 END

RETURN

*

* SUBROUTINE: SETUP.NEWVIEW

*

* PURPOSE: Signs on to UIMS and sets up the NewView environment

*

SETUP.NEWVIEW:

 CALL SignOn("MENUNV", CONTEXT) ;* sign on to UIMS

 IF NOT(CONTEXT) THEN

 UIMS.CAPABLE = FALSE ;* can't sign on, so no UIMS support

 ERRMSG = "Error - failed to signon to UIMS"

 GOSUB ERRSUB

 RETURN

 END

* set an event mask that will allow NewView the right events to process

 CALL SetEventMask(CONTEXT, CONTEXT, UIMS.EM.NEWVIEW, ERR)

 * disable unwanted events

 CALL SetSecondaryEventMask(CONTEXT, 0, FALSE, FALSE, ERR)

 * select synchronous error handling

 CALL SetSync(CONTEXT, TRUE, ERR)

 * RealLink runs in Graphics mode - so make the application do the same

 CALL SetCoordMode(CONTEXT, UIMS.COORD.GRAPHIC, ERR)

 * load resource file to create window with buttons etc.

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 211 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 CALL LoadAppRes(CONTEXT, "menunv.res", ERR)

 IF ERR THEN

 * can't use UIMS without resources, but the application can continue

without

 UIMS.CAPABLE = FALSE ;* no UIMS support

 CALL SignOff(CONTEXT, ERR) ;* sign off from UIMS

 ERRMSG = "Cannot find MENUNV.RES resource file"

 GOSUB ERRSUB ;* display the error message

 RETURN

 END

 * parent the AppWindow to the Context to make it visible

 CALL AddChild(CONTEXT, CONTEXT, -1, APPWIN, ERR)

 * make the child window the TE window

 CALL SetTeWindow(CONTEXT, CHILDWIN, UIMS.NONE, ERR)

 * and give it the focus

 CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

 * redirect system messages to a message box

 CALL ReMapNVLine25(CONTEXT, TRUE, ERR)

 IF ERR THEN ERRMSG = "Unable to redirect system messages" ; GOSUB ERRSUB

 * initialise a hotspot attributes

 XPOS = '' ; YPOS = '' ;* positions

 WIDTH = '' ; HEIGHT = '' ;* sizes

 RESP = '' ;* responses

 HOTSPOTS = 0 ;* number of hotspots

 * form a NewView button group and assign response strings to individual

buttons

 GOSUB BUTTON.GROUPS

* form a NewView group for the menu items and assign response strings

 GOSUB MENUITEM.GROUPS

RETURN

*

* SUBROUTINE: BUTTON.GROUPS

*

* PURPOSE: Create button groups and assign response strings

*

* COMMENTS:

* There are two button groups: group 1, consisting of the Back

* and Main buttons (buttons 1 and 2); and group 2, containing

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 212 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* all the rest. Group 2 is initially disabled.

*

BUTTON.GROUPS:

 * responses for button group 1

 * these are attributes in a dynamic array

 * each response is terminated with a carriage return

 BUT1GRP.RESP = BACK.RESP:CRET:AM:MAIN.RESP:CRET

 * create the group

 CALL CreateNVContactGroup(CONTEXT, BUT1GRPID, BUT1, 2, BUT1GRP.RESP, ERR)

 * responses for button group 2: only buttons 9 & 10 are used

 BUT2GRP.RESP = AM:AM:AM:AM:AM:AM:OK.RESP:CRET:AM:SWAP.RESP:CRET

 * create the group

 CALL CreateNVContactGroup(CONTEXT, BUT2GRPID, BUT3, 8, BUT2GRP.RESP, ERR)

 * disable it

 CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, FALSE, ERR)

 * alternative responses for button group 1 (used when the buttons are

swapped)

 BUT1GRP.RESP2 = MAIN.RESP:CRET:AM:BACK.RESP:CRET

 * map the button groups to make them visible

 CALL SetMappedNVGroup(CONTEXT, BUT1GRPID, TRUE, ERR)

 CALL SetMappedNVGroup(CONTEXT, BUT2GRPID, TRUE, ERR)

RETURN

*

* SUBROUTINE: MENUITEM.GROUPS

*

* PURPOSE: Create menuitem groups and assign response strings

*

* COMMENTS:

* There are three menus: File (containing Print commands and

* Exit), Edit, and Options. The Print commands and the Edit

* menu are managed by RealLink.

* Note that the Options menu is disabled in the resource file

*

MENUITEM.GROUPS:

 * Responses for group 1 (File menu)

 * Because the Print commands are managed by RealLink, this

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 213 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * group consists of only a single item: Exit

 MENU1GRP.RESP = EXIT.RESP:CRET

 * Create the group

 CALL CreateNVContactGroup(CONTEXT, MENU1GRPID, APPMENUEXIT, 1,

MENU1GRP.RESP, ERR)

 * Responses for group 2 (Options menu)

 * This contains Diary, Calculator and Swap commands

 MENU2GRP.RESP = DIARY.RESP:CRET:AM:CALC.RESP:CRET:AM:SWAP.RESP:CRET

 * Create the group

 CALL CreateNVContactGroup(CONTEXT, MENU2GRPID, APPMENUDIARY, 3,

MENU2GRP.RESP, ERR)

RETURN

*

* SUBROUTINE: SIGNOFF

*

* PURPOSE: To tidy up UIMS and NewView before returning to TCL

*

* COMMENTS:

* NewView contact and hotspot groups, if any, are destroyed. The

* HOTSPOT variable specifies whether there are any hotspot groups

* to be destroyed.

*

SIGNOFF:

 * Destroy the hotspot group, if any.

 IF HOTSPOTS # 0 THEN CALL DestroyNVGroup(CONTEXT, HOTGRPID, ERR)

 * Destroy the two button groups

 CALL DestroyNVGroup(CONTEXT, BUT1GRPID, ERR)

 CALL DestroyNVGroup(CONTEXT, BUT2GRPID, ERR)

 * and the two menu-item groups

 CALL DestroyNVGroup(CONTEXT, MENU1GRPID, ERR)

 CALL DestroyNVGroup(CONTEXT, MENU2GRPID, ERR)

 * return TE functionality to the RealLink window

 CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR)

 CALL SignOff(CONTEXT, ERR) ;* sign off from UIMS

RETURN

*

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 214 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

* SUBROUTINE: CREATE.HOTSPOTS

*

* PURPOSE: Create a hotspot for each menu item

*

* COMMENTS:

* The HOTSPOTS variable contains the number of hotspots to create

* The following dynamic arrays contain hotspot attributes:

* XPOS, YPOS - position

* WIDTH, HEIGHT - size

* RESP - response string

*

CREATE.HOTSPOTS:

 * create the menu's hotspots

 CALL CreateNVHotspotGroup(CONTEXT, HOTGRPID, HOTSPOTS, XPOS, YPOS, WIDTH,

HEIGHT, ...

 RESP, ERR)

 IF ERR # 0 THEN

 ERRMSG = "Failed to create Hotspot group : ":ERR ; GOSUB ERRSUB

 END

RETURN

*

* SUBROUTINE: SWAP.BUTTONS

*

* PURPOSE: To demonstrate how NewView buttons might be changed in

* response to menu input.

*

* COMMENTS:

* Both the button titles and their responses must be changed.

* The SWITCH variable indicates whether the buttons have

* already been swapped.

*

SWAP.BUTTONS:

 IF SWITCH = 0 THEN

 * change the titles of the buttons in group 1

 CALL TitledButtonSetTitle(CONTEXT, BUT1, "Main", ERR)

 CALL TitledButtonSetTitle(CONTEXT, BUT2, "Back", ERR)

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 215 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 * change the button responses

 CALL ChangeNVContacts(CONTEXT, BUT1GRPID, BUT1, 2, BUT1GRP.RESP2, ERR)

 * set a flag to show that the buttons have been swapped

 SWITCH = 1

 END ELSE

 * change the titles of the buttons in group 1

 CALL TitledButtonSetTitle(CONTEXT, BUT2, "Main", ERR)

 CALL TitledButtonSetTitle(CONTEXT, BUT1, "Back", ERR)

 * change the button responses

 CALL ChangeNVContacts(CONTEXT, BUT1GRPID, BUT1, 2, BUT1GRP.RESP, ERR)

 * clear the flag to show that the buttons have been swapped back

 SWITCH = 0

 END

RETURN

*

* SUBROUTINE: CHANGE.MENUBAR

*

* PURPOSE: To demonstrate how the commands on the application's

* menu bar might be changed, according to the menu

* displayed.

*

* COMMENTS:

* If the main menu is displayed, button group 2 and the Options

* menu are disabled. Otherwise they are enabled. The ID

* variable is tested to determine which is required.

* Note that in the case of the menu, both the menuitem

* group and the menu itself must be enabled or disabled.

*

CHANGE.MENUBAR:

 * if the main menu is displayed

 IF ID = "MAIN" THEN

 * disable button group 2

 CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, FALSE, ERR)

 * disable the Options menu

 CALL SetEnabledNVGroup(CONTEXT, MENU2GRPID, FALSE, ERR)

 CALL SetEnabled(CONTEXT, APPMENUOPTIONS, FALSE, ERR)

 * otherwise

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 216 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 END ELSE

 * enable button group 2

 CALL SetEnabledNVGroup(CONTEXT, BUT2GRPID, TRUE, ERR)

 * enable the Options menu

 CALL SetEnabledNVGroup(CONTEXT, MENU2GRPID, TRUE, ERR)

 CALL SetEnabled(CONTEXT, APPMENUOPTIONS, TRUE, ERR)

 END

RETURN

*

* SUBROUTINE: RUN.CALC

*

* PURPOSE: To run the Windows calculator.

*

* COMMENTS:

* This routine illustrates how menu options can be used to run

* utililities from within a NewView application. The utility

* could just as easily be a DATA/BASIC application.

*

RUN.CALC:

 COMMANDLINE = "calc.exe" ;* file to execute

 WINDOWSTATE = EXECUTE.SHOWNORMAL ;* window state

 CONTROL = EXECUTE.WAIT ;* don't return until closed

 CALL Execute(COMMANDLINE, WINDOWSTATE, CONTROL, ERR)

 IF ERR THEN

 * if ERR is non-zero, there was an error

 ERRMSG = "Unable to run Calculator : ":ERR ;* error message

 GOSUB ERRSUB ;* handle the error

 END

 * Set the focus back to the terminal window

 CALL SetContactFocus(CONTEXT, CHILDWIN, ERR)

RETURN

END

15.2.1 Header File

The header file contains constant definitions which are common to both the DATA/BASIC

source code and the resource script. These definitions must exist as an item in the

REALITY file containing the source of the MENUNV application, and also be available on

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 217 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

the PC when compiling the resource script. The RealLink LanFTU file transfer facility can

be used to copy the information from the host to the PC or vice versa.

*

* MENUNV.H - Constant definitions NewView version of MENUEX program

*

* Ids for App window and major components

EQU APPWIN TO 101

EQU CHILDWIN TO 102

EQU APPMENUBAR TO 103

* Menu and MenuItem Ids

EQU APPMENUEDIT TO 104

EQU APPMENUFILE TO 108

EQU APPMENUEXIT TO 109

EQU APPMENUOPTIONS TO 149

EQU APPMENUDIARY TO 150

EQU APPMENUCALC TO 151

EQU APPMENUCHANGE TO 152

* Button Ids

EQU BUT1 TO 201

EQU BUT2 TO 202

EQU BUT3 TO 203

EQU BUT4 TO 204

EQU BUT5 TO 205

EQU BUT6 TO 206

EQU BUT7 TO 207

EQU BUT8 TO 208

EQU BUT9 TO 209

EQU BUT10 TO 210

* Group ids

EQU HOTGRPID TO 1

EQU BUT1GRPID TO 2

EQU BUT2GRPID TO 3

EQU MENU1GRPID TO 4

EQU MENU2GRPID TO 5

* Button sizes and positions

EQU BUTWIDTH TO 100

EQU BUTHEIGHT TO 50

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 218 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

EQU BUTY TO 0

EQU BUT1X TO 0

EQU BUT2X TO 100

EQU BUT3X TO 200

EQU BUT4X TO 300

EQU BUT5X TO 400

EQU BUT6X TO 500

EQU BUT7X TO 600

EQU BUT8X TO 700

EQU BUT9X TO 800

EQU BUT10X TO 900

* horizontal position of TE window in App window; allows for button

bar

EQU TEWINSTART TO 55

* Additional menu responses

EQU SWAP.RESP TO 'S'

EQU OK.RESP TO ''

EQU CALC.RESP TO 'C'

EQU DIARY.RESP TO 'D'

* general constants

EQU CRET TO CHAR(13)

EQU AM TO CHAR(254)

15.2.2 Resource Script

The resource script must be created on the PC and given a name with the extension

'.UCL'. It contains the definitions for the various UIMS contacts used in MENUNV.

*

* MENUNV.UCL - Resource file for NewView version of MENUEX program

*

#INCLUDE RFWDEFS.H

#INCLUDE MENUNV.H

* Main application window and menus

APPWINDOW = APPWIN

{

TITLE = 'NewView Demonstration'

 POSITION = 0, 40

 SIZE = 1000, 800

 STYLE = NOSCROLL, MOVABLE, ICONISABLE

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 219 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 BDRSTYLE = BORDER

 MENUBAR = APPMENUBAR

 {

 * The File menu has all the RealLink Printing commands plus

Exit

 MENU = APPMENUFILE

 {

 TITLE = '&File'

 ENABLED = TRUE

 CHILDREN = '&Print' = ID.FILEPRINT,

 'Print &Window' = ID.FILEPRINTWINDOW,

 'P&rinter Setup' = ID.FILEPRINTERSETUP,

 '-' = 0,

 'E&xit' = APPMENUEXIT

 }

 * The Edit menu has the three RealLink editing commands

 MENU = APPMENUEDIT

 {

 TITLE = '&Edit'

 ENABLED = TRUE

 CHILDREN = '&Copy' = ID.EDITCOPY,

 '&Paste' = ID.EDITPASTE,

 '-' = 0,

 'Copy &Window' = ID.EDITCOPYWINDOW

 }

 * The Options menu has Diary, Calculator and Swap commands

 MENU = APPMENUOPTIONS

 {

 TITLE = '&Options'

 ENABLED = FALSE

 CHILDREN = '&Diary' = APPMENUDIARY,

 '&Calculator' = APPMENUCALC,

 '&Swap strings' = APPMENUCHANGE

 }

 }

* Child window to use as the terminal window

 CHILDWINDOW = CHILDWIN

 {

 POSITION = 0, TEWINSTART

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 220 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 SIZE = 1000, 730

 STYLE = NOSCROLL

 BDRSTYLE = NONE

 EVENTMASK = NEWVIEW

 }

 * Buttons

 TITLEDBUTTON = BUT1

 {

 TITLE = 'Back'

 POSITION = BUT1X, BUTY

 MAPPED = FALSE

 ENABLED = TRUE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT2

 {

 TITLE = 'Main'

 POSITION = BUT2X, BUTY

 MAPPED = FALSE

 ENABLED = TRUE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT3

 {

 TITLE = ''

 POSITION = BUT3X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT4

 {

 TITLE = ''

 POSITION = BUT4X, BUTY

MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT5

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 221 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 {

 TITLE = ''

 POSITION = BUT5X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT6

 {

 TITLE = ''

 POSITION = BUT6X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT7

 {

 TITLE = ''

 POSITION = BUT7X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT8

 {

 TITLE = ''

 POSITION = BUT8X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

 TITLEDBUTTON = BUT9

 {

TITLE = 'Ok'

 POSITION = BUT9X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

Section 15: Appendix A NewView Examples

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 222 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 TITLEDBUTTON = BUT10

 {

 TITLE = 'Swap'

 POSITION = BUT10X, BUTY

 MAPPED = FALSE

 ENABLED = FALSE

 SIZE = BUTWIDTH, BUTHEIGHT

 }

}

15.2.3 Menu Definition File

MENUNV uses the same menu definition file as MENUEX. Refer to page A-6 for details.

Section 16: Glossary

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 223 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 16: Glossary

Active Window The window which the user can currently manipulate or

work with. This is similar to having the focus.

API Application Programming Interface.

App Window An App window is the main type of window in a UIMS

application. It is free to appear anywhere on the screen and

to overlap any other window (compare Child Window). A

UIMS application must have at least one App window (the

root window).

Attribute 1. A unique characteristic of an object that can be modified.

2. A section of a REALITY file item, delimited by attribute

marks – CHAR(254).

Brush 1. The way the interior of a graphical object looks; it can be

coloured, hatched, or patterned.

2. A UIMS object that controls these characteristics.

Check Button A check button is a control that can be turned on or off and

saves its state. It looks like a square box to the left of some

text. If it has been selected, an 'X' appears in the box.

Check Mark A mark shown beside a menu item to indicate a selected

option. The mark displayed is normally a tick (ü), but on

some hardware platforms other marks may be used.

Child Window A child window is similar to an App window, but cannot

overlap windows other than its parent.

Client Area The client area is the part of a window where an application

can draw. It is usually the central area of the window and

excludes the title area, menu bar, scroll bars, etc.

Client Coordinates Coordinates relative to the top left-hand corner of the

window's client area.

Clip Region Defines in which part of a window drawing can take place.

An application may draw outside the clip region, but only

the part inside the clip region will be displayed.

Clipboard The clipboard can be thought of as a resting place in

memory for data that has been copied or cut from one

application to be pasted into the same or a different

application.

Contact An object that provides an interface with the user. Window,

menu, and dialogue box objects are all contacts.

Context An object that defines certain application wide parameters,

such as the coordinate mode, the default drawing objects,

and the event mask.

Control A control is a contact that carries out a specific kind of input

or output. Edit boxes, titled buttons and scroll bars are

examples of controls.

Section 16: Glossary

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 224 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Copy To Copy means to get data from an application and put it in

the clipboard.

Cursor A blinking graphic entity that shows where the next text

input will appear on the screen.

Cut To Cut means to get some data from an application and put

it in the clipboard and then to remove the data from the

application.

DDE Dynamic Data Exchange – a message exchange protocol

used in the Microsoft Windows environment.

Default Titled Button A default titled button is a control that represents the usual

response to a request. It has text surrounded by an

emboldened rectangle. If the user types the RETURN key it

is the default titled button that takes effect.

Dialog Box A dialog box is a window that an application displays to

request information from the user. It contains controls that

the user can manipulate.

Disabled If an application does not want to allow the user to select a

particular option at a certain time, it can disable the option.

Disabling a contact causes any text in the contact to be

grayed.

Edit Control A control that lets the user type in his own text.

Enabled Selectable by the user.

Event Actions carried out by the user result in UIMS events, the

details of which are sent to the application by means of

messages. For example, when the user presses a key, the

resulting event generates a keypress message, which tells

the application which key was pressed.

Focus If a window has the focus, all keyboard events will be sent

to that window.

Font The typeface used to display text.

GUI Graphical User Interface.

Instance An occurrence of an application.

List Box A list box is a control that presents the user with a list of

options which may be clicked on to accomplish some action.

Often there is a scroll bar attached to the list box to scroll

through the options, which may be numerous. A common

use of a list box is to present the user with a list of files to

select from.

Menu A menu is a list of action choices listed at the top of a

window that can be selected with a pointing device or from

the keyboard.

Section 16: Glossary

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 225 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Message UIMS communicates with applications by passing predefined

formatted messages. Examples are messages which tell the

application to paint its window, and messages which tell the

application that the user has selected a command on the

menu.

Object A software packet containing a collection of related data (in

the form of attributes) and procedures for operating on that

data.

Option Button An option button is a control that usually appears in a group

of other option buttons. Each choice is mutually exclusive of

the others in the group, so that once the user selects one

button, any other button in the group turns off. Selecting a

option button is analogous to selecting a radio station on a

car radio; for this reason, option buttons are often called

radio buttons.

Parent An object or contact to which other objects or contacts are

attached. For example, a dialog box is the parent of the

controls it contains.

Paste A command to insert the current contents of the clipboard

into an application's window.

Pen The way the outline of a graphical object looks. It can be

wide, coloured, or patterned.

Pointer A graphic entity that is controlled by a pointing device to

make selections in an application's window.

Pointing Device A pointing device is an input device used to control the

pointer on the screen. It can be a mouse, a light pen, a

joystick or a graphic tablet.

Resource Compiler The resource compiler converts a text file that describes the

resources (menus, dialog boxes, etc.) used by an

application into the format required by the application.

Screen Coordinates Coordinates relative to the top left corner of the display.

Scroll Bar A scroll bar is a control that allows the user to set analogue

values. Its main use is to let the user change the current

view of the application when there is more data than can be

displayed in one window.

System Menu The system menu is a special menu that is pulled down from

the top left corner of a window. It contains actions that are

usually common to all applications such as moving or

changing the size of the window.

Thumb A part of a scroll bar that can be dragged with the mouse to

change the scroll bar setting. Its position on the scroll bar

indicates the current setting.

Section 16: Glossary

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 226 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Title Bar The title bar is the uppermost part of a window that

provides two pieces of information; the name of the

application and whether the window is currently active.

Another name for the title bar is the caption bar.

Titled Button A titled button is a control that has text surrounded by a

rectangle. Clicking on it causes an immediate reaction. For

example, in dialog boxes there are OK and Cancel buttons.

Titled buttons are also known as Push Buttons.

Reality v2.0 UIMS DATABASIC API, Programmer’s Guide v0.1 Page 227 of 227

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

