

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS v2.0
DATA/BASIC API Reference Manual

Copyright © NEC Software Solutions UK Limited (Company No.00968498) ("NEC") [1994]. All rights reserved.

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 2 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Document control

Software Version Document

Status

Document

Revision

Issue Date Reason for

Change

2.0 Published 0.1 September,

1994

Final draft

Prepared by

Name Contact details

Pubali Pramanik pubali.pramanik@necsws.com

Vijita Patel vijita.patel@necsws.com

mailto:pubali.pramanik@necsws.com
mailto:vijita.patel@necsws.com

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 3 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table of Contents

Section 1: About this guide ... 10

1.1 Purpose of this manual .. 10

1.2 Related documents ... 10

1.3 Conventions ... 11

Section 2: Overview .. 13

2.1 Introduction ... 13

2.2 UIMS software .. 14

2.3 UIMS applications ... 14

2.4 Objects and contacts ... 15

Section 3: Objects ... 16

3.1 Common contact attributes .. 16

3.2 AppContext .. 17

3.3 AppHelp ... 18

3.4 AppWindow .. 19

3.5 Brush .. 23

3.6 CheckButton .. 23

3.7 ChildWindow .. 24

3.8 Clipboard ... 27

3.9 DialogBox .. 27

3.10 Display .. 29

3.11 Drawrule .. 30

3.12 EditBox .. 32

3.13 ExclusiveGroup ... 34

3.14 Font .. 36

3.15 InclusiveGroup .. 37

3.16 Line ... 39

3.17 ListBox .. 39

3.18 Menu ... 42

3.19 MenuBar .. 43

3.20 MenuItem .. 44

3.21 MessageBox ... 45

3.22 OptionButton .. 46

3.23 Pen ... 47

3.24 Pointer ... 48

3.25 Rectangle ... 49

3.26 Scrollbar .. 50

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 4 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.27 Speaker ... 52

3.28 SystemDictionary .. 52

3.29 Text .. 53

3.30 TextEditor .. 54

3.31 TitledButton ... 57

3.32 TypeFace ... 58

3.33 General subroutines .. 59

Section 4: Messages .. 62

4.1 Overview ... 62

4.2 Message loop ... 62

4.3 Masking messages .. 63

Section 5: NewView .. 84

5.1 Introduction ... 84

5.2 NewView groups ... 85

5.3 Setting the terminal window ... 86

5.4 Online help .. 87

5.5 A NewView application ... 87

Section 6: Subroutine reference .. 89

6.1 Introduction ... 89

6.2 AddChild, AddChildren ... 90

6.3 AddTimer ... 91

6.4 AddHelp ... 92

6.5 AppWinGetDisplay – AppWinGetVScroll .. 92

6.6 AppWinMaximize, AppWinMinimize .. 94

6.7 AppWinRemoveMenuBar .. 95

6.8 AppWinRestore ... 95

6.9 AppWinSetDefButton – AppWinSetTitle .. 95

6.10 BitTest ... 97

6.11 BrushGetColour .. 98

6.12 BrushSetColour ... 99

6.13 ChangeNVButtonGroup .. 99

6.14 ChangeNVContacts .. 101

6.15 CheckButtonDeselect ... 102

6.16 CheckButtonGetSelected .. 103

6.17 CheckButtonSelect .. 103

6.18 CheckButtonSetSelected – CheckButtonSetToggle 104

6.19 ChildWinGetHScroll – ChildWinGetVScroll ... 105

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 5 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.20 ChildWinSetDefButton, ChildWinSetStyle .. 106

6.21 ClipboardGetContent, ClipboardGetSize.. 107

6.22 ClipboardSetContent .. 108

6.23 Copy ... 108

6.24 CreateAppWin ... 109

6.25 CreateCheckButton.. 112

6.26 CreateChildWin ... 114

6.27 CreateDlgBox ... 116

6.28 CreateDrawBrush .. 117

6.29 CreateDrawFont .. 118

6.30 CreateDrawPen ... 120

6.31 CreateDrawrule ... 120

6.32 CreateEditBox ... 122

6.33 CreateExGroup ... 124

6.34 CreateIncGroup .. 125

6.35 CreateLine .. 127

6.36 CreateListBox ... 128

6.37 CreateMenuBar ... 130

6.38 CreateMenuItem ... 130

6.39 CreateMessageBox .. 132

6.40 CreateNVContactGroup .. 134

6.41 CreateNVHotspotGroup .. 136

6.42 CreateOptionButton ... 137

6.43 CreatePointer ... 139

6.44 CreatePullDownMenu ... 139

6.45 CreateRect ... 140

6.46 CreateScrollbar ... 142

6.46 CreateText ... 143

6.47 CreateTextEditor ... 145

6.48 CreateTitledButton .. 147

6.49 Cut .. 149

6.50 DDE.ADVISE ... 150

6.51 DDE.CLOSEADVISE ... 151

6.52 DDE.EXECUTE ... 151

6.53 DDE.OPENADVISE ... 153

6.54 DDE.PEEK .. 153

6.55 DDE.POKE .. 155

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 6 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.56 DESTROY ... 156

6.57 DestroyNVGroup ... 156

6.58 Disable .. 157

6.59 DisplayGetMetrics, DisplayGetPixelSize .. 157

6.60 DisplayImage ... 158

6.61 DlgBoxGetMode, DlgBoxGetStyle .. 160

6.62 DlgBoxSetDefButton – DlgBoxSetTitle .. 161

6.63 Draw ... 163

6.64 DrawLine, DrawRect .. 163

6.65 DrawruleGetBrush – DrawruleGetPen ... 165

6.66 DrawruleSetBrush – DrawruleSetPen ... 166

6.67 DrawTextString ... 167

6.68 EditBoxGetContent .. 168

6.69 EditBoxSetContent, EditBoxSetSelected ... 168

6.70 Enable ... 169

6.71 Erase ... 170

6.72 EraseImage .. 170

6.73 Execute ... 171

6.74 ExGroupGetSel ... 173

6.75 ExGroupSetStyle, ExGroupSetTitle .. 173

6.76 FontGetMetrics – FontGetTypeFace .. 174

6.77 FontSetPointSize – FontSetTypeFace ... 176

6.78 GetAppName .. 177

6.79 GetBorderStyle ... 177

6.80 GetChild – GetChildFocus ... 178

6.81 GetClip .. 179

6.82 GetCoordMode .. 179

6.83 GetCursorPosition, GetCursorState .. 180

6.84 GetDefaults .. 181

6.85 GetDrawrule ... 182

6.86 GetErrorText .. 182

6.87 GetEventMask ... 183

6.88 GetFrontWindow ... 183

6.89 GetHelpFile – GetHelpKey .. 184

6.90 GetMsg .. 184

6.91 GetObjectParent ... 185

6.92 GetPointer .. 186

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 7 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.92 GetPointerPos ... 186

6.93 GetPosition ... 187

6.94 GetRootWindow .. 188

6.95 GetSecondaryEventMask .. 188

6.96 GetSize .. 189

6.97 GetSolidColour .. 190

6.98 GetState .. 190

6.99 GetTeFontSize, GetTeFontSizes ... 191

6.100 GetTypeFace, GetTypeFaces ... 192

6.101 GetUimsVersion .. 192

6.102 GetUpdate .. 193

6.103 GrabPointer .. 193

6.104 HiByte .. 194

6.105 IncGroupSetStyle, IncGroupSetTitle ... 195

6.106 InitialiseUims .. 195

6.107 IsUimsCapable .. 196

6.108 ListBoxAddContent – ListBoxAddSelections ... 196

6.109 ListBoxGetContent – ListBoxGetSelections .. 198

6.110 ListBoxRemoveContent – ListBoxRemoveSelections 198

6.111 ListBoxSetLink .. 200

6.112 LoadAppRes .. 200

6.113 LoByte ... 200

6.114 MakePullDownmenu ... 201

6.115 Map ... 204

6.116 MenuItemCheck .. 205

6.117 MenuItemGetCheckMark .. 205

6.118 MenuItemSetAutoCheck – MenuItemSetTitle... 206

6.119 MenuItemUncheck ... 207

6.120 MenuSetTitle ... 207

6.121 Move ... 208

6.122 OptionButtonDeselect .. 209

6.123 OptionButtonGetSelected ... 209

6.124 OptionButtonSetSelected – OptionButtonSetToggle 210

6.125 Paste ... 211

6.126 PenGetColour, PenGetWidth .. 211

6.127 PenSetColour, PenSetWidth .. 212

6.128 PointerGetType ... 213

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 8 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.129 PointerSetType ... 213

6.130 ReMapNVLine25 .. 214

6.131 RemoveChild, RemoveChildren .. 214

6.132 RemoveTimer ... 215

6.133 Resize .. 215

6.134 Scroll ... 216

6.135 ScrollBarGetThumb .. 217

6.136 ScrollBarSetInc – ScrollBarSetTracking .. 218

6.137 SendKeys ... 219

6.138 SetBorderStyle .. 222

6.139 SetClip ... 223

6.140 SetContactFocus ... 224

6.141 SetCoordMode .. 224

6.142 SetCursorPosition, SetCursorState ... 225

6.143 SetDrawrule ... 226

6.144 SetEnabled ... 227

6.145 SetEnabledNVGroup .. 227

6.146 SetEventMask ... 228

6.147 SetHelpFile – SetHelpKey ... 229

6.148 SetMapped ... 229

6.149 SetMappedNVGroup ... 230

6.150 SetNVHelp .. 231

6.151 SetPointer .. 232

6.152 SetPointerPos ... 232

6.153 SetSecondaryEventMask .. 233

6.154 SetSync ... 234

6.155 SetTeFontSize ... 234

6.156 SetTeWindow .. 235

6.157 SetUimsMode .. 237

6.158 SetUpdate .. 237

6.159 SignOff .. 238

6.159 SignOn ... 238

6.160 SoundSpeaker .. 239

6.161 StartImage ... 239

6.162 StopImage ... 239

6.163 SystemCommand .. 240

6.164 TextEditorGetContent, TextEditorGetTextLen .. 245

Table of Contents

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 9 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.165 TextEditorSetContent ... 245

6.166 TextGetContent ... 246

6.167 TextSetContent, TextSetJustification .. 246

6.168 TitledButtonSetStyle, TitledButtonSetTitle .. 247

6.169 TypeFaceGetName – TypeFaceGetPointSizes ... 248

6.170 UngrabPointer ... 248

6.171 UnMap ... 249

6.172 WaitPointerOff .. 249

6.173 WaitPointerOn ... 250

Section 7: Resource compiler .. 251

7.1 Introduction ... 251

7.2 Object definitions .. 251

7.3 White-space characters ... 256

7.4 Compiling a resource script .. 259

7.5 Using the compiled resources ... 262

Section 8: The help system ... 263

8.1 Introduction ... 263

8.2 Creating the help file ... 263

8.3 Making help available to the user .. 263

Section 9: Appendix A – Key aliases .. 266

Section 10: Appendix B – Screen colours .. 274

10.1 Specifying colours ... 274

10.2 Graphics drawing modes .. 275

Section 11: Appendix C – Resource compiler keywords 279

11.1 Object types ... 279

11.2 Object attributes ... 279

11.3 Common object attributes .. 286

11.4 Errors .. 292

Section 12: Appendix D – Error codes ... 296

12.1 UIMS error codes .. 296

12.2 DDE error codes .. 302

12.3 Execute error codes ... 302

12.4 SendKeys error codes .. 303

12.5 SystemCommand error codes ... 304

12.6 NewView error codes ... 304

Section 13: Glossary .. 306

Section 1: About this guide

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 10 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 1: About this guide
This Section describes the different sections of this manual and any conventions used.

1.1 Purpose of this manual

This manual is intended for the DATA/BASIC programmer who will be writing applications

that use the REALITY User Interface Management System (UIMS). It gives both general

and detailed information about the UIMS subroutines, messages and resource compiler.

It does not attempt to explain how to create a UIMS application. Rather, it gives detailed

descriptions of each component of the UIMS DATA/BASIC API for readers who already

have a basic understanding of DATA/BASIC programming.

It is assumed that, in addition to being an experienced DATA/BASIC programmer, you

will be familiar with RealLink for Windows and Microsoft Windows, and have access to the

appropriate user manuals.

This manual consists of the following sections:

• Section 1, About this Manual, describes the different sections of the manual and

any conventions used.

• Section 2, Overview, gives a brief overview of UIMS.

• Section 3, Objects, describes the UIMS objects and indicates which subroutines

can be used to manipulate each of them.

• Section 4, Messages, describes how a UIMS application uses messages to receive

user input. It also lists the different types of messages and gives details of their

parameters.

• Section 5, NewView, describes the UIMS NewView subsystem for enhancing

existing applications.

• Section 6, Subroutine Reference, lists the UIMS subroutines in alphabetical order.

It gives the full syntax for each subroutine and provides details of parameters and

return values.

• Section 7, Resource Compiler, describes how to use the UIMS Resource Compiler

to create resource files on the PC.

• Section 8, Help System, describes how to provide the user of a UIMS application

with online help.

• Appendix A, Key Aliases, lists the symbolic constant names, decimal values and

descriptive information for the UIMS key aliases.

• Appendix B, Screen Colours, describes how screen colours are specified in a UIMS

application and lists the pre-defined logical colours. It also explains the effects of

the different graphics drawing modes.

• Appendix C, Resource Compiler Keywords, lists the object type and attribute

keywords recognised by the resource compiler and gives details of mandatory

attributes and valid attribute settings. It also lists the error messages that might

be displayed by the resource compiler and suggests probable causes for these.

• Appendix D, Error Codes, lists the completion and error codes which might be

returned by UIMS subroutines.

1.2 Related documents

• UIMS DATA/BASIC API, Quick Reference Guide

• UIMS DATA/BASIC API, Programmer's Guide

• RealLink for Windows User Manual

• REALITY DATA/BASIC Reference Manual

• Microsoft Windows User's Guide

Section 1: About this guide

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 11 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1.3 Conventions

The following conventions are used in this documentation:

Conventions Definition

Text
Bold text shown in this typeface is used to

indicate input which must be typed on the

keyboard.

Text
Text shown in this typeface is used to show

text that is output to the screen.

Bold text

Bold text in syntax descriptions represents

characters typed exactly as shown. For

example,

Disable(Context, Contact, vErr)

Text

Characters or words in italics indicate

parameters which must be supplied by the

user. For example, in,

GetChildFocus(Context, Contact, vChild),

the parameters Context, Contact and vChild

are italicised to indicate that this is the

general form of the GetChildFocus

subroutine. In an actual program, the user

supplies arguments for the placeholders

Context, Contact and vChild.

Italic text is also used for titles of

documents referred to by this document.

vText A lower case 'v' prefixing a place-holder

name indicates that a variable must be

supplied so that a value can be returned. In

the example above, for instance, the 'v'

prefix to the parameter name vChild

indicates that, in an actual program, the

user must supply the name of a variable in

which to return a completion status code.

aText,

vaText

A lower case 'a' prefixing a place-holder

name indicates that either the programmer

must supply a dynamic array or,

when combined with a lower case 'v', that

on return the parameter will contain a

dynamic array with one value in each

attribute.

[Brackets]

Brackets enclose optional parameters. For

example, in

#IFDEF ident

 source code block

[#ELSE

 source code block]

#ENDIF

Section 1: About this guide

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 12 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Conventions Definition

the keyword #ELSE and an associated

source code block can optionally be

included.

…

In syntax descriptions, ellipses following a

group of items indicate that the parameters

preceding can be repeated as many times

as necessary. For example, in

ATTRIBUTE = Value

[ATTRIBUTE = Value

…]

the ellipses indicate that the sequence

ATTRIBUTE = Value may be repeated as

many times as necessary.

Vertical ellipses are used in program

examples to indicate that a portion of the

program is omitted.

SMALL

CAPITALS

Small capital letters are used for the names

of keys such as RETURN.

CTRL+X

Two (or more) key names joined by a plus

sign (+) indicate a combination of keys,

where the first key(s) must be held down

while the second (or last) is pressed. For

example, CTRL+X indicates that the CTRL

key must be held down while the X key is

pressed.

Enter

To enter means to type text then press

RETURN. For instance, 'Enter the WHO

command' means type WHO, then press

RETURN.

In general, the RETURN key (shown as

ENTER or ↵ on some keyboards) must be

used to complete all terminal input unless

otherwise specified.

Press
Press single key or key combination but do

not press RETURN afterwards.

X’nn’ This denotes a hexadecimal value.

Section 2: Overview

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 13 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 2: Overview
This Section gives a brief overview of the REALITY User Interface Management System

(UIMS). It describes the main features of UIMS, the UIMS software, the three types of

UIMS application, and the objects and contacts that make up a UIMS graphical user

interface.

2.1 Introduction

RealLink for Windows is a PC terminal emulator that runs in the Microsoft Windows

environment. At the heart of RealLink is a User Interface Manager that provides its

interface to the Windows environment and generates its graphical display.

RealLink makes many of the features of the User Interface Manager available to host

applications by means of commands that can be transmitted across a LAN or other

communications link. The UIMS DATA/BASIC API provides the REALITY DATA/BASIC

programmer with a suite of subroutines that can be used in applications. These

subroutines simplify the programmer's task by constructing the User Interface Manager

commands and transmitting them to RealLink. RealLink, in turn, carries out these

commands and returns any results to the host application via variables supplied by the

DATA/BASIC programmer.

Figure 2-1: The User Interface Management System

Section 2: Overview

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 14 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

By using the UIMS DATA/BASIC API, programmers can create applications on MDIS

Series 19 and Series X host systems which make use of the features provided by the

Microsoft Windows graphical user interface. These include:

• A graphical user interface featuring windows, menus, dialog boxes and controls for

applications

• Queued input

• Multitasking

• Data interchange between applications

2.2 UIMS software

The UIMS software consists of the following components:

• RealLink for Windows.

• An Application Programming Interface for DATA/BASIC (DATA/BASIC API). This

consists of a suite of cataloged DATA/BASIC subroutines which provide the

commands that host applications use to access the RealLink User Interface

Manager.

• A resource compiler for use by application programmers. This allows the graphical

objects used by an application to be defined on the PC rather than the host, thus

improving performance by sharing the processing and reducing communication

between the two systems. In addition, resources created in this way are loaded

only when the application is run, allowing a programmer to produce different

versions of an application, without having to change the host program.

When developing UIMS applications, you will require all three of the above. The users of

your finished applications, however, need only the first two, but they will require copies

of your compiled resource files (on their PCs), in addition to your host programs and

subroutines.

2.3 UIMS applications

There are three types of application program which make use of the UIMS DATA/BASIC

API: true UIMS applications, 'hybrid' applications, and NewView applications.

• A UIMS application is one which uses only the advanced user-interface functions

of the RealLink software for input and output.

• A hybrid application is a character-display application whose presentation has

been improved by the addition of some advanced user-interface functionality, but

which still relies largely on standard character input and output for its user

interface.

• A NewView application is like a hybrid application, in that it is a character-display

application whose presentation has been improved. However, NewView allows the

existing user interface to be converted, so that the changes to the original code

are minimised.

The UIMS DATA/BASIC API, Programmer's Guide describes how to write these three

types of application.

Section 2: Overview

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 15 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

2.4 Objects and contacts

The user interface for a UIMS application is built up of various kinds of pre-defined

building block (objects). Each of these objects acts as a template for creating graphical

elements which share certain common characteristics; for example, every list box is a

box containing a list. Characteristics such as size or colour can be changed to suit the

requirements of the user interface.

There are two types of objects: contacts (windows, buttons, list boxes, etc.) which can be

displayed on the screen, and which provide different types of interfaces with the user;

and objects which define the appearance of the contacts (screen colours, text font and

style, line width, and so on...). Section 3 describes each of the UIMS objects and contacts

in detail.

The programmer designs the user interface for an application by creating contacts of the

required types which are then displayed on the screen as appropriate to the requirements

of the application. For instance, when the application requires input from the user, it

might display a dialog box, which could contain an input field and option buttons to allow

the selection of various options. Command buttons would allow the user to accept any

changes or to cancel the operation.

2.4.1 Graphics contacts

UIMS provides subroutines to draw text, lines and rectangles. If these are used, however,

the host application must ensure that they are redrawn when necessary (for instance,

when the user switches from one application to another, thus exposing all or part of a

window). Since the necessary commands must all be sent from the host to the PC via the

communications link, this can result in a slow response.

The alternative is to use the UIMS graphics contacts. These provide an interface to the

user only in that they can be displayed on the screen. However, they are always redrawn

automatically by UIMS whenever necessary. This reduces the communication between

the host and the PC and improves the speed of your application.

2.4.2 Contact hierarchy

When you use UIMS contacts, you must organise them in a hierarchy consisting of

'parents' and 'children'. This hierarchy has the following rules:

• A contact can have only one parent. Attaching a contact to a new parent removes

it from its previous parent, if any.

• A child contact can, itself, be the parent of other contacts.

• A contact cannot be displayed on the screen unless it has a parent contact.

Similarly, the children of a contact that has no parent cannot be displayed.

• A contact cannot be displayed unless its parent is visible.

• A child contact can only be displayed in the screen that is occupied by its parent

contact. If it is positioned so that it overlaps the edge of its parent, only the part

that is inside the parent will be displayed.

• A child contact is always positioned relative to its parent. If the parent moves, its

children move with it.

• Disabling a contact also disables its children.

• Destroying a contact also destroys its children.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 16 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 3: Objects
UIMS provides various kinds of graphic objects with which to create the user interface for

an application. This Section describes these objects and indicates which subroutines can

be used to manipulate each of them.

3.1 Common contact attributes

There are a few attributes which are common to almost all contacts. The following lists

these attributes and the subroutines that control them. Note that where an attribute is

not supported by a particular contact, this is mentioned in the contact description.

Attributes Definition

Size
The overall width and height of the contact.

Subroutines – Resize, GetSize.

Position

The position of the top left-hand corner of

the contact, relative to the top left-hand

corner of its parent.

Subroutines – Move, GetPosition.

Border style

Whether or not a window has a visible

border. In the case of an App

window, the type of border (single or

double) is determined by the style of

the window.

Subroutines – SetBorderStyle,

GetBorderStyle.

Help index

The name of the help file section with which

the contact is associated (see page 3-6).

Subroutines – SetHelpIndex,

GetHelpIndex.

Enabled Whether or not the contact is enabled. A

disabled contact is displayed on the screen

but cannot be selected by the user. The

disabled state is indicated by a greying

effect, the exact form of which is platform

dependent.

Subroutines – SetEnabled, Disable,

Enable, GetState.

Visible

Whether or not the contact is visible on the

screen.

Subroutines – SetMapped, Map, UnMap,

GetState.

Update mode

Specifies when a contact will be redrawn if

a change occurs. The following

options can be selected.

• Immediate – redraw immediately.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 17 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

• None – do not redraw; wait for a

Draw command.

The Draw subroutine redraws the specified

contact immediately, whatever its update

mode setting.

Subroutines – SetUpdate, GetUpdate,

Draw.

Event mask

A list of message types that will be passed

on by the contact to its parent (refer to

Section 4 for details).

Subroutines – SetEventMask,

GetEventMask.

3.2 AppContext

One of the first subroutine calls in a UIMS application must be to SignOn. This starts a

UIMS session and creates an AppContext object containing various configuration

settings.

Once created, the App context is unique to the instance of the application that created it.

The user could run a second instance of the same application, but this would have its own

App context which might be configured differently.

All AppWindow contacts created by the application must be children of the

AppContext.

Attributes Definition

Root window

The handle of the first AppWindow contact

created by the application.

Subroutines – GetRootWindow.

Front window

The handle of the AppWindow which either

currently has the focus or which contains

the contact which currently has the focus.

If some other application has the focus, the

front window is that which last had the

focus.

Subroutines – GetFrontWindow.

Coordinate

mode

The coordinate system used to specify the

positions and sizes of contacts. Two modes

are available: text (character) or graphics

(pixel). In text mode, a character cell is the

size of an average character in the default

(system) font.

Subroutines – SetCoordMode,

GetCoordMode.

Drawrule

The handle of the default Drawrule object.

This has default Pen, Brush and Font

objects as its children.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 18 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Subroutines – SetDrawrule,

GetDrawrule.

Event mask A list of message types that will be passed

on to the application by the AppContext

(refer to Section 4 for details).

Subroutines – SetEventMask,

GetEventMask.

Wait pointer

This provides a simple method of indicating

to the user that a lengthy operation is in

progress, by changing the mouse pointer to

an hourglass (or other wait-pointer, as

determined by the hardware platform).

Subroutines – WaitPointerOn,

WaitPointerOff.

Help file

The name of the current application help

file.

Subroutines – SetHelpFile, GetHelpFile.

Help key

The key that will be used to display the

help text.

Subroutines – SetHelpKey, GetHelpKey.

3.3 AppHelp

An AppHelp object is a compiled Help text file (see Section 8) that contains named

sections of help text.

The sections of the help file are linked by means of 'hot words' embedded in the text.

These act as links to other sections of the file. If the user clicks on a hot word, the

associated section of the help file is displayed. The help file also contains an index (built

during the compilation process); this contains hot words giving access to every section of

the file.

The application can display a specified section of the Help file by calling the AppHelp

subroutine. The programmer must provide the user with access to the help file; this can

be done by creating a Help menu, for example.

The AppHelp object also supports context sensitive help. Contacts used within the

application can each be linked to a section of the help file. The appropriate section of the

help file is displayed whenever the user presses a Help Accelerator key; this is normally

function key F1 but can be changed by the application. If the contact is not linked to a

help file section, the help index will be displayed.

3.3.1 Subroutines

Attributes Definition

SetHelpFile Attaches a help file to the application.

GetHelpFile
Returns the name of the application's help

file.

AppHelp Displays a specified section of the help file.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 19 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

SetHelpIndex
Associates a contact with a section of the

help file.

GetHelpIndex Returns the name of the help file section

which is associated with a specified contact.

SetHelpKey Assigns a key as the help accelerator.

GetHelpKey
Returns the key currently assigned as the

help accelerator.

3.3.2 AppResource

An AppResource object is a compiled UIMS Resource Script file (see Section 7) that

defines a group of UIMS objects and/or contacts. The application can dynamically create

all the defined objects and contacts by a single call to the LoadAppRes subroutine. An

application may load any number of AppResource files.

The only attribute of an AppResource is its filename.

3.4 AppWindow

An AppWindow contact is an application's primary interface with the user. Every

application must have at least one App window – the Root window; the handle of the root

window is always available in the AppContext object. An App window must be a child of

the App context and it can therefore be displayed anywhere on the screen; it cannot be

constrained within the client area of any other window (cf. Child window).

An App window consists of a client area, which must be managed by the application, and

a border, managed by UIMS. The border can include a title bar, system menu, maximise

and minimise icons, a menu bar, and horizontal and vertical scrollbars.

Figure 3-1: The components of an App Window

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 20 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

An App window is created using the CreateAppWin subroutine.

3.4.1 The client area

The application has complete control over the appearance of a window's client area. Text,

lines and rectangles may be drawn directly on the client area. However, should the client

area be disturbed in any way (if, for instance, a dialog box is drawn in the client area) the

application must restore it to its previous state.

3.4.1.1 Text canvas

If required, the responsibility for maintaining the client area can be partially transferred

to UIMS, by specifying that the window should have a text canvas. This is used to hold

transient text strings drawn with DrawTextString in the window client area, so that they

can be repainted at any time. If a window has a text canvas, the application does not

have to redraw the text when the window is resized or uncovered by another contact.

The default is for a window not to have a text canvas.

Note

• The text canvas only stores the text strings and their positions in the client area; the

appearance of the text is determined by the currently selected Font object. If the font is

changed the appearance of the text will change when it is next redrawn.

• Graphics shapes drawn with DrawLine and DrawRect are not stored in the text canvas.

The application must ensure that these are redrawn when the window is updated.

• The Erase subroutine can be used to clear the text canvas, and this also clears the whole

of the client area. Note, however, that erasing all or part of the client area does not clear

the text canvas – the stored text will be redrawn when the window is next updated.

3.4.2 Attributes

Attributes Definition

Style

The style of the window. This can be a

combination of the following options:

• Movable – generates a single

border, a title bar, and a system

menu with the Move command

enabled.

• Closable – this is the same as

movable, except that the Close

command on the system menu is

enabled.

• Iconisable – this is the same as

movable, except that the title bar

includes a minimise box, and the

Minimise command on the system

menu is enabled.

• Resizable – this is the same as

movable, except that the border is

double, the title bar includes a

maximise box, and the Size and

Maximize commands on the system

menu are enabled.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 21 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

• Display a horizontal scrollbar.

• Display a vertical scrollbar.

• Allow movement from child to child

with the TAB and SHIFT+TAB keys,

as in a dialog box.

• Text canvas (see above).

Subroutines – AppWinSetStyle,

AppWinGetStyle.

Title

The text that will appear in the title bar of

the window. Note that an App window only

has a title bar if it is movable. If there is no

title bar, the title will not be displayed.

Subroutines – AppWinSetTitle.

Display

The text that will appear in the title bar of

the window. Note that an App window only

has a title bar if it is movable. If there is no

title bar, the title will not be displayed.

Subroutines – AppWinSetTitle.

MenuBar

The handle of the MenuBar contact which

is attached to the App window.

Subroutines – AppWinSetMenuBar,

AppWinGetMenuBar,

AppWinRemoveMenuBar.

Horizontal

scrollbar

The handle of the window's horizontal

scrollbar.

Subroutines – AppWinGetHScroll.

Vertical scrollbar

The handle of the window's vertical

scrollbar.

Subroutines – AppWinGetVScroll.

State

Whether or not the window is minimised or

maximised.

Subroutines – AppWinSetSizing,

AppWinMaximize, AppWinMinimize,

AppWinRestore.

Clip region

Defines a clipping region within the client

area for all drawing operations. Text and

graphics drawn outside the clipping region

are not displayed.

Subroutines – SetClip, GetClip.

Drawrule

The handle of a Drawrule object used for all

drawing operations within client area. This

defines attributes such as foreground and

background colours, text font, line width,

and so on....

Subroutines – SetDrawrule,

GetDrawrule.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 22 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Pointer

The handle of a Pointer object used when

the mouse pointer is within the window's

client area.

Subroutines – SetPointer, GetPointer.

Cursor state

The type of cursor displayed in the client

area and whether it is visible. The following

types are available:

• Outline cursor (not supported on

Microsoft Windows)

• Block cursor.

• Underline cursor.

• Vertical bar cursor.

Subroutines – SetCursorState,

GetCursorState.

Cursor

positioning

The position of the cursor relative to the

origin (top left-hand corner) of the client

area. The position is specified in text or

graphics coordinates, depending on the

coordinate mode of the application.

Subroutines – SetCursorPosition,

GetCursorPosition.

Children

The list of child contacts.

Subroutines – AddChild, AddChildren,

RemoveChild, RemoveChildren,

GetChild, GetChildren, GetChildCount.

Focus

The handle of the child contact which has

the input focus.

Subroutines – SetContactFocus,

GetChildFocus.

Default button

The handle of the default TitledButton

contact. This attribute is only applicable to

windows with the UIMS.WIN.DIALOG

style.

Subroutines – AppWinSetDefButton.

3.4.1.2 Common contact attributes

All the common contact attributes apply to AppWindow contacts.

3.4.1.3 Other subroutines

Attributes Definition

DrawTextString
Draws text on the client area or text

canvas.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Scroll Scrolls the client area.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 23 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Erase Erases a specified part of the client area

or the whole of the text canvas.

3.5 Brush

A Brush object defines the way in which areas of a window client area are filled. A Brush

cannot be attached directly to a contact, but must be a child of the attached Drawrule

object.

UIMS provides a default Brush, the handle of which can be obtained by using

GetDrawrule to fetch the handle of the drawrule for the Application context, and then

calling the DrawruleGetBrush subroutine. Additional Brush objects can be created with

the CreateDrawBrush subroutine.

3.5.1 Attributes

Attributes Definition

Colour

A UIMS logical colour or RGB value. Note

that this attribute specifies only the

foreground colour of the brush pattern; in

use, the background colour will be

determined by the Drawrule to which the

brush is attached (see Figure 3-2).

Subroutines – BrushSetColour,

BrushGetColour.

Style

The style of the brush. The following styles

are available:

UIMS.BRUSH.SOLID

A solid block in the specified foreground

colour.

UIMS.BRUSH.HOLLOW

Transparent. The colour attribute is

ignored.

Subroutines – CreateDrawBrush.

3.5.1.1 Other subroutines

Attributes Definition

DrawruleGetBrush

Returns the handle of the Brush which

is attached to the specified Drawrule

object.

DrawruleSetBrush Attaches a Brush to a Drawrule object.

3.6 CheckButton

A CheckButton is a contact that allows the user to select and deselect an option. It

consists of a small box with a button title to the right. When the option is selected, the

box contains a mark of some kind – usually a cross or a tick, depending on the platform.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 24 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A check button differs from an option button in that when several check buttons are

grouped together, each button can be selected independently of the others.

A CheckButton contact is created with the CreateCheckButton subroutine.

3.6.1 Attributes

Attributes Definition

Title

The text that will appear beside the check

button. One of the characters in the title

can be designated as a selector key by

preceding it with an ampersand character.

Subroutines – CheckButtonSetTitle.

State

Whether or not the button is selected.

Subroutines – CheckButtonSetSelected,

CheckButtonSelect,

CheckButtonDeselect,

CheckButtonGetSelected.

Autotoggle

This is an operating mode that removes the

burden of check mark control from the

application. When selected, Autotoggle

automatically toggles the check mark on or

off, as appropriate, each time the user

selects the button.

Subroutines – CheckButtonSetToggle.

3.6.1.1 Common contact attributes

All common contact attributes except Border Style apply to CheckButton contacts.

3.7 ChildWindow

A ChildWindow contact is like an App window, but its movement is constrained

within the client area of its parent. Its position is specified relative to its parent, so that,

when the position or size of the parent window changes, the Child window will be

redrawn automatically. If necessary, a Child window will be clipped at the edges of its

parent's client area.

A Child window can be the child of an App window or another Child window.

Unlike an App window, a Child window cannot have a title bar, system menu, maximise

and minimise icons, or a menu bar, though it can have a single border and scrollbars.

A Child window is created using the CreateChildWin subroutine.

3.7.1 The client area

The application has complete control over the appearance of a window's client area. Text,

lines and rectangles may be drawn directly on the client area. However, should the client

area be disturbed in any way (if, for instance, a dialog box is drawn in the client area) the

application must restore it to its previous state.

3.7.1.1 Text canvas

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 25 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If required, the responsibility for maintaining the client area can be partially transferred

to UIMS, by specifying that the window should have a text canvas. This is used to hold

transient text strings drawn with DrawTextString in the window client area, so that they

can be repainted at any time. If a window has a text canvas, the application does not

have to redraw the text when the window is resized or uncovered by another contact.

The default is for a window not to have a text canvas.

Note

• The text canvas only stores the text strings and their positions in the client area; the

appearance of the text is determined by the currently selected Font object. If the font is

changed the appearance of the text will change when it is next redrawn.

• Graphics shapes drawn with DrawLine and DrawRect are not stored in the text canvas.

The application must ensure that these are redrawn when the window is updated.

• The Erase subroutine can be used to clear the text canvas, and this also clears the whole

of the client area. Note, however, that erasing all or part of the client area does not clear

the text canvas – the stored text will be redrawn when the window is next updated.

3.7.2 Attributes

Attributes Definition

Style

The style of the window. This can be a

combination of the following options:

• Display a horizontal scrollbar.

• Display a vertical scrollbar.

• Allow movement from child to child

with the TAB and SHIFT+TAB keys,

as in a dialog box.

• Text canvas (see above).

Subroutines – ChildWinSetStyle,

ChildWinGetStyle.

Horizontal

scrollbar

The handle of the window's horizontal

scrollbar.

Subroutines – ChildWinGetHScroll..

Vertical scrollbar

The handle of the window's vertical

scrollbar.

Subroutines – ChildWinGetVScroll.

Clip region

Defines a clipping region within the client

area for all drawing operations. Text and

graphics drawn outside the clipping region

are not displayed.

Subroutines – SetClip, GetClip.

Drawrule

The handle of a Drawrule object used for

all drawing operations within client area.

This defines attributes such as foreground

and background colours, text font, line

width, and so on....

Subroutines – SetDrawrule,

GetDrawrule.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 26 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Pointer

The handle of a Pointer object used when

the mouse pointer is within the window's

client area.

Subroutines – SetPointer, GetPointer.

Cursor state

The type of cursor displayed in the client

area and whether it is visible. The following

types are available:

• Outline cursor (not supported on

Microsoft Windows)

• Block cursor.

• Underline cursor.

• Vertical bar cursor.

Subroutines – SetCursorState,

GetCursorState.

Cursor

positioning

The position of the cursor relative to the

origin (top left-hand corner) of the client

area. The position is specified in text or

graphics coordinates, depending on the

coordinate mode of the application.

Subroutines – SetCursorPosition,

GetCursorPosition.

Children

The list of child contacts.

Subroutines – AddChild, AddChildren,

RemoveChild, RemoveChildren,

GetChild, GetChildren, GetChildCount.

Focus

The handle of the child contact which has

the input focus.

Subroutines – SetContactFocus,

GetChildFocus.

Default button

The handle of the default TitledButton

contact. This attribute is only applicable to

windows with the UIMS.WIN.DIALOG

style.

Subroutines – ChildWinSetDefButton.

3.7.2.1 Common contact attributes

All common contact attributes apply to ChildWindow contacts.

3.7.2.2 Other subroutines

Attributes Definition

DrawTextString
Draws text on the client area or text

canvas.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Scroll Scrolls the client area.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 27 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Erase Erases a specified part of the client area

or the whole of the text canvas.

3.8 Clipboard

The Clipboard object provides access to the GUI system clipboard (if one is available).

This allows the user to move data within an application and between UIMS applications

and other applications running on the GUI.

3.8.1 Attributes

Attributes Definition

Content

The data on the clipboard.

Subroutines – ClipboardGetContent,

ClipboardSetContent, Copy, Cut,

Paste

Size

The amount of data on the clipboard. When

requesting the size of the clipboard

contents, a format must be specified. If

data is available, but it is not in the

specified format, zero is returned.

Subroutines – ClipboardGetSize.

Help index

A pointer to the related section of the

application help file.

Subroutines – SetHelpIndex,

GetHelpIndex.

3.8.2 Cut and paste operations

The Copy, Cut and Paste subroutines provide the means of transferring data between

EditBox and TextEditor contacts and the clipboard. Copy and Cut place the selected

text on the clipboard (in the case of Cut, removing it from the edit contact at the same

time), while Paste inserts the contents of the clipboard into the edit contact at a

specified position. Note, however, that Cut, Copy and Paste cannot be used with any

other type of contact.

3.9 DialogBox

A DialogBox contact is a window that is used to prompt for information from the user. It

does this by means of its child contacts (controls); typical dialog controls are check

buttons, option buttons, edit boxes, list boxes and titled buttons.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 28 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

When created, a dialog box is always application modal – the application will not continue

until the user has responded to the dialog, but other applications continue to work

normally.

Two other modes are available: system modal and modeless. A system-modal dialog box

disables the complete user interface; the user can do nothing until he has responded to

the dialog. A modeless dialog box does not disable the parent window; the user can

continue to work with the application while the dialog box is displayed.

A DialogBox contact is created with the CreateDlgBox subroutine.

3.9.1 Attributes

Attributes Definition

Mode

Modeless, application modal or system

modal.

Subroutines – DlgBoxSetMode,

DlgBoxGetMode.

Style

The style of the window. This can be a

combination of the following options:

• Movable – generates a single

border, a title bar, and a system

menu with the Move command

enabled.

• Closable – this is the same as

movable, except that the Close

command on the system menu is

enabled.

Subroutines – DlgBoxSetStyle,

DlgBoxGetStyle.

Title

The text that will appear in the title bar of

the window. Note that a dialog box only has

a title bar if it is movable. If there is no title

bar, the title will not be displayed.

Subroutines – DlgBoxSetTitle

Children The list of child contacts.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 29 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Subroutines – AddChild, AddChildren,

RemoveChild, RemoveChildren,

GetChild, GetChildren, GetChildCount.

Focus

The handle of the child contact which has

the input focus.

Subroutines – SetContactFocus,

GetChildFocus

Default button

The handle of the default TitledButton

contact.

Subroutines – DlgBoxSetDefButton

3.9.1.1 Common contact attributes

All common contact attributes except Border Style apply to DialogBox contacts.

3.9.1.2 Other subroutines

Attributes Definition

DrawTextString Draws text on the client area.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Erase Erases a specified part of the client area.

3.10 Display

A Display object provides access to the characteristics of a display or printer device. Its

attributes can only be read, and on some platforms some attributes may not be

supported.

Display objects are constructed by UIMS during initialisation, and whenever a new

printer device is configured on the underlying GUI. The values are largely settings taken

from the underlying GUI.

Note

Printer display objects are not supported on this version of UIMS. The subroutines concerned are

provided for use on later releases.

3.10.1 Attributes

Attributes Definition

Pixel size

The dimensions in pixels of the display or

the print area.

Subroutines – DisplayGetPixelSize

3.10.1.1 Other subroutines

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 30 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

AppWinGetDisplay

Returns the handle of the Display

object on which an App window is

being displayed.

DisplayGetMetrics

Returns information about the sizes of

the various window elements (title bar,

border, and so on…) when shown on

the specified Display object.

GetDefaults

Returns the handles of the default

Display, Printer and TypeFace

objects.

3.11 Drawrule

A Drawrule object encapsulates the methods for drawing text and graphics in a

window's client area.

UIMS provides a default Drawrule, the handle of which can be obtained by using

GetDrawrule to fetch the handle of the drawrule for the Application context. Additional

Drawrule objects can be created with the CreateDrawrule subroutine. The default

Brush, Font and Pen objects for the application context will be attached to the newly

created drawrule. These can be changed with the appropriate subroutines (see below).

3.11.1 Drawrule inheritance

There are two ways in which a drawrule becomes attached to a contact: by calling the

SetDrawrule subroutine; or by inheritance from its parent:

A newly created contact inherits its parent's drawrule. This means that a contact created

without a parent has no drawrule until it is either given a parent, or specifically given a

drawrule with SetDrawrule.

Once a contact has a drawrule, it retains it until changed with SetDrawrule. However, a

contact's drawrule can be removed by calling SetDrawrule and specifying a null handle.

If the contact has a parent, the old drawrule will be replaced by that attached to the

parent object. If the contact has no parent, the old drawrule will be removed and the

contact will inherit a new drawrule when it is next attached to a parent object.

3.11.2 Attributes

Attributes Definition

Font

The handle of a Font object for character

drawing.

Subroutines – DrawruleSetFont,

DrawruleGetFont

Pen

The handle of a Pen object for line drawing.

Subroutines – DrawruleSetPen,

DrawruleGetPen

Brush

The handle of a Brush object for area filling.

Subroutines – DrawruleSetBrush,

DrawruleGetBrush

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 31 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Text mode

Character drawing mode. The following are

available:

UIMS.TEXT.OPAQUE: Fill the text

background with the selected

background colour.

UIMS.TEXT.HOLLOW: Do not fill the text

background.

Subroutines – CreateDrawrule

Graphics mode

Graphics pen or brush drawing mode. The

following are available:

UIMS.DRAW.CLEAR: Invert the Pen

colour and combine the result with the

colour on the screen by using a bitwise AND

operation.

UIMS.DRAW.COPY: Replace the colour on

the screen with that of the selected Pen.

UIMS.DRAW.NOTCLEAR: Combine the

Pen and screen colours with a bit-wise

AND.

UIMS.DRAW.NOTCOPY: Replace the

colour on the screen with the bit-wise

inverse of the Pen colour.

UIMS.DRAW.NOTOR: Invert the Pen

colour and combine the result with the

colour on the screen by using a bitwise OR

operation.

UIMS.DRAW.NOTXOR: Combine the Pen

and screen colours by means of a bit-wise

exclusive-OR and then invert the result.

UIMS.DRAW.OR: Combine the Pen and

screen colours by means of a bitwise OR

operation.

UIMS.DRAW.XOR: Combine the Pen and

screen colours by means of a bitwise

exclusive-OR operation.

The effects of these graphics drawing

modes are described in detail in

Appendix B.

Subroutines – CreateDrawrule

Colours

Foreground and background colours. These

must be UIMS logical colours or RGB

values. Note that the foreground colour is

used only for text; the colours of lines and

area fills are determined by the Pen and

Brush objects respectively.

Subroutines – DrawruleSetColour,

DrawruleGetColour

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 32 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 3-2: Foreground and background colours

3.11.2.1 Other subroutines

Attributes Definition

GetDrawrule
Returns the handle of the Drawrule

that is attached to a specified object.

SetDrawrule
Attaches a new Drawrule to the

specified object or contact.

3.12 EditBox

An EditBox contact is a single line text field in which text may be input and edited by the

user, or presented for display by the application. The field can be left, right or decimal

point aligned.

Within the edit box, the cursor can be moved with the keyboard or the mouse. Unless the

Wait Pointer is on, when inside the edit box, the mouse pointer changes to a vertical I-

beam; clicking within the edit box sets the cursor to the character position closest to the

mouse pointer. Note that attempting to move the cursor beyond the edge of the field will

automatically scroll the contents.

Text within the edit box may also be selected with the mouse or the keyboard. Making a

selection generates a Select message which gives the start and end positions of the

selected text; deselecting text generates a Select message with the start and end

positions both given as zero.

Table 3-1 gives full details of the edit box keyboard and mouse interfaces.

An EditBox contact is created using the CreateEditBox subroutine.

3.12.1 Attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 33 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Content

The text displayed within the edit box.

Subroutines – EditBoxSetContent,

EditBoxGetContent

Selection

The text which is highlighted within the edit

box.

Subroutines – EditBoxSetSelected

Style

Whether or not the edit field is enclosed in

a box.

Subroutines – CreateEditBox

3.12.1.1 Common contact attributes

All common contact attributes except Border Style and Drawrule apply to EditBox

contacts.

3.12.2 User interface

Table 3-1 summarises the mouse and keyboard interfaces for an edit box.

Table 3-1: User interface for EditBox

Action Result

Mouse interface

Single click Positions the insertion point and drops the

selection anchor.

Double click Selects a word.

SHIFT+Single Click Positions the insertion point and

extends the selection from the selection

Drag Drops the selection anchor, moves the

insertion point and extends the

Keyboard interface

LEFT ARROW,

RIGHT

Removes the selection from any text and

moves the insertion point in the indicated

direction.

SHIFT+RIGHT

ARROW,

SHIFT+LEFT

ARROW

Drops the selection anchor (if it is not

already dropped), moves the insertion point

and selects all text between the selection

anchor and the insertion point.

CTRL+RIGHT

ARROW,

CTRL+LEFT

ARROW

Moves the insertion point to the beginning

of the word in the indicated direction.

SHIFT+CTRL+RI

GHT

ARROW,

SHIFT+CTRL+LE

FT

Drops the selection anchor (if it is not

already dropped), moves the insertion point

to the beginning of the word in the

indicated direction, and selects all text

between the selection anchor and the

insertion point.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 34 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Action Result

ARROW

HOME Removes the selection from any text and

moves the insertion point to the beginning

of the field.

SHIFT+HOME Drops the selection anchor (if it is not

already dropped), moves the insertion point

to the beginning of the field, and selects all

text between the selection anchor and the

insertion point.

CTRL+HOME As HOME.

SHIFT+CTRL+H

OME

As SHIFT+HOME.

END Removes the selection from any text and

moves the insertion point to the end of the

field.

SHIFT+END Drops the selection anchor (if it is not

already dropped), moves the insertion point

to the end of the field, and selects all text

between the selection anchor and the

insertion point.

CTRL+END As END.

SHIFT+CTRL+E

ND

As SHIFT+END.

DELETE If text is selected, deletes the text.

Otherwise, deletes the character following

the insertion point.

BACKSPACE If text is selected, deletes the text.

Otherwise, deletes the character preceding

the insertion point

SHIFT+DELETE If text is selected, cuts the text to the

clipboard. Otherwise, deletes the character

following the insertion point.

SHIFT+INSERT Pastes (inserts) the contents of the

clipboard at the insertion point.

CTRL+INSERT Copies the selected text to the clipboard

but does not delete it.

Note

When the user types a character, any selected text is automatically replaced by the

character typed.

3.13 ExclusiveGroup

An ExclusiveGroup is a contact that manages several button contacts as a group. It has

the following characteristics:

• Only one button in the group can be selected at a time.

• The group can be made up of OptionButton contacts only.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 35 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If required, the group may be given a heading and enclosed in a rectangle.

Note

The border and title of an ExclusiveGroup lie within its client area. Care must be taken

when positioning option buttons, text and graphics, to ensure that they do not

overwrite the border and the title.

An ExclusiveGroup is created using the CreateExGroup subroutine.

3.13.1 Attributes

Attributes Definition

Title

The text that will appear above the group.

This will only be displayed if the group has

a surrounding rectangle.

Subroutines – ExGroupSetTitle

Style

Whether or not the group has a

surrounding rectangle.

Subroutines – ExGroupSetStyle

Selection

Which of the buttons in the group is

currently selected. This is a read-only

attribute; selection is made by the user, or

by calling the appropriate option button

subroutine.

Subroutines – ExGroupGetSel,

OptionButtonSelect,

OptionButtonDeselect,

OptionButtonSetSelected

Children

The list of child OptionButton contacts.

Subroutines – AddChild, AddChildren,

RemoveChild, RemoveChildren,

GetChild, GetChildren, GetChildCount

Focus

The handle of the child contact which has

the input focus.

Subroutines – SetContactFocus,

GetChildFocus

3.13.1.1 Common contact attributes

All common contact attributes except Border Style apply to ExclusiveGroup contacts.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 36 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.14 Font

A Font object defines the characteristics of the text font used when writing characters on

a window's client area. A Font cannot be attached directly to a contact but must be a

child of the attached Drawrule object.

UIMS provides a default Font, the handle of which can be obtained by using

GetDrawrule

to fetch the handle of the drawrule for the Application context, and then calling the

DrawruleGetFont subroutine. Additional Font objects can be created with the

CreateDrawFont subroutine.

3.14.1 Attributes

Attributes Definition

TypeFace

The handle of a TypeFace object.

Subroutines – FontSetTypeFace,

FontGetTypeFace

Style

A combination of the styles which are

available in the selected typeface.

Depending on the typeface, the following

styles might be available:

Normal, Bold, Italic, Outline, Underline,

Strikeout.

Subroutines – FontSetStyle, FontGetStyle

Point size

The required point size for the font. A list of

the point sizes available in the selected

typeface may be obtained by calling the

TypeFaceGetPointSizes subroutine.

Subroutines – FontSetPointSize

Font metrics

The dimensions, in pixels, of the selected

style and size of the selected typeface, as

follows:

• The total height of the font – the

ascent plus the descent (see below).

• The height above the base line of

the tallest characters (ascent).

• The height of the longest descender

(descent).

• The distance between the

descenders of one row of characters

and the top of the tallest characters

in the next row (leading).

• The average width of the lower-case

characters.

• The average width of the upper-case

characters.

• The width of the widest character.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 37 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Figure 3-3: Font metrics

These values are set when the font is

created and cannot be changed by the

programmer.

Subroutines – FontGetMetrics

3.14.1.1 Other subroutines

Attributes Definition

DrawruleGetFont

Returns the handle of the Font which is

attached to the specified Drawrule

object.

DrawruleSetFont Attaches a Font to a Drawrule object.

3.15 InclusiveGroup

An InclusiveGroup is a contact that manages several other contacts as a group. An

inclusive group differs from an exclusive group in that it can contain contacts other than

option buttons and that, if the group contains several buttons, more than one can be

selected at once.

Except where used internally by a child contact, the cursor keys can be used to move the

input focus within the group. The order in which contacts receive the focus depends on

their positions in the list of children. Pressing TAB moves the focus to the next contact

outside the group.

If required, the group may be given a heading and enclosed in a rectangle. The example

below shows an inclusive group containing Text, EditBox and CheckButton contacts.

These are enclosed in a rectangle with a title.

Note

The border and title of an InclusiveGroup lie within its client area. Care must be

taken when positioning child contacts, text and graphics, to ensure that they do not

overwrite the border or the title.

An InclusiveGroup is created using the CreateIncGroup subroutine.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 38 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.15.1 Child contacts

The following types of contact can be used within an inclusive group:

• CheckButton

• ChildWindow

• EditBox

• ExclusiveGroup

• InclusiveGroup

• Line

• ListBox

• OptionButton

• Rectangle

• ScrollBar

• Text

• TextEditor

3.15.2 Attributes

Attributes Definition

Title

The text that will appear above the group.

This will only be displayed if the group has

a surrounding rectangle.

Subroutines – IncGroupSetTitle

Style

Whether or not the group has a

surrounding rectangle.

Subroutines – IncGroupSetStyle

Children

The list of child contacts.

Subroutines – AddChild, AddChildren,

RemoveChild, RemoveChildren,

GetChild, GetChildren, GetChildCount

Focus

The handle of the child contact which has

the input focus.

Subroutines – SetContactFocus,

GetChildFocus

3.15.2.1 Common contact attributes

All common contact attributes except Border Style apply to InclusiveGroup contacts.

3.15.2.2 Other subroutines

Attributes Definition

DrawTextString Draws text on the client area.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area

Erase
Erases a specified part of the client

area.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 39 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.16 Line

A Line contact provides a way of displaying a line within the client area of a window. The

length and slope of the line are determined by the size and shape of an imaginary

containing box. The line may be drawn with an arrowhead at either or both ends.

A Line contact will redraw or realign itself when required. Lines drawn directly onto the

client area must be redrawn by the application.

Note

When a Line contact is created, its length and slope are determined by the positions

of the two ends of the line. To change its size, the Resize subroutine must be used

when calling this, you must specify new values for the width and height of the

containing box.

A Line contact is created using the CreateLine subroutine

3.16.1 Attributes

Attributes Definition

Drawrule

The handle of an attached Drawrule

object. This specifies the Pen object used to

draw the line.

Subroutines – SetDrawrule, GetDrawrule

3.16.1.1 Common contact attributes

All common contact attributes except Border Style and Event Mask apply to Line

contacts.

3.17 ListBox

A ListBox contact allows the user to select one or more from a list of options. It consists

of a box in which the available items are displayed as a vertical list. The list is displayed

in the order supplied by the application; the ListBox contact cannot sort its contents. If

there are more items available than will fit in the box, a vertical scrollbar will

automatically be attached to the box so that the user can scroll through the list. Scrolling

is managed by the list box. The application does not have access to the scroll-bar

attributes.

A list box can be configured so that the user can select only one item at a time, or to

permit multiple selections. A selection is shown within the ListBox by highlighting the

entire line. Tables 3-2 and 3-3 give details of the mouse and keyboard interfaces for

standard and multiple-selection list boxes.

If required, a ListBox can be linked to an EditBox contact; when an item is selected it is

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 40 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

copied into the edit box. The characters are inserted into the EditBox one at a time, as if

they had been entered at the keyboard. The result will depend on whether each

character passed any edit box validation mask criteria; the application is responsible for

ensuring that the edit box will accept items copied from the list box.

A ListBox contact is created using the CreateListBox subroutine.

3.17.1 Attributes

Attributes Definition

Contents

The list of items (character strings).

Subroutines – ListBoxAddContent,

ListBoxAddContents,

ListBoxGetContent,

ListBoxGetContents,

ListBoxRemoveContent,

ListBoxRemoveContents

Link

The handle of an EditBox contact to which

the ListBox is linked.

Subroutines – ListBoxSetLink

Selections

The positions in the contents list of the

items that are selected.

Subroutines – ListBoxAddSelection,

ListBoxAddSelections,

ListBoxGetSelections,

ListBoxRemoveSelection,

ListBoxRemoveSelections

Controls

Whether or not multiple selections are

allowed.

Subroutines – CreateListBox

3.17.1.1 Common contact attributes

All common contact attributes except Border Style apply to ListBox contacts.

3.17.2 User interface

The tables below summarise the mouse and keyboard interfaces for standard and

multiple-selection list boxes.

Table 3-2: User interface for Standard ListBox

Action Result

Mouse interface

Single click Selects the item and removes the selection

from the previously selected item (if any).

Double click Same as a single click.

Keyboard interface

SPACEBAR Selects the item.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 41 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Action Result

RIGHT ARROW,

DOWN ARROW

Selects the next item in the list and

removes the selection from the previously

selected item (if any).

LEFT ARROW,

UP ARROW

Selects the preceding item in the list and

removes the selection from the previously

selected item (if any).

PAGE UP Scrolls the currently selected item to the

bottom of the list box, selects the first

visible item in the list box, and removes the

selection from the previously selected item

(if any).

PAGE DOWN Scrolls the currently selected item to the

top of the list box, selects the last visible

item in the list box, and removes the

selection from the previously selected item

(if any).

HOME Scrolls the first item in the list to the top of

the list box, selects the first item, and

removes the selection from the previously

selected item (if any).

END Scrolls the last item in the list to the

bottom of the list box, selects the last item,

and removes the selection from the

previously selected item (if any).

Table 3-3: User interface for Multi-selection ListBox

Action Result

Mouse interface

Single click Toggles the selection state of the item,

while preserving the selection state of all

other items.

Double click Same as a single click.

Keyboard interface

SPACEBAR Toggles the selection state of the item,

while preserving the selection state of all

other items

RIGHT ARROW,

DOWN ARROW

Moves the list box cursor to the next item

in the list.

LEFT ARROW,

UP ARROW

Moves the list box cursor to the preceding

item in the list.

PAGE UP Scrolls the currently selected item to the

bottom of the list box and moves the list

box cursor to the first visible item in the list

box.

PAGE DOWN Scrolls the currently selected item to the

top of the list box and moves the list box

cursor to the last visible item in the list

box.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 42 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Action Result

HOME Scrolls the first item in the list to the top of

the list box and moves the list box cursor

to the first item.

END Scrolls the last item in the list to the

bottom of the list box and moves the list

box cursor to the last item.

3.18 Menu

A Menu contact consists of a vertical list of choices from which the user can select. The

choices are MenuItem or Menu contacts. A menu can be used in two ways:

• It can be used as a pull-down menu, by attaching it to a MenuBar contact.

• It can be attached to another Menu contact to create a cascaded menu.

The parent MenuBar or Menu contact displays the title of the menu. The menu itself

only appears when selected by the user.

A Menu contact is created by calling CreatePullDownMenu or MakePullDownMenu.

3.18.1 Attributes

Attributes Definition

Title

The text that will appear on the parent

menu bar or menu. One of the characters

in the title can be designated as a selector

key by preceding it with an ampersand

character.

Subroutines – MenuSetTitle

Children

A list containing the handles of child

MenuItem and Menu contacts.

Subroutines – CreateMenuItem,

CreatePullDownMenu, AddChild,

AddChildren, RemoveChild,

RemoveChildren, GetChild,

GetChildren, GetChildCount

3.18.1.1 Common contact attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 43 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Of the common contact attributes, only the following apply to Menu contacts:

• Enabled/disabled state

• Update display control

• Event mask

3.19 MenuBar

A MenuBar is a contact that consists of a horizontal list of choices displayed below the

title of an AppWindow contact. It offers the first level of menu choice for a user. The

choices a menu bar offers may be Menu or MenuItem contacts.

A MenuBar contact is created using the CreateMenuBar subroutine.

3.19.1 Attributes

Attributes Definition

Choices

A list of the handles of the menu bar's child

Menu or MenuItem contacts.

Subroutines – CreatePullDownMenu,

CreateMenuItem, AddChild,

AddChildren, RemoveChild,

RemoveChildren, GetChild,

GetChildren, GetChildCount

3.19.1.1 Common contact attributes

Of the common contact attributes, only the following apply to MenuBar contacts:

• Update display control

• Event mask

3.19.1.2 Other subroutines

Subroutines Definition

AppWinSetMenuBar
Attaches a menu bar to an

AppWindow contact.

AppWinRemoveMen

uBar

Removes the menu bar from an

AppWindow contact.

AppWinGetMenuBar
Returns the handle of an App

window's MenuBar contact if any.

3.19.2 Comments

Keyboard access to the menu bar is by means of a selector key that is platform

dependent and cannot be changed by the user. On Microsoft Windows, this selector is the

ALT key.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 44 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.20 MenuItem

A MenuItem contact allows the user to select an application command from a menu. It

must be attached to a Menu or a MenuBar contact and consists of a title that appears

on the parent contact. When the user selects a menu item, a button-press message is

generated; this can be detected by the application, which must initiate the appropriate

operation.

A MenuItem contact is created using the CreateMenuItem subroutine.

3.20.1 Attributes

Attributes Definition

Title

The text that will appear on the parent

menu bar or menu. One of the characters

in the title can be designated as a selector

key by preceding it with an ampersand

character.

If a single hyphen is used as the title, a

separator item is created. This appears as a

continuous line across the width of its

parent menu. Separator items cannot be

selected by the user and should be used to

visually group related menu items. Note

that a separator item cannot be attached to

a menu bar.

Subroutines – MenuItemSetTitle

Check mark

A mark (normally a tick or a cross,

depending on the platform) that can be

displayed beside a menu item to indicate

that an option is selected.

Subroutines – MenuItemCheck,

MenuItemUncheck,

MenuItemSetCheckMark,

MenuItemGetCheckMark

Autocheck

This is an operating mode that removes the

burden of check mark control from the

application. When selected, Autocheck

automatically toggles the check mark on or

off, as appropriate, each time the user

selects the menu item.

Subroutines – MenuItemSetAutoCheck

3.20.1.1 Common contact attributes

Of the common contact attributes, only the following apply to Menu contacts:

• Enabled/disabled state

• Update display control

• Event mask

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 45 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.21 MessageBox

A MessageBox contact is a dialog box which displays a message and waits for the user

to respond. It has up to three titled buttons and a graphic icon. A message box is always

application modal.

The programmer can define the icon displayed, the number of buttons, the titles on the

buttons and the default button. The following icons are available:

Icons Images

Information

Warning

Alert

Query

Alternatively, a pre-defined style can be chosen; the following are available:

• An Information message box which displays a message and has one button.

Unless changed, the button title is 'OK'.

• A Warning message box which displays a warning message and has two or three

buttons. Unless changed, a two-button Warning box has 'OK' and 'Cancel' buttons

and a three-button Warning box 'Yes', 'No' and 'Cancel' buttons.

• An Alert message box which displays a alert message and has two or three

buttons. Unless changed, a two-button Alert box has 'Retry' and 'Cancel' buttons

and a three-button

• Alert box 'Abort', 'Retry' and 'Cancel' buttons. A Query message box which

displays a question mark and has two or three buttons. Unless changed, a two-

button Query box has 'OK' and 'Cancel' buttons and a three-button Query box

'Yes', 'No' and 'Cancel' buttons.

The button titles can be changed, if necessary, to suit the requirements of the

application.

The size of the message box is adjusted according to the length of the message, which

must be less than 200 characters long.

A MessageBox contact is created by calling the CreateMessageBox subroutine.

3.21.1 Attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 46 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Style

The icon, number of buttons and default

button, or one of seven predefined styles:

Information, Warning with two buttons,

Warning with three buttons, Alert with two

buttons, Alert with three buttons, Query

with two buttons or Query with three

buttons.

Title
The title to be displayed at the top of the

message box.

Message The message to be displayed.

Button titles A list of button titles, if required.

These are all set when the message box is created.

3.21.1.1 Common contact attributes

None of the common contact attributes apply to MessageBox contacts.

3.22 OptionButton

A OptionButton is a contact that allows the user to select one from a group of options.

It consists of a small circle with a button title to the right. When the option is selected,

the circle contains a mark of some kind – usually a second, filled in, circle in the centre of

the button, though this depends on the platform.

Although option buttons can be used individually, they are normally grouped together in

an ExclusiveGroup contact. When this is done, only one button in the group can be

selected at a time. Exclusive groups of option buttons should be used to offer a few

mutually exclusive options.

A OptionButton contact is created using the CreateOptionButton subroutine.

3.22.1 Attributes

Attributes Definition

Title

The text that will appear beside the option

button. One of the characters in the title

can be designated as a selector key by

preceding it with an ampersand character.

Subroutines – OptionButtonSetTitle

State

Whether or not the button is selected.

Subroutines – OptionButtonSelect,

OptionButtonDeselect,

OptionButtonSetSelected,

OptionButtonGetSelected

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 47 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Autotoggle

This is an operating mode that removes the

burden of selection mark control from the

application. When selected, Autotoggle

automatically toggles the selection mark on

or off, as appropriate, each time the user

selects the button.

Option buttons within an exclusive group

always operate in Autotoggle

mode.

Subroutines – OptionButtonSetToggle

3.22.1.1 Common contact attributes

All common contact attributes except Border Style apply to OptionButton contacts.

3.23 Pen

A Pen object determines the appearance of lines drawn using the Line and Rectangle

contacts, and the DrawLine and DrawRect subroutines. A Pen cannot be attached

directly to a contact but must be a child of a Drawrule object.

UIMS provides a default Pen, the handle of which can be obtained by using GetDrawrule

to fetch the handle of the drawrule for the Application context, and then calling the

DrawruleGetPen subroutine. Additional Pen objects can be created using the

CreateDrawPen subroutine.

3.23.1 Attributes

Attributes Definition

Colour

A UIMS logical colour or RGB value.

Subroutines – PenSetColour,

PenGetColour

Style

The style of the pen. The following styles

are available:

• UIMS.PEN.SOLID: A continuous

line with colour and width as

specified.

• UIMS.PEN.HOLLOW: A transparent

line. This is most useful when

drawing rectangles – if the pen is

continuous, the rectangle will be

enclosed in a border with a

transparent pen, this border will be

invisible.

Subroutines – CreateDrawPen

Width
The width of the line in pixels.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 48 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Note

A pen width greater than zero can be

inefficient on some display platforms.

Subroutines – PenSetWidth,

PenGetWidth

3.23.1.1 Other subroutines

Subroutines Definition

DrawruleGetPen

Returns the handle of the Pen which

is attached to the specified

Drawrule object.

DrawruleSetPen
Attaches a Pen to a Drawrule

object.

3.24 Pointer

A Pointer object determines the shape and characteristics of the mouse pointer.

When the workstation has a mouse (or any other type of pointing device), the pointer

shows the current location of the mouse. The pointer is automatically displayed and

moved as the mouse is moved. If the workstation does not have a mouse, the pointer is

not normally displayed.

The pointer is normally moved by the user but, if required, the application can control its

position, or restrict it to a specific window. The type of pointer displayed is controlled

partly by UIMS and partly by the application. The application can determine the type of

pointer used within each window's client area and can change it to the Wait Pointer type

while processing takes place.

A Pointer object is created using the CreatePointer subroutine.

3.24.1 Pointer inheritance

There are two ways in which a pointer becomes attached to a contact: by calling the

SetPointer subroutine; or by inheritance from its parent.

A newly created contact inherits its parent's pointer. This means that a contact created

without a parent has no pointer until it is either given a parent, or specifically given a

pointer with SetPointer.

Once a contact has a pointer, it retains it until changed with SetPointer. However, a

contact's pointer can be removed by calling SetPointer and specifying a null handle. If

the contact has a parent; the old pointer will be replaced by that attached to the parent

object. If the contact has no parent, the old pointer will be removed and the contact will

inherit a new pointer when it is next attached to a parent object.

3.24.2 Attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 49 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Type

The shape of the pointer. This can be any

of the following:

• Standard arrow pointer.

• Text I-beam pointer.

• Diagonal crosshair pointer.

• Horizontal and vertical crosshair

pointer.

• Wait pointer – normally an

hourglass.

Subroutines – PointerSetType,

PointerGetType

3.24.2.1 Other subroutines

Subroutines Definition

GetPointer

Returns the handle of the Pointer

object that is attached to a specified

object or contact.

GetPointerPos

Returns the pointer position, relative

to either the screen or a specified

contact.

GrabPointer Traps the pointer within a contact.

SetPointer
Attaches a new Pointer object to a

specified object or contact.

SetPointerPos

Sets the pointer position, relative to

either the screen or a specified

contact.

UngrabPointer

Releases the pointer if it has been

trapped in a contact by

GrabPointer.

WaitPointerOff

Changes the mouse pointer from the

wait pointer to the pointer type

specified by the Pointer object.

WaitPointerOn

Changes the mouse pointer to the

wait pointer, overriding the pointer

type specified by the Pointer object.

3.25 Rectangle

A Rectangle contact provides a way of displaying a rectangle within the client area of a

window. It differs in the following ways from text drawn directly on a window's client area

with the DrawRect subroutine:

• A Rectangle contact will redraw or realign itself when required. A rectangle drawn

directly onto the client area must be redrawn by the application.

• The background of a Rectangle contact can be a different colour to that of the

client area.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 50 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

When a Rectangle contact is created, its size is determined by the positions of its edges.

To change its size, the Resize subroutine must be used; when calling this, you must

specify new values for the width and height of the rectangle.

A Rectangle contact is created using the CreateRect subroutine.

3.25.1 Attributes

Attributes Definition

Style
Whether or not the Rectangle has a border.

Subroutines – CreateRect

Drawrule

The handle of an attached Drawrule

object. This specifies the Pen object used

to draw the rectangle and the Brush object

used to fill the centre of the rectangle.

Subroutines – SetDrawrule, GetDrawrule

3.25.1.1 Common contact attributes

All common contact attributes except Border Style and Event Mask apply to Rectangle

contacts.

3.26 Scrollbar

A ScrollBar contact provides a graphical method of selecting one from a range of values.

It consists of a band (or thumbtrack) with a small box containing an arrow at each end. A

box on the thumbtrack (the thumb) acts as a slider which can be dragged along the

thumbtrack using the mouse. The position of the thumb on the thumbtrack represents

the currently selected value, in relation to the maximum and minimum values assigned to

the end points of the thumbtrack.

Scroll-bars are most frequently seen in association with other contacts; they are provided

in application and child windows, list boxes and text editors so that the user can view

information which is not visible on the screen. A ScrollBar contact, however, is an

independent control which can represent whatever the application requires. A minimum

value is assigned to one end of the track and a maximum to the other; the user can then

choose any value between these by simply moving the thumb. A minimum step can be

specified to ensure that only meaningful values can be selected.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 51 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The user can move the thumb by dragging it with the mouse, or clicking either side of it,

on the direction arrows or the thumbtrack. When a direction arrow is clicked, the thumb

is moved by a small amount (line increment) in the appropriate direction, clicking the

thumbtrack moves the thumb by a larger, page increment. Both the line and page

increment can be set by the application. Table 3-4 gives full details of the scrollbar

mouse and keyboard interfaces.

A ScrollBar can work in two modes: tracking and non-tracking. In tracking mode, each

new thumb position is reported as it is moved; in non-tracking mode, the thumb position

is only reported when the mouse button is released.

A ScrollBar contact is created using the CreateScrollBar subroutine.

3.26.1 Attributes

Attributes Definition

Type
Horizontal or Vertical.

Subroutines – CreateScrollBar

Tracking mode
Tracking or non-tracking.

Subroutines – ScrollBarSetTracking

Range

The maximum and minimum values

represented by the ends of the thumbtrack.

Subroutines – ScrollBarSetRange

Thumb position

A value representing the thumb position,

relative to the specified maximum and

minimum values.

Subroutines – ScrollBarSetThumb,

ScrollBarGetThumb

Increments

The line and page increments by which the

thumb can move.

Subroutines – ScrollBarSetInc

3.26.1.1 Common contact attributes

All common contact attributes except Border Style apply to ScrollBar contacts. Note,

however, that none of the common contact attributes are applicable to scrollbars created

automatically as part of another contact.

3.26.2 Scroll-bar messages

When the user operates a scrollbar, a message is generated and a message returned to

the application. The type of message depends on whether the scrollbar is an independent

control or was created automatically as part of an App or Child window: ScrollBar

contacts generate UIMS.MSG.SCROLL messages, while App and Child window horizontal

and vertical scrollbars respectively generate UIMS.MSG.HSCROLL and

UIMS.MSG.VSCROLL messages.

When an application receives a scroll-bar message, the Data2 parameter will contain a

value that indicates what kind of scrolling is being performed. The application must use

this information to determine how to position the scroll-bar thumb and what that position

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 52 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

means to the application. Table 3-4 lists these Data2 values and describes the user

actions that generate them.

Table 3-4: User interface for Standard ListBox

Message Data2 Value Mouse Keyboard

UIMS.SB.UP User clicked the Up arrow on the

scrollbar.

User pressed the UP

cursor key.

UIMS.SB.LEFT User clicked the Left arrow on

the scrollbar.

User pressed the LEFT

cursor key.

UIMS.SB.DOWN User clicked the Down arrow on the

scrollbar.

User pressed the DOWN

cursor key.

UIMS.SB.RIGHT User clicked the Right arrow on

the scrollbar.

User pressed the RIGHT

cursor key.

UIMS.SB.PAGEUP User clicked the scrollbar thumbtrack

above the thumb.

User pressed the PAGEUP

key.

UIMS.SB.PAGELEFT User clicked the scrollbar thumbtrack

to the left of the thumb.

User pressed

CTRL+PAGEUP.

UIMS.SB.PAGEDOWN User clicked the scrollbar thumbtrack

below the thumb.

User pressed the

PAGEDOWN key.

UIMS.SB.PAGERIGHT User clicked the scrollbar thumbtrack

to the right of the

thumb.

User pressed

CTRL+PAGEDOWN.

UIMS.SB.THUMB User has stopped dragging the

thumb.

None

UIMS.SB.THUMBTRACK User is dragging the thumb. None

3.27 Speaker

The Speaker object provides access to the loudspeaker in the workstation or terminal.

3.27.1 Attributes

Attributes Definition

Pitch The pitch (in Hertz) of the required sound.

Duration The duration of the sound in milliseconds.

Repeats The number of times to make the sound.

Delay The time in milliseconds between repeats.

All of these are set using the SoundSpeaker subroutine.

3.28 SystemDictionary

The SystemDictionary object provides access to various workstation configuration

values. It is constructed by UIMS during initialisation. The values are largely the default

values for attributes of the underlying GUI. The SystemDictionary is UIMS system-wide

and is accessed by all instances of all UIMS applications running on the workstation.

3.28.1 Attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 53 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Default screen

The handle of the default screen Display

object.

Subroutines – GetDefaults

Default printer

The handle of the default screen Display

object.

Subroutines – GetDefaults

Default typeface
The handle of the default TypeFace object.

Subroutines – GetDefaults

Typefaces

A list of the available TypeFace objects.

Subroutines – GetTypeFaces,

GetTypeFace

Note

Printer display objects are not supported on this version of UIMS. The subroutines

concerned are provided for use on later releases.

3.29 Text

A Text contact provides a way of displaying text within the client area of a window. It

differs from text drawn directly on a window's client area with the DrawTextString

subroutine in the following ways:

• A Text contact will redraw or realign itself when required. Text drawn directly

onto the client area must be redrawn by the application.

• The text may be left or right aligned, justified or centered within the containing

window boundary. Alignment of text within a window's client area is the

responsibility of the application.

• The background of a Text contact can be a different colour to that of the client

area.

A Text contact is created using the CreateText subroutine.

3.29.1 Attributes

Attributes Definition

Content

The text to be displayed.

Subroutines – TextSetContent,

TextGetContent

Drawrule

The handle of an attached Drawrule

object. This specifies the font used, the

colour of the text, and the colour of the

child window's background.

Subroutines – SetDrawrule, GetDrawrule

Alignment

Text alignment – left, right, both (justified)

or centered.

Subroutines – TextSetJustification

3.29.1.1 Common contact attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 54 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

All common contact attributes (see page 3-2) except Border Style and Event Mask apply

to Text contacts.

3.30 TextEditor

A TextEditor contact is a text field in which text may be input and edited by the user, or

presented for display by the application. It is like an EditBox but allows the entry or

display of more than one line of text.

The text within a TextEditor is divided into lines, each terminated by a carriage return.

If the text editor contains more text than will fit into its display window, the text can be

scrolled horizontally or vertically as necessary. If automatic scrolling is enabled, scrolling

will take place as the cursor moves, or the mouse is dragged outside the contact. In

addition, scroll-bars can be displayed so that the user can control text scrolling; these are

managed entirely by the TextEditor and do not generate scroll messages.

Within the text editor, the cursor can be moved with the keyboard or the mouse. Unless

the Wait Pointer is on, when inside the text editor, the mouse pointer changes to a

vertical I-beam. Clicking within the text editor sets the cursor to the character position

closest to the mouse pointer.

Text within the text editor may also be selected with the mouse or the keyboard.

Selecting generates a Select message which gives the start and end positions of the

selected text; deselecting text generates a Select message with the start and end

positions both given as zero.

Table 3-5 gives full details of the edit box keyboard and mouse interfaces.

A TextEditor contact is created using the CreateTextEditor subroutine.

3.30.1 Attributes

Attributes Definition

Style

The style of the text editor. This can be a

combination of the following options:

• Border. If selected, the edit field is

enclosed in a box.

• Display a horizontal scrollbar.

• Display a vertical scrollbar.

• Autoscroll. If selected, the text will

scroll when the mouse is dragged

outside the text editor.

• Read only. If selected, the text

editor will be a display-only field,

with no editing allowed.

Subroutines – CreateTextEditor

Content

The text being edited or displayed.

Subroutines – TextEditorSetContent,

TextEditorGetContent,

TextEditorGetTextLen

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 55 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.30.1.1 Common contact attributes

All common contact attributes except Border Style and Drawrule apply to TextEditor

contacts.

3.30.2 User interface

The table below summarises the mouse and keyboard interfaces for a text editor.

Table 3-5: User interface for TextEditor

Action Result

Mouse interface

Single click
Positions the insertion point and drops the selection anchor.

Double click Same a word.

SHIFT+ Single

click

Positions the insertion point and extends

the selection from the selection anchor to

the insertion point.

Drag Drops the selection anchor, moves the

insertion point and extends the selection

from the selection anchor to the insertion

point.

Keyboard interface

Direction Removes the selection from any text and

moves the insertion point in the indicated

direction.

SHIFT +

Direction

Drops the selection anchor (if it is not

already dropped), moves the insertion point

and selects all text between the selection

point and the insertion point.

CTRL+RIGHT

ARROW,

CTRL+LEFT

ARROW

Moves the insertion point to the beginning

of the word in the indicated direction.

SHIFT+CTRL+RI

GHT

ARROW,

SHIFT+CTRL+LE

FT

ARROW

Drops the selection anchor (if it is not

already dropped), moves the insertion point

to the beginning of the word in the

indicated direction, and selects all text

between the selection anchor and the

insertion point.

HOME Removes the selection from any text and

moves the insertion point to the beginning

of the line.

SHIFT+HOME Drops the selection anchor (if it is not

already dropped), moves the insertion point

to the beginning of the line, and selects all

text between the selection anchor and the

insertion point.

CTRL+HOME Places the cursor before the first character

in the TextEditor.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 56 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Action Result

SHIFT+CTRL+H

OME

Drops the selection anchor (if it is not

already dropped), places the cursor before

the first character in the TextEditor, and

selects all text between the selection

anchor and the insertion point.

END Removes the selection from any text and

moves the insertion point to the end of the

line.

SHIFT+END Drops the selection anchor (if it is not

already dropped), moves the insertion point

to the end of the line, and selects all text

between the selection anchor and the

insertion point.

CTRL+END Places the cursor after the last character in

the TextEditor.

SHIFT+CTRL+E

ND

Drops the selection anchor (if it is not

already dropped), places the cursor after

the last character in the TextEditor, and

selects all text between the selection

anchor and the insertion point.

DELETE If text is selected, deletes the text.

Otherwise, deletes the character following

the insertion point.

BACKSPACE If text is selected, deletes the text.

Otherwise, deletes the character preceding

the insertion point.

SHIFT+DELETE If text is selected, cuts the text to the

clipboard. Otherwise, deletes the character

following the insertion point.

SHIFT+INSERT Pastes (inserts) the contents of the

clipboard at the insertion point.

CTRL+INSERT Copies the selected text to the clipboard

but does not delete it.

PAGE UP Scrolls the text up one line less than the

height of the TextEditor.

CONTROL+PAGE

UP

Scrolls the text left one character less than

the width of the TextEditor.

PAGE DOWN Scrolls the text down one line less than the

height of the TextEditor.

CONTROL+PAGE

DOWN

Scrolls the text right one character less

than the width of the TextEditor.

CTRL+ENTER If the TextEditor is in a DialogBox, or in a

window with dialog box style, ends the line

and moves the cursor to the beginning of

the next line.

CTRL+TAB If the TextEditor is in a DialogBox, or in a

window with dialog box style, inserts a tab

character.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 57 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

When the user types a character, any selected text is automatically replaced by the character

typed.

3.31 TitledButton

A TitledButton contact is a push button that is used to initiate an action. For example, a

dialog box will normally contain a button with the legend 'OK'; when the user clicks on

this button, the contents of the dialog box will be returned to the application for

processing.

The button is displayed with a rectangular border enclosing a text caption or graphic

image. If required, the border of the button can be shown thickened; this is used in

dialog boxes to indicate the default action.

A TitledButton contact is created using the CreateTitledButton subroutine. It has the

following attributes, which can set or read by using the appropriate subroutines.

3.31.1 Attributes

Attributes Definition

Title

The text that will appear inside the button, or the

name of a file containing a graphic image. Note,

however, that an image can only be attached to a

TitledButton when it is created (with

CreateTitledButton) and that, once attached, it

cannot be changed.

Subroutines – TitledButtonSetTitle

Style

The style can be one of the following:

Draw a normal (thin) border round the button.

Draw a thickened border round the button.

Note

1. Within a DialogBox contact, the default

button has a thickened border.

2. If a TitledButton is created containing an

image its style cannot be changed.

Subroutines – TitledButtonSetStyle,

DlgBoxSetDefButton, AppWinSetDefButton,

ChildWinSetDefButton.

3.31.1.1 Common contact attributes

All common contact attributes except Border Style apply to a TitledButton

contact.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 58 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.32 TypeFace

TypeFace objects are created by UIMS from the typefaces available on the display

platform.

A typeface is a set of characters (letters, numerals, punctuation marks and symbols) that

share a common design and character set. Each TypeFace object consists of a group of

typefaces that have similar stroke width and serif characteristics, in most cases a range

of point sizes and styles (bold, italic, and so on…) will be available.

Note

The terms UIMS uses to describe fonts, typefaces and families of fonts do not

necessarily correspond to traditional typographic terms.

3.32.1 Type styles

Each typeface will also be available in one or more styles: normal, bold, italic, outline,

underline and strikeout. Figure 3-4 illustrates these different styles in the Helvetica font.

* For illustration only. Outline is not normally available in the Helvetica typeface.

Figure 3-4: TypeFace styles

Where a particular style is available for the typeface concerned, UIMS will use it;

otherwise, UIMS will try to synthesise the style. If the style cannot easily be synthesised,

the nearest equivalent will be selected.

Note

Some styles are particularly difficult to synthesise. Outline cannot generally be used unless the

typeface concerned includes an outline style. Similarly, for some typefaces, it may not be possible

to use strikeout style.

3.32.2 TypeFaces and fonts

A typeface is made available to the application by attaching it to a Font object and

selecting a style (Bold, Italic, and so on…) and point size from those that are available.

The same typeface can be attached to several different fonts.

The handles of the available typefaces can be obtained by calling the GetTypeFace and

GetTypeFaces subroutines.

3.31.3 Attributes

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 59 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

Name

The name of the typeface (Times Roman,

Helvetica, and so on…).

Subroutines – TypeFaceGetName

Point sizes

The available point sizes.

Subroutines – TypeFaceGetPointSize,

TypeFaceGetPointSizes

3.33 General subroutines

This section lists UIMS subroutines that have not been mentioned elsewhere in this

Section.

Attributes Definition

Management

Subroutines

• GetMsg: Retrieves the next message in the

message queue for the session.

• AddTimer: Creates a timer which will

generate a timer message when the timer

expires.

• RemoveTimer: Removes a timer created

with AddTimer.

• SetTeWindow: Changes the window that is

used as the application's 'terminal

emulation' (TE) window – that is the window

in which output printed to the terminal

(using PRINT, CRT, and so on…) will be

displayed.

Object-Wide

Subroutines

• Destroy: Destroys an object or contact.

• GetObjectParent: Returns the parent of an

object.

NewView

Subroutines

NewView is described in detail in Section 5.

• CreateNVContactGroup: Creates a NewView

contact group.

• CreateNVHotspotGroup: Creates a group of

NewView hot spots within the application's

terminal emulation window.

• DestroyNVGroup: Destroys a NewView

group created with CreateNVContactGroup

or CreateNVHotspotGroup.

• SetEnabledNVGroup: Enables or disables a

NewView group.

• SetMappedNVGroup: Allows you to decide

whether a NewView group is displayed on

the screen.

• ReMapNVLine25: Allows you to use a UIMS

message box to display system messages

which the host sends to line 25 of the

terminal screen.

• ChangeNVContacts: Changes the response

strings generated by contacts in a NewView

group.

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 60 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

• ChangeNVButtonGroup: Changes the titles

of the buttons in a NewView button group

and the response strings generated by

them. It can also be used to control whether

or not buttons in the group are visible.

DDE Subroutines

• DDE.PEEK: Uses a dynamic-data exchange

(DDE) conversation to request data from a

Windows application.

• DDE.POKE: Uses a DDE conversation to

send data to a WIndows application.

• DDE.EXECUTE: Uses a DDE conversation to

send a command or commands to a

Windows application.

• DDE.OPENADVISE: Establishes a

'permanent' DDE link to a Windows

application.

• DDE.ADVISE: Obtains data from a

permanent DDE link.

• DDE.CLOSEADVISE: Closes a permanent

DDE link.

Image

Management

Subroutines

• StartImage: Loads the image manager.

• DisplayImage: Displays an image in a

specified window.

• EraseImage: Removes a displayed image.

• StopImage: Unloads the image manager.

Other Subroutines

• InitialiseUims: Initialises the UIMS

environment.

• SignOn: Signs on a UIMS session and

creates an AppContext object for the new

session.

• SignOff: Signs off a UIMS session.

• GetUimsVersion: Returns the UIMS version

number and revision level.

• SetSync: Switches between synchronous

and asynchronous UIMS function call error

response handling.

• GetErrorText: Returns the text associated

with a specified error code.

• BitTest: Returns the state of a specified

element in a composite value.

• HiByte: Returns the value of the most-

significant byte of a word (2 byte) value.

• LoByte: Returns the value of the least-

significant byte of a word (2 byte) value.

• Execute: Starts a program on the PC.

• SystemCommand: Runs a DOS system

command on the PC.

• SendKeys: Sends a sequence of keypresses

to the active Windows application, as if they

had been typed at the keyboard.

• SetUimsMode: Restores message processing

after NewView and application control

Section 3: Objects

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 61 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

subroutines, and DATA/BASIC commands

that send data to or receive data from the

terminal.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 62 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 4: Messages
This Section describes how a UIMS application uses messages to receive user input. It

also lists the different types of message and gives details of their parameters.

4.1 Overview

Every mouse or keyboard operation the user makes in using an application triggers a

UIMS event. When an event occurs, a message is generated which is initially directed to

the contact which currently has the focus. This then passes to its parent, which passes it

to its parent, and so on until it reaches the application.

4.2 Message loop

An essential part of any UIMS application is a message loop, containing a call to the

GetMsg subroutine – this fetches messages as they are passed to the application and

thus allows the application to respond to user actions. The GetMsg subroutine requires

ten parameters, as follows:

• A number representing how long (in tenths of a second) to wait for a message to

occur. This can allow an application to perform a background task while waiting

for an event to occur. If zero is specified, GetMsg will not return until a message is

received.

• Variables in which to return the handles of the application context, window and

contact in which the event occurred.

• A variable in which to return the type of message.

• A variable in which to return a number representing the time the event occurred.

This is only valid for certain types of message.

• Four variables in which to return additional message-specific parameters.

Message processing is best organised as a series of embedded case statements, with

each level switching on a different message parameter. You are recommended to switch

first on the window in which the event occurred, and then on the type of message. You

can then, if necessary, test for the specific contact. It is unlikely that you will need to test

the application context, as very few applications will have more than one.

A message loop has the following basic structure:

Until (user wants to exit) do

 Fetch the next message

 Process message

Loop

A simple message loop is shown in the following example:

USER.WANTS.TO.EXIT = FALSE

LOOP UNTIL USER.WANTS.TO.EXIT DO

CALL GetMsg(0, CONTEXT, WINDOW, CONTACT, MSGTYPE, TIMESTAMP,

DATA1, DATA2, DATA3, DATA4)

BEGIN CASE

CASE WINDOW = WIN1

BEGIN CASE

CASE MSGTYPE = UIMS.MSG.MENUITEM

GOSUB HANDLE.WIN1.MENUS

CASE MSGTYPE = UIMS.MSG.EXIT

USER.WANTS.TO.EXIT = TRUE

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 63 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

END CASE

END CASE

REPEAT

Note that you only need to process those messages which directly affect your application

- in this case UIMS.MSG.MENUITEM and UIMS.MSG.EXIT messages. All others can be

ignored. The subroutine HANDLE.WIN1.MENU should test for the selected menu item.

Not all messages reach the application. At any stage in the propagation process, an

object may process the message – the result may be to convert one type of message into

another or to simply not pass the message on. An example of this occurs when the user

clicks on a button contact – the message generated is initially a mouse click message,

but this is converted by the button contact into a button press message.

4.3 Masking messages

A UIMS application can generate a great many messages which it does not need to

process. Every time the mouse is moved, one or more pointer motion messages are

generated.

In order that the application should not be swamped with messages in which it is not

interested, UIMS provides an Event Mask mechanism which allows the programmer to

choose which types of message will be received by the application. An event mask can be

applied to the application, through the AppContext, or to individual contacts. If a

message is disabled at a contact, this does not prevent messages reaching the contact,

but stops them being passed on to its parent.

An event mask is set by calling the SetEventMask subroutine. A mask is constructed by

adding together the individual masks for the types of message you wish to receive. For

example:

MASK = UIMS.EM.BUTTONPRESS+UIMS.EM.KEYPRESS

CALL SetEventMask(CONTACT, MASK, ERR)

You can find out which types of message are enabled by calling the GetEventMask

subroutine. Note, however, if you need to change an existing mask, you cannot simply

add or subtract an individual mask – you must first check whether or not the individual

mask is already set. For example:

* First fetch the current event mask

CALL GetEventMask(CONTACT, MASK)

* Then pass the result to BitTest to find out if MENUITEM

* messages are enabled

CALL BitTest(STYLE, UIMS.EM.MENUITEM, ENABLED)

* If they are not already enabled, enable them

IF NOT(ENABLED) THEN

MASK = MASK + UIMS.EM.MENUITEM

CALL SetEventMask(CONTACT, MASK, ERR)

END

4.3.1 Default event masks

When a UIMS application is started, the following messages are enabled at the

application context: UIMS.MSG.BUTTONPRESS, UIMS.MSG.CLOSE, UIMS.MSG.EXIT,

UIMS.MSG.KEYPRESS, UIMS.MSG.MENUITEM, UIMS.MSG.NOTIFY.

All newly created objects and contacts have all message types enabled, except

UIMS.MSG.IDLE.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 64 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.3.2 Secondary event mask

In addition to the event masks described above, the application context has a secondary

event mask. This is normally only required in applications which do not have a message

loop, such as NewView applications.

In a normal UIMS application with a message loop, the relationship between UIMS, the

application and the application's event masks are as follows:

When using NewView, however, there are two additional components in the system:

NewView itself, and the terminal window.

In this case, the primary event mask (that set for the application context using

SetEventMask) determines which types of message should be passed to NewView. A

predefined NewView event mask, UIMS.EM.NEWVIEW, should be used to ensure that

NewView receives the correct types of message. Many of the messages are processed by

NewView, but some are passed on to the terminal window, and these can in turn be

passed on to the application. If the application has no message loop to process these,

they will be interpreted as text to be displayed and will be printed in the terminal

window.

The secondary event mask overcomes this problem by masking-out these messages

before they reach the application, as follows:

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 65 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

To set a secondary event mask, use the SetSecondaryEventMask subroutine. The

following example disables all types of message:

SECMASK = 0 ;* disable all messages

NONMASK = FALSE ;* disable non-maskable messages

CALL SetSecondaryEventMask(CONTEXT, SECMASK, NONMASK, FALSE, ERR)

The second parameter to SetSecondaryEventMask is an event mask with the same

format as used for SetEventMask, while the third controls UIMS.MSG.CREATE and

UIMS.MSG.DESTROY messages, which cannot be disabled with a normal event mask.

The fourth parameter is provided for use in future versions of UIMS. Its value will be

ignored.

If you are writing a full UIMS application with a message loop, you will not normally need

to set a secondary event mask. The default setting enables all maskable messages, and

disables UIMS.MSG.CREATE and UIMS.MSG.DESTROY messages. You can find out

the current setting of the secondary event mask by calling the

GetSecondaryEventMask subroutine.

4.3.3 Message categories

Messages can be grouped in to six categories:

Attributes Definition

Keyboard Messages

A keyboard message is generated is generated

whenever the user presses a key on the keyboard.

Message types – UIMS.MSG.KEYPRESS

Focus Messages

Focus messages are generated when the input

focus changes from contact to contact. Keyboard

messages are always passed initially to the contact

which has the focus. Focus messages should be

used by the application to initiate housekeeping

tasks, such as displaying or removing a text cursor.

Message types – UIMS.MSG.ENTER,

UIMS.MSG.LEAVE

Pointer Messages

Pointer messages are generated when the mouse is

moved and when the mouse buttons are pressed

and released. Note that there are two levels of

pointer messages: at the lower level (motion, press

and release), every separate mouse move, and

button press and release is reported; at the higher

level (click, double-click and drag), some pre-

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 66 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

processing is carried out to simplify an application's

message handling.

Message types – UIMS.MSG.CLICK,

UIMS.MSG.DBLCLICK,

UIMS.MSG.DRAG, UIMS.MSG.MOTION,

UIMS.MSG.PRESS,

UIMS.MSG.RELEASE.

Window Messages

A window message is generated when the state of

an App or Child window changes.

Message types – UIMS.MSG.CLOSE,

UIMS.MSG.CREATE,

UIMS.MSG.DESTROY, UIMS.MSG.HSCROLL,

UIMS.MSG.KILL,

UIMS.MSG.MOVE, UIMS.MSG.SIZE,

UIMS.MSG.UPDATE,

UIMS.MSG.VSCROLL

Control Messages

Control messages are generated by user operation

of contacts.

Message types – UIMS.MSG.BUTTONPRESS,

UIMS.MSG.LBOX.DESELECT,

UIMS.MSG.LBOX.SELECT,

UIMS.MSG.MENUITEM, UIMS.MSG.SCROLL,

UIMS.MSG.SELECT

Application

Messages

These are general messages which are not

connected with any window or contact. They report

such occurrences as errors and requests to close

the application.

Message types – UIMS.MSG.EXIT,

UIMS.MSG.IDLE,

UIMS.MSG.NOTIFY, UIMS.MSG.TIMER

4.3.4 Message descriptions

The sections which follow list the UIMS messages in alphabetical order. Each description

includes details of the conditions under which the message is generated, the value of the

message code, any message-specific parameters returned by GetMsg, the corresponding

event mask and any additional information.

The descriptions refer to the GetMsg parameters (vContact, vData1, vData2, and so

on…) in which message data is returned. These parameter names are the same as those

given in the description of the GetMsg subroutine in Section 6.

4.3.4.1 Parameters

The following basic parameters are common to all UIMS messages:

• The message type (vMsgType). This determines the format of any message-

specific data.

• The event context (vContext) – the handle of the application context in which the

event occurred.

• The event window (vWindow) – the handle of the window in which the event

occurred.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 67 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• The event contact (vContact) – the handle of the contact in which the event

occurred.

• A time stamp (vTimeStamp) – this is a number which gives some indication of the

order in which events occurred. At present, this information is only returned by

pointer messages.

In addition, there are four parameters (vData1 to vData4) which return message-specific

data.

In many cases the event window and the event contact will be the same. Note, however,

that for some types of message, the event context, window and/or contact may not be

meaningful.

4.3.5 UIMS.MSG.BUTTONPRESS

A button press message is generated when the user operates a TitledButton,

OptionButton or CheckButton contact.

Value 24

Message-

specific

parameters

None

Event mask UIMS.EM.BUTTONPRESS

4.3.6 UIMS.MSG.CLICK

This type of message is generated when a Release event follows a Press event in the

same contact, with no intervening Motion events.

Value 5

Message-

specific

parameters

• vData1: The horizontal coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The vertical coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

• vData3: This contains the states of

any mouse buttons which have not

changed, and the states of the

keyboard modifier keys (SHIFT,

CTRL, ALT, and so on…). The value

returned is a combination of the

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 68 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

pointer and keyboard modifier states

listed in Appendix A.

• vData4: The number of the mouse

button which has been clicked. Note

that the values produced by the

different mouse button combinations

are hardware dependent.

Event mask UIMS.EM.CLICK

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

An indication of the time at which the event

occurred is given by a value returned in the

vTimeStamp parameter.

4.3.7 UIMS.MSG.CLOSE

A Close message is generated when the user closes a window.

Value 11

Message-

specific

parameters

None

Event mask UIMS.EM.CLOSE

Comments

This message asks the application to close

the specified window – this can be done by

calling the Destroy subroutine or, if

preferred, by using UnMap to make the

window invisible.

A Close message may be followed by

additional messages.

Note that when the user closes the

application's Root window, an Exit message

is generated instead of a Close message.

4.3.8 UIMS.MSG.CREATE

A Create message is generated when an App window is created.

Value 97

Message-

specific

parameters

None

Event mask None

Comments

Create messages are normally disabled but

can be enabled by using the

SetSecondaryEventMask subroutine.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 69 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Create messages are not generated when

other types of contact are created.

4.3.9 UIMS.MSG.DBCLICK

A Double click message is generated when two Click events occur in the same contact,

with no intervening Motion events and within the multi-click period set for the GUI

platform.

Value 6

Message-

specific

parameters

• vData1: The horizontal coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The vertical coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

• vData3: This contains the states of

any mouse buttons which have not

changed, and the states of the

keyboard modifier keys (SHIFT,

CTRL, ALT, and so on…). The value

returned is a combination of the

pointer and keyboard modifier states

listed in Appendix A.

• vData4: The number of the mouse

button which has been clicked. Note

that the values produced by the

different mouse button combinations

are hardware dependent.

Event mask UIMS.EM.DBLCLICK

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

An indication of the time at which the event

occurred is given by a value returned in the

vTimeStamp parameter.

If the second click occurs after the multi-

click period has expired, separate Click or

Press and Release messages will be

generated.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 70 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Enabling Double-click messages also

enables Click messages.

4.3.10 UIMS.MSG.DESTROY

A Destroy message is generated when an App window is destroyed.

Value 98

Message-

specific

parameters

None

Event mask None

Comments

Destroy messages are normally disabled,

but can be enabled by using the

SetSecondaryEventMask subroutine.

Destroy messages are not generated when

other types of contact are destroyed.

4.3.11 UIMS.MSG.DRAG

There are two types of Drag message:

• A drag-start message is generated when a primary button (button 1) Press even is

followed immediately by a Motion event in the same contact.

• A drag-end message occurs when a Motion event with the drag and button 1

modifiers set is followed by a button 1 release in the same contact.

Value 8

Message-

specific

parameters

• vData1: The horizontal coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The vertical coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

• vData3: This contains the states of

any mouse buttons which have not

changed, and the states of the

keyboard modifier keys (SHIFT,

CTRL, ALT, and so on…). The value

returned is a combination of the

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 71 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

pointer and keyboard modifier states

listed in Appendix A.

The presence of the UIK.P.DRAG

pointer modifier indicates a drag-

start message. If this modifier is not

present, the message results from

ending a drag operation.

• vData4: Always set to 1.

Event mask UIMS.EM.DRAG

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

An indication of the time at which the event

occurred is given by a value returned in the

vTimeStamp parameter.

A drag-start message is always be

preceded by a Press message in the same

contact.

Drag messages are generated for the

primary button (button 1) only. Drag

operations with

other buttons must be identified by means

of the Press, Release and Motion pointer

messages.

4.3.12 UIMS.MSG.ENTER

This message is generated when the input focus is passed to a contact. The event contact

is the contact that is receiving the focus.

Value 1

Message-

specific

parameters

None

Event mask UIMS.EM.ENTER

Comments
The vContact parameter returns the handle

of the contact which is receiving the focus.

4.3.13 UIMS.MSG.EXIT

An Exit message is generated when the user closes the application.

Value 16

Message-

specific

parameters

None

Event mask UIMS.EM.EXIT

Comments
This message asks the application to close

itself down. It should be used to initiate

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 72 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

housekeeping tasks such as saving un-

saved documents.

Note that this message will be generated if

UIMS runs out of resources. Under these

circumstances it may not be possible to

display any dialogs which request

confirmation from the user.

4.3.14 UIMS.MSG.HSCROLL

This message is generated when the user operates any of the controls on an App or Child

window's horizontal scroll bar.

Value 15

Message-

specific

parameters

• vData1: Not applicable.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The scroll bar operation. This

will be one of the following values:
o UIMS.SB.LEFT: The user

clicked the scroll-bar Left

arrow.

o UIMS.SB.RIGHT: The user

clicked the scroll-bar Right

arrow.

o UIMS.SB.PAGELEFT: The user

clicked the scroll-bar

thumbtrack to the left of the

thumb.

o UIMS.SB.PAGERIGHT: The

user clicked the scroll-bar

thumbtrack to the right of

the thumb.

o UIMS.SB.THUMB: The user

has stopped dragging the

thumb.

o UIMS.SB.THUMBTRACK: The

user is dragging the thumb.

• vData3: Not applicable.

• vData4: A value representing the

new thumb position.

Event mask UIMS.EM.HSCROLL

Comments

On some display platforms, thumb-track

scroll messages may not be generated.

This message is only generated when the

user operates a horizontal scroll bar which

forms part of an App or Child window.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 73 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Operating a horizontal ScrollBar contact

generates UIMS.MSG.SCROLL messages.

4.3.15 UIMS.MSG.IDLE

An Idle message is generated by UIMS when there are no events to report.

Value 19

Message-

specific

parameters

None

Event mask UIMS.EM.IDLE

Comments

Idle messages are initially sent to the

application context, with the result that the

vWindow and vContact parameters will be

NULL. The application's message loop

should be written to allow for this.

This message can only be enabled for the

AppContext object.

This message can be used by the

application to control the background

processing of lengthy tasks.

4.3.16 UIMS.MSG.KEYPRESS

This type of message is generated whenever the user presses a key on the keyboard.

Value 9

Message-

specific

parameters

• vData1: The keyboard modifier state

(SHIFT, CTRL and ALT key states).

• vData2: The virtual key code of the key

(see Appendix A).
• vData3, vData4: Unused (returned set

to zero).

Event mask UIMS.EM.KEYPRESS

Comments
The vContact parameter returns the handle of
the contact which had the input focus at the
time the key was pressed.

4.3.17 UIMS.MSG.KILL

A Kill message is generated when a contact ceases to exist.

Value 12

Message-

specific

parameters

None

Event mask UIMS.EM.KILL

Comments
An application can destroy a specified

contact by calling the Destroy subroutine.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 74 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note, however, that if the contact has any

children, these will also be destroyed.

4.3.18 UIMS.MSG.LBOX.DESELECT

A list-box deselect message is generated when a selected item in the list is deselected.

Value 26

Message-

specific

parameters

• vData2: The position of the

deselected item within the list box.

The list is numbered starting from

zero.

• vData1, vData3, vData4: Not

applicable.

Event mask UIMS.EM.LBOX.DESELECT

4.3.19 UIMS.MSG.LBOX.ESELECT

A list-box select message is generated when an item is selected from the list.

Value 25

Message-

specific

parameters

• vData2: The position of the

deselected item within the list box.

The list is numbered starting from

zero.

• vData1, vData3, vData4: Not

applicable.

Event mask UIMS.EM.LBOX.SELECT

4.3.20 UIMS.MSG.LEAVE

This type of message is generated when a contact loses the input focus. The event

contact is the contact that is losing the focus.

Value 2

Message-

specific

parameters

None

Event mask UIMS.EM.LEAVE

Comments
The vContact parameter returns the handle

of the contact which is losing the focus.

4.3.21 UIMS.MSG.MENUITEM

This type of message is generated when an item on a menu or menu bar is selected.

Value 21

Message-

specific

parameters

None

Event mask UIMS.EM.MENUITEM

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 75 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.3.22 UIMS.MSG.MOTION

This type of message is generated whenever the pointer is moved. The number of Motion

messages generated for a given amount of movement may vary, since this depends on

hardware interrupts. However, an application which has requested Motion messages is

guaranteed at least one Motion message whenever the pointer moves and comes to rest.

Value 7

Message-

specific

parameters

• vData1: The horizontal coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The vertical coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

• vData3: This contains the states of

any mouse buttons which have not

changed, and the states of the

keyboard modifier keys (SHIFT,

CTRL, ALT, and so on…). The value

returned is a combination of the

pointer and keyboard modifier states

listed in Appendix A.

• vData4: Always zero.

Event mask UIMS.EM.MOTION

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

An indication of the time at which the event

occurred is given by a value returned in the

vTimeStamp parameter.

If the pointer has been constrained with the

GrabPointer subroutine, Motion messages

are generated periodically, even if the

pointer does not move.

4.3.23 UIMS.MSG.MOVE

A Move message is generated when a contact is moved, either by the user, or by the

application.

Value 27

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 76 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Message-

specific

parameters

• vData1: The horizontal coordinate of

the contact's new position in

coordinate units.

• vData2: The vertical coordinate of

the contact's new position in

coordinate units.

• vData3: The overall width of the

contact in coordinate units.

• vData4: The overall height of the

contact in coordinate units.

Note

The values returned in vData1 and

vData3 are offset by 65536. To obtain

the true values, use the following

code:

vData1 = INT(vData1 / 65536)

vData3 = INT(vData3 / 65536)

Event mask UIMS.EM.MOVE

Comments

The values returned in vData1 and vData2

specify the position of the top left-hand

corner of the contact, relative to the top

left-hand corner of its parent's client area

(position 0,0). Note, however, that for

contacts that are children of the application

context, the position returned is relative to

the top, left-hand corner of the display

(position 0,0).

The values returned in vData1, vData2,

vData3 and vData4 will depend on the

coordinate mode (text or graphics)

currently selected for the application

context.

Note

Contacts that can be moved by the user can

be positioned to the nearest pixel,

whichever coordinate mode is selected. In

text mode, therefore, the values returned by

a UIMS.MSG.MOVE message are accurate

only to the nearest character position.

4.3.24 UIMS.MSG.NOTIFY

This type of message is generated when UIMS wishes to notify the application of an error. Notify
messages are used in asynchronous error mode to inform the application of errors which in
synchronous mode would be returned in the subroutines' vErr parameters.

Value 17

Message-

specific

parameters

• vData1: Not applicable

• vData2: The name of the subroutine

in which the error occurred.

• vData3: Not applicable.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 77 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• vData4: The error number.

Event mask UIMS.EM.NOTIFY

Comments

Notify messages are always sent directly to

the application, with the result that the

vContext, vWindow and vContact

parameters are returned set to NULL.

A textual description of the error can be

obtained by calling the GetErrorText

subroutine.

4.3.25 UIMS.MSG.PRESS

This type of message is generated when one of the buttons on the mouse is pressed.

Value 3

Message-

specific

parameters

• vData1: The horizontal coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The vertical coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

• vData3: This contains the states of

any mouse buttons which have not

changed, and the states of the

keyboard modifier keys (SHIFT,

CTRL, ALT, and so on…). The value

returned is a combination of the

pointer and keyboard modifier states

listed in Appendix A.

• vData4: The number of the mouse

button which has been pressed.

Note that the values produced by

the different mouse button

combinations are hardware

dependent.

Event mask UIMS.EM.PRESS

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

An indication of the time at which the event

occurred is given by a value returned in the

vTimeStamp parameter.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 78 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

It should not be assumed that a Press

message will be followed by a Release

message unless the pointer has been

constrained with the GrabPointer

subroutine. This is because the release

could occur in a different contact which

might consume the message (for example,

if a dialog box is popped up on a Press

event, the release might occur in the dialog

box). If the release occurs in another

application, the Release event will not be

reported.

4.3.26 UIMS.MSG.RELEASE

This type of message is generated when a mouse button is released.

Value 4

Message-

specific

parameters

• vData1: The horizontal coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

Note

The value returned in vData1 is offset

by 65536. To obtain the true value,

use the following code:

vData1 = INT(vData1 / 65536)

• vData2: The vertical coordinate of

the pointer location, relative to the

left-hand edge of the event

window's client area.

• vData3: This contains the states of

any mouse buttons which have not

changed, and the states of the

keyboard modifier keys (SHIFT,

CTRL, ALT, and so on…). The value

returned is a combination of the

pointer and keyboard modifier states

listed in Appendix A.

• vData4: The number of the mouse

button which has been pressed.

Note that the values produced by

the different mouse button

combinations are hardware

dependent.

Event mask UIMS.EM.RELEASE

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 79 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

An indication of the time at which the event

occurred is given by a value returned in the

vTimeStamp parameter.

It should not be assumed that a Press

message will be followed by a Release

message unless the pointer has been

constrained with the GrabPointer

subroutine. This is because the release

could occur in a different contact which

might consume the message (for example,

if a dialog box is popped up on a Press

event, the release might occur in the dialog

box). If the release occurs in another

application, the Release event will not be

reported.

4.3.27 UIMS.MSG.SCROLL

This type of message is generated when the user operates any of the controls on a

ScrollBar contact.

Value 22

Message-

specific

parameters

• vData1: Not applicable.

• vData2: The scroll bar operation.

This will be one of the following

values:

o UIMS.SB.LEFT: The user

clicked the scrollbar Left

arrow (horizontal scroll bar).

o UIMS.SB.UP: The user clicked

the scroll-bar Up arrow

(vertical scroll bar).

o UIMS.SB.RIGHT: The user

clicked the scrollbar Right

arrow (horizontal scroll bar).

o UIMS.SB.DOWN: The user

clicked the scrollbar Down

arrow (vertical scroll bar).

o UIMS.SB.PAGELEFT: The user

clicked the scrollbar

thumbtrack to the left of the

thumb (horizontal scroll bar).

o UIMS.SB.PAGEUP: The user

clicked the scrollbar

thumbtrack above the thumb

(vertical scroll bar).

o UIMS.SB.PAGERIGHT: The

user clicked the scrollbar

thumbtrack to the right of

the thumb (horizontal scroll

bar).

o UIMS.SB.PAGEDOWN: The

user clicked the scrollbar

thumbtrack below the thumb

(vertical scroll bar).

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 80 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.SB.THUMB: The user

has stopped dragging the

thumb.

o UIMS.SB.THUMBTRACK: The

user is dragging the thumb.

• vData3: Not applicable.

• vData4: A value representing the

new thumb position.

Event mask UIMS.EM.SCROLL

Comments

On some display platforms, thumb-track

scroll messages may not be generated.

This message is only generated when the

user operates a ScrollBar contact.

Operating a scroll bar which forms part of

an App or Child window generates

UIMS.MSG.HSCROLL or

UIMS.MSG.VSCROLL messages as

appropriate.

4.3.28 UIMS.MSG.SELECT

This type of message is generated when text or a graphic object is selected.

Value 23

Message-

specific

parameters

The message-specific parameters returned

in a Select message depend on the type of

contact in which the select operation

occurred. At present the only contacts that

can receive select messages are the

EditBox and TextEditor, and the only

data type that may be selected is text.

Note

The values returned in vData1 and

vData3 are offset by 65536. To obtain

the true values, use the following code:

vData1 = INT(vData1 / 65536)

vData3 = INT(vData3 / 65536)

• vData1: The number of the line

containing the start position.

• vData2: The character number of

the start position, within the line

specified in vData1. The first

character in the line is numbered

zero.

• vData3: The number of the line

containing the end position.

• vData4: The number of the

character following the end position,

within the line specified in vData3.

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 81 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The first line in a TextEditor is numbered

0. For an EditBox contact, vData1 and

vData3 are always zero.

Deselecting text generates a Select

message with all four data parameters set

to zero.

Event mask UIMS.EM.SELECT

4.3.29 UIMS.MSG.SIZE

A Size message is generated when a contact is changed in size, either by the user, or by

the application.

Value 13

Message-

specific

parameters

• vData1: The new width of the

contact's client area in coordinate

units. Note that the value returned

in vData1 is offset by 65536. To

obtain the true value, use the

following:

vData1 = INT(vData1 / 65536)

• vData2: The new height of the

contact's client area in coordinate

units.

• vData4: The state of the window.

This will be one of the following

values:

o UIMS.WS.MAX: The window

has been maximised.

o UIMS.WS.MIN: The window

has been minimised.

o UIMS.WS.NORMAL: The

window has been resized but

has not been maximised or

minimised.

Event mask UIMS.EM.SIZE

Comments

The values returned in vData1 and vData2

will depend on the coordinate mode (text or

graphics) currently selected for the

application context.

Note

Contacts that can be changed in size by

the user can be sized to the nearest

pixel, whichever coordinate mode is

selected. In text mode, therefore, the

values returned in vData1 and vData2

are accurate only to the nearest

character position.

4.3.30 UIMS.MSG.TIMER

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 82 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

A timer message is generated by UIMS when a timeout value specified by the application

has expired.

Value 18

Message-

specific

parameters

None

Event mask UIMS.EM.TIMER

Comments

The vContact parameter returns the handle

of the timer.

For a Timer message the vWindow

parameter will be NULL. The application's

message loop should be written to allow for

this.

4.3.31 UIMS.MSG.UPDATE

An Update message is generated when part or all a contact becomes exposed – this

usually occurs when the contact is made visible or when another contact is moved. The

exposed region of the contact is divided into non-overlapping rectangles and an Update

message is generated for each. Several Update messages may be generated as the result

of a single user action.

Value 10

Message-

specific

parameters

• vData1: The position of the left-

hand edge of the exposed region,

relative to the left-hand edge of the

contact's client area.

• vData2: The position of the top edge

of the exposed region, relative to

the top edge of the contact's client

area.

• vData3: The position of the right-

hand edge of the exposed region,

relative to the left-hand edge of the

contact's client area.

• vData4: The position of the bottom

edge of the exposed region, relative

to the top edge of the contact's

client area.

Note

The values returned in vData1

and vData3 are offset by 65536.

To obtain the true values, use

the following code:

vData1 = INT(vData1 / 65536)

vData3 = INT(vData3 / 65536)

Event mask UIMS.EM.UPDATE

Comments
The values returned in vData1, vData2,

vData3 and vData4 will depend on the

Section 4: Messages

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 83 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

coordinate mode (text or graphics)

currently selected for the application

context.

The application will normally only receive

Update messages for App and Child

windows. Update messages for other types

of contact are processed by the contact

concerned.

4.3.32 UIMS.MSG.VSCROLL

This type of message is generated when the user operates any of the controls on an App

or Child window's vertical scroll bar.

Value 14

Message-

specific

parameters

• vData1: Not applicable.

• vData2: The scroll bar operation.

This will be one of the following

values:

o UIMS.SB.UP: The user clicked

the scroll-bar Up arrow.

o UIMS.SB.DOWN: The user

clicked the scrollbar Down

arrow.

o UIMS.SB.PAGEUP: The user

clicked the scrollbar

thumbtrack above the

thumb.

o UIMS.SB.PAGEDOWN: The

user clicked the scrollbar

thumbtrack below the thumb.

o UIMS.SB.THUMB: The user

has stopped dragging the

thumb.

o UIMS.SB.THUMBTRACK: The

user is dragging the thumb.

• vData3: Not applicable.

• vData4: A value representing the

new thumb position.

Event mask UIMS.EM.VSCROLL

Comments

On some display platforms, thumb-track

scroll messages may not be generated.

This message is only generated when the

user operates a vertical scroll bar which

forms part of an App or Child window.

Operating a vertical ScrollBar contact

generates UIMS.MSG.SCROLL messages.

Section 5: NewView

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 84 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 5: NewView
This Section describes the UIMS NewView subsystem for enhancing existing applications.

5.1 Introduction

NewView allows existing character applications to be easily converted so that the user

can use a mouse in addition to the normal keyboard interface. There are two ways in

which this can be done:

• Certain types of contact can be made to generate text when clicked with the

mouse. This text is passed to application as if it had been typed at the keyboard.

For example, if to save a file, the user must type the character F and then press

RETURN, a button with the title 'Save' might be created and set up to generate F

followed by carriage return. The user could then click the button to save the file as

an alternative to using the keyboard.

• Areas of the screen can be designated as 'hot spots'. These also generate text

when clicked with the mouse.

For example, an application might display a menu consisting of three items, each

selected by typing a letter. With NewView, the screen area containing each menu

item could be set up as a hot-spot and made to generate the corresponding letter.

The user could then select an item from this menu by simply pointing to the item

required and clicking with the mouse.

The user can identify hot spots by the shape of the mouse pointer, when pointing

to a hot spot, it changes to a hand shape.

5.1.1 Assigning text strings

Text strings are assigned to contacts and hot spots by creating NewView groups. In the

case of hot spots, defining a group also sets the sizes and positions of the hot spots. A

hot spot group would normally be needed for each screen displayed by an application,

while a single contact group could be shared by several screens. Groups can be enabled

and disabled according to which screen is displayed.

The text strings assigned to the contacts in a group can be changed, if necessary, as

required by different application screens. Similarly, the titles of the contacts can be

changed at any time (by calling the appropriate UIMS subroutine).

5.1.2 The terminal window

While hot spots can be set up in the RealLink window, any NewView contacts are likely to

obscure the text displayed by the application. It is therefore recommended that an

application which uses NewView contacts should create its own application window and a

separate child window to act as the terminal window. If the child window is made smaller

than the application window, the unused parts of its client area can be used for buttons.

In addition, the AppWindow can be given application-specific menus.

5.1.3 Running NewView applications on normal terminals

A NewView application can be written so that the NewView features are only used when

running on RealLink. This means that only a single version of each application is needed

on the host.

Section 5: NewView

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 85 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

5.2 NewView groups

Only the following types of contact can be used in NewView groups:

• MenuItem

• TitledButton

The following types of contact can also be used in NewView applications, but cannot be

used in groups:

• AppWindow

• ChildWindow

• MenuBar

• Menu

• Text

• Line

• Rectangle

NewView contacts can be created within an application, or compiled on the PC from a

resource script (see Section 7) and loaded using the LoadAppRes subroutine. The use of

compiled resources will minimise changes to the application; alternatively, a separate

cataloged DATA/BASIC subroutine could be used to create the contacts.

RealLink uses graphics coordinate mode internally – NewView applications must therefore

be set into this mode (by calling the SetCoordMode subroutine and specifying

UIMS.COORD.GRAPHIC) before any UIMS resources are created. Note, however. that

the size and position of a hot spot is always specified in character positions.

5.2.1 Controlling the state of a group

The state of a NewView group can be controlled by two subroutines:

SetEnabledNVGroup and SetMappedNVGroup. These set all the contacts or hot spots

in the group to the same state.

When a group is created, its state is set to that of the first contact or hot spot in the

group. Note, however, that the states of the individual contacts are not changed. It is

therefore important to ensure that all contacts in a group are initially in the same enabled

and mapped state.

5.2.2 NewView subroutines

The following subroutines are available to create and control NewView groups:

Attributes Definition

CreateNVContactGroup Creates a NewView contact group.

CreateNVHotspotGroup
Creates a group of NewView hot spots within

the application's terminal emulation window.

ChangeNVContacts
Changes the response strings generated by

contacts in a NewView group.

ChangeNVButtonGroup

Changes the titles of the buttons in a NewView

button group and the response strings

generated by them. It can also be used to

control whether or not buttons in the group are

visible.

Section 5: NewView

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 86 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Attributes Definition

DestroyNVGroup

Destroys a NewView group created with

CreateNVContactGroup or

CreateNVHotspotGroup.

SetEnabledNVGroup Enables or disables a NewView group.

SetMappedNVGroup
Allows you to decide whether or not a NewView

group is displayed on the screen.

These subroutines are described in detail in Section 6.

5.3 Setting the terminal window

All output that is printed to the terminal by an application (using PRINT, CRT, and so

on…) is displayed in the terminal window. In addition, NewView hot spots are always

defined as areas within this window.

The terminal window is normally the RealLink window, but it can be changed, if required,

to an AppWindow or ChildWindow created by the application, by calling the subroutine

SetTeWindow. If a child window is used, it must have an AppWindow as its parent, but

it can be made smaller than the AppWindow, leaving room for other contacts.

Note

1. At present it is not possible to automatically change the size of a child when its parent is

changed. It is therefore recommended that if a child window is used as the terminal

window in this way, its parent AppWindow should not be sizable.

2. The application is responsible for returning the terminal window to the RealLink window

on exit. If this is not done, RealLink will be unable to continue, and an Unrecoverable

Application Error may occur.

5.3.1 Menus

An AppWindow created by the application, whether used as the terminal window or not,

can be given application-specific menus. These must be created in the same way as the

menus in the following a UIMS application:

• A MenuBar must be created and attached to the AppWindow.

• Menu contacts must be created and made children of the MenuBar.

• MenuItem contacts must be created and made children of the appropriate

menus. The items can be of two types:

o Application-specific menu items which form part of a NewView contact

group, and which return text strings to the application.

o RealLink print, edit and help menu items. The items listed in Table 5-1 are

available.

If a menu item is created with one of the identifiers listed in the table, it will

have the same function as the corresponding RealLink menu item. It can,

however, be attached to any menu, or to the menu bar, and it can be given

a different title if required.

Section 5: NewView

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 87 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table 5-1: NewView RealLink menu items

Menu Menu item Identifier/ Handle

File Print Selection ID.FILEPRINT

File Printer Setup ID.FILEPRINTERSETUP

File Print Window ID.FILEPRINTWINDOW

Edit Copy ID.EDITCOPY

Edit Paste ID.EDITPASTE

Edit Copy Window ID.EDITCOPYWINDOW

Help Index ID.HELPINDEX

Help Commands ID.HELPCOMMANDS

Help Keyboard ID.HELPKEYBOARD

Help Application ID.HELPAPP

These constants are defined in the item RFWDEFS in the file UIMS-TOOLS. This item

must be included at beginning of your application.

Note

If you use the Resource Compiler to create your menus, you will need to include these

definitions in your resource script. This can be done by coping RFWDEFS onto your PC

using one of the RealLink file transfer utilities (LanFTU or HOST-WS – see the RealLink

for Windows User Manual for details); you can then use a #include command to

incorporate the contents of the file. You must give the include file on your PC the

extension '.H'.

The menu bar, menus and menu items can be created by calling the appropriate UIMS

subroutines from within the application, or on the PC by compiling a resource script (see

Section 7).

5.3.2 System messages

If required, system messages that the host sends to line 25 of a normal terminal can be

redirected to a UIMS message box by calling the ReMapNVLine25 subroutine. This

should not be done, however, in applications which use line 25 for a continuous display of

status information.

5.4 Online help

If required you can create a Help file specific to your NewView application as described in

Section 8. This file can then be loaded using the SetNVHelp subroutine and displayed by

giving the user access to the ID.HELPAPP menu item.

5.5 A NewView application

The following details the steps that must be added to an application, so that it can use

NewView:

1. INCLUDE statements which specify the RealLink and UIMS constant definitions:

Section 5: NewView

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 88 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

INCLUDE RFWDEFS FROM UIMS-TOOLS

INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-TOOLS

The second and third of these are not required if only hot spots are being used.

2. A call to the InitialiseUims subroutine. This is not required if only hot spots are

being used.

Once this call has been made, the common variable UIMS.CAPABLE can be tested

to determine whether the application is running on RealLink or on a normal

terminal. The remaining steps must only be carried out if running on RealLink.

3. A call to the SignOn subroutine. This is not required if only hot spots are being

used.

4. A call to the SetEventMask subroutine, specifying UIMS.EM.NEWVIEW as the new

event mask.

5. A call to the SetCoordMode subroutine, specifying UIMS.COORD.GRAPHIC as

the coordinate mode.

6. Subroutine calls to create the UIMS resources (windows, buttons, menu items and

other contacts). To minimise changes to the application, these could be in a

separate cataloged subroutine, or loaded with LoadAppRes from a compiled

resource script on the PC.

7. If a window other than the RealLink window is to be used as the terminal

window, a call to SetTeWindow will be required.

8. If you have written a help file for your application and have created a menu item

ToC display it, you must call the SetNVHelp subroutine to load the help file.

9. Subroutine calls to create NewView contact and hot-spot groups.

10. Each time the application displays a different screen, the appropriate NewView

groups must be enabled and disabled by calls to SetMappedNVGroup and

SetEnabledNVGroup.

11. When the application terminates and if it is running on RealLink, the following

must be done:

a. Use DestroyNVGroup to destroy all NewView contact and hot-spot

groups.

b. If a window other than the RealLink window has been used as the

terminal window, call SetTeWindow to return the terminal window to

RealLink (see Section 6 for details). This must be done before signing off

from UIMS.

c. Call the SignOff subroutine to sign off from UIMS. This is not required if

the application has not signed on to UIMS.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 89 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 6: Subroutine reference
This chapter describes each of the UIMS DATA/BASIC subroutines in detail. They are

listed in alphabetical order, with related routines grouped together.

6.1 Introduction

Each UIMS and NewView subroutine must be called as an external cataloged DATA/BASIC

subroutine with the CALL command; for example:

CALL SetEnabled(CONTEXT, EDIT.PASTE, TRUE, ERR)

Because DATA/BASIC is case sensitive, the subroutine names must be typed exactly as

shown in the syntax descriptions. Using the wrong case for even one letter will result in a

fatal error at run time and entry to the DATA/BASIC debugger. Note that there will be no

visual indication of this unless either the RealLink window is visible, or you have set the

Terminal window to your own App or Child window; you can, however, return to the

RealLink window by pressing the Restore key (refer to the RealLink for Windows User

Manual for details).

6.1.1 Include items

The UIMS and NewView constants are defined in the file UIMS-TOOLS. There are four

items in this file which must be included at the beginning of your application. These are:

• UIMSDEFS: Defines constants and error messages.

• UIMSCOMMON: Declares COMMON variables.

These items will be required for most applications but can be omitted if the application

uses only NewView hot spots and the Execute, SystemCommand and SendKeys

subroutines.

• RFWDEFS: Defines constants and error messages for NewView applications, and

the Execute, SystemCommand and SendKeys subroutines. Only required if

these features are used in the application.

• RFWKEYS: Contains key definitions for the SendKeys subroutine. Only required if

SendKeys is used in the application.

• UIMS-DDE: Contains definitions for the Dynamic Data Exchange (DDE)

subroutines. Only required if DDE is used in the application.

6.1.2 Numeric parameters

All numeric parameters must be passed as integer values. If a value which includes a

decimal point is used, this will be converted to zero.

6.1.3 Returned values

In most cases, when a UIMS or NewView subroutine is called, a result is returned – a

completion code, for example, or the states of one or more attributes. Since DATA/BASIC

does not support user-defined functions, in all cases the programmer must supply one or

more variables in which to return these values. The parameters in which results are

returned are indicated in the subroutine descriptions by a lower case 'v' prefixing the

parameter name; for example, vDisplay.

6.1.4 Errors

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 90 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS can handle errors in two ways: synchronously or asynchronously. The SetSync

subroutine is used to select the required mode. The default is asynchronous.

6.1.4.1 Asynchronous error handling

In asynchronous mode, errors are handled as follows:

• Unless otherwise stated, subroutines which return only a completion status code

return immediately. The value returned in vErr is always zero (UIMS.SUCCESS).

• If a subroutine which creates an object is passed a non-zero identifier (Ident

parameter), the subroutine returns immediately; the handle returned will be set to

the value of the supplied identifier. If the identifier is zero, errors are handled

synchronously (see above).

• All other subroutines do not return until completion. Any value(s) returned should

be checked for validity.

In asynchronous mode, if an error occurs, a UIMS.MSG.NOTIFY message is generated

(see Section 4 for details). This should be processed by the application's message loop in

the same way as other types of message.

6.1.4.2 Synchronous error handling

In synchronous mode, errors are handled as follows:

• Subroutines which return a completion status code do not return until it is known

whether the call was successful. If an error has occurred, the error code is

returned in the vErr parameter.

• Subroutines which create objects do not return until the object has been created;

if an error occurs, a null handle is returned.

• All other subroutines do not return until completion. Any value(s) returned should

be checked for validity.

Note

Some subroutines always return errors synchronously. This is mentioned in the descriptions of
the subroutines concerned.

6.2 AddChild, AddChildren

These subroutines attach children to an object.

• AddChild adds a single child.

• AddChildren adds a number of children.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AddChild(Context, Object, Index,

Child, vErr)

CALL AddChildren(Context, Object,

Index, aChildren, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the object to

which you wish to add the children.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 91 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Index: The point in the list of

children at which the new child or

children are to be

• added. The list is numbered starting

from 0 and new entries are added

before the specified existing entry.

An index of -1 adds the new entry to

the end of the list.

• Child: The handle of the contact that

is to be made a child of the object.

• aChildren: A dynamic array

containing the handles of the

contacts that are to be made

children of the object.

• vErr: This is a variable that must be

supplied to return the completion

status of

• the subroutine. It will contain a

UIMS error code if an error has

occurred or will be zero for

successful completion.

Comments

When AddChild or AddChildren are

called, the objects added will be drawn

immediately, provided the objects

concerned are mappable and the parent is

currently displayed.

If only one child is being added to an

object, AddChild is faster than

AddChildren.

See also
GetChild, GetChildren, RemoveChild,

RemoveChildren, GetObjectParent

6.3 AddTimer

This subroutine creates a timer and sets it running.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AddTimer(Context, Interval,

vHandle)

Syntax

elements

• Context: The handle of the

application context.

• Interval: The time in milliseconds

between timer messages.

• vHandle: A variable in which to

return a handle to the newly created

timer.

Comments

Each time the timer expires a

UIMS.MSG.TIMER message is generated.

The timer created runs repeatedly until

removed with the RemoveTimer

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 92 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

subroutine. If a one-shot timer is required

it must be removed after the first timer

message.

See also RemoveTimer

6.4 AddHelp

This subroutine displays application help text.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AddHelp(Context, Section, vErr)

Syntax

elements

• Context: The handle of the

AppContext.

• Section: The help-id of the required

section of the help file. If this

parameter is 0, the index will be

displayed.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
SetHelpFile, GetHelpFile,

SetHelpIndex, GetHelpIndex

6.5 AppWinGetDisplay – AppWinGetVScroll

These subroutines return the different attributes of an AppWindow contact.

• AppWinGetDisplay returns the handle of the screen on which the App window is

being displayed.

• AppWinGetHScroll returns the handle of the App window's horizontal scrollbar, if

any.

• AppWinGetMenuBar returns the handle of an App window's MenuBar contact, if

any.

• AppWinGetStyle returns the style of the App window.

• AppWinGetVScroll returns the handle of the App window's vertical scrollbar, if any.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AppWinGetDisplay(Context,

AppWindow, vDisplay)

CALL AppWinGetHScroll(Context,

AppWindow, vHScrollBar)

CALL AppWinGetMenuBar(Context,

AppWindow, vMenuBar)

CALL AppWinGetStyle(Context,

AppWindow, vWinStyle)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 93 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL AppWinGetVScroll(Context,

AppWindow, vVScrollBar)

Syntax

elements

• Context: The handle of the

application context.

• AppWindow: The handle of the

AppWindow contact.

• vDisplay: A variable in which to

return the handle of the Display

object on which the window is being

shown.

• vHScrollBar: A variable in which to

return the handle of the window's

horizontal scrollbar. If zero is

returned, the window either does

not have a horizontal scrollbar or its

horizontal scrollbar is hidden.

See CreateAppWin for a more

detailed description of App window

scrollbars.

• vMenuBar: A variable in which to

return the handle of the window's

menu bar. If zero is returned, the

window does not have a menu bar.

• vWinStyle: A variable in which a

value representing the style of the

window will be returned. This value

will be a combination of one or more

of the following:

o UIMS.WIN.CLOSABLE: The

window can be closed by the

user.

o UIMS.WIN.DIALOG:

Permits movement from child

to child with the TAB and

SHIFT+TAB keys, as in a

dialog box.

o UIMS.WIN.HSCROLL: The

window has a horizontal

scrollbar.

o UIMS.WIN.ICONISABLE:

The window has a minimise

box.

o UIMS.WIN.MOVABLE: The

window can be moved by the

user.

o UIMS.WIN.SIZABLE: The

size of the window can be

changed by the user.

o UIMS.WIN.TEXT: The

window has a text canvas

attached.

o UIMS.WIN.VSCROLL: The

window has a vertical

scrollbar.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 94 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The BitTest subroutine can be used

to test the individual elements which

make up the returned value.

See CreateAppWin for a more

detailed description of these styles.

• vVScrollBar: A variable in which to

return the handle of the window's

vertical scrollbar. If zero is returned,

the window either does not have a

vertical scrollbar or its vertical

scrollbar is hidden.

See CreateAppWin for a more

detailed description of App window

scrollbars.

See also

AppWinSetMenuBar,

AppWinRemoveMenuBar,

AppWinSetStyle, AppWinSetTitle

6.6 AppWinMaximize, AppWinMinimize

These subroutines allow the programmer to maximise and minimise an AppWindow

contact.

• AppWinMaximize enlarges an App window to its maximum size, usually the size of

the display.

• AppWinMinimize reduces an App window to an icon.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AppWinMaximize(Context,

AppWindow, vErr)

CALL AppWinMinimize(Context,

AppWindow, vErr)

Syntax

elements

• Context: The handle of the

application context.

• AppWindow: The handle of the

AppWindow contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

An App window cannot be maximised

unless it has a border style of

UIMS.BORDER and a window style of

UIMS.SIZABLE.

An App window cannot be minimised unless

it has a border style of UIMS.BORDER and

a window style of UIMS.ICONISABLE.

See also AppWinSetSizing, AppWinRestore

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 95 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.7 AppWinRemoveMenuBar

This subroutine removes the MenuBar (if any) which is currently attached to an

AppWindow contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AppWinRemoveMenuBar(Context,

AppWindow, vErr)

Syntax

elements

• Context: The handle of the

application context.

• AppWindow: The handle of the

AppWindow contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
AppWinSetMenuBar,

AppWinGetMenuBar

6.8 AppWinRestore

This subroutine restores a maximised or minimised AppWindow contact to its previous

size.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AppWinRestore(Context,

AppWindow, vErr)

Syntax

elements

• Context: The handle of the

application context.

• AppWindow: The handle of the

AppWindow contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
AppWinRestore has no effect if the App

window is not maximised or minimised.

See also
AppWinMinimize, AppWinMaximize,

AppWinSetSizing

6.9 AppWinSetDefButton – AppWinSetTitle

These following subroutines change the different attributes of an AppWindow contact:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 96 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• AppWinSetDefButton sets which titled button within the window is the default.

• AppWinSetMenuBar attaches a menu bar to the App window.

• AppWinSetSizing sets whether the window is maximised, minimised or normal

size.

• AppWinSetStyle changes the style of the window.

• AppWinSetTitle changes the title which appears at the top of the window.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL AppWinSetDefButton(Context,

AppWindow, Button, vErr)

CALL AppWinSetMenuBar(Context,

AppWindow, MenuBar, vErr)

CALL AppWinSetSizing(Context,

AppWindow, Sizing, vErr)

CALL AppWinSetStyle(Context,

AppWindow, WinStyle, vErr)

CALL AppWinSetTitle(Context,

AppWindow, Title, vErr)

Syntax

elements

• Context: The handle of the

application context.

• AppWindow: The handle of the

AppWindow contact.

• Button: The handle of the

TitledButton contact that is to be

the default.

• MenuBar: The handle of the

MenuBar contact to be attached to

the window. The new menu bar will

replace that which is currently

attached (if any).

• Sizing: The required sizing state for

the window. This must be one of the

following values:

o UIMS.WS.MAX: Maximise

o UIMS.WS.MIN: Minimise

o UIMS.WS.NORMAL:

Normal/restored

• WinStyle: The style of the window.

This must be a combination of the

following values:

o UIMS.WIN.CLOSABLE: The

window can be closed by the

user.

o UIMS.WIN.DIALOG:

Permits movement from child

to child with the TAB and

SHIFT+TAB keys, as in a

dialog box.

o UIMS.WIN.HSCROLL: The

window has a horizontal

scrollbar.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 97 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.WIN.ICONISABLE:

The window has a minimise

box.

o UIMS.WIN.MOVABLE: The

window can be moved by the

user.

o UIMS.WIN.SIZABLE: The

size of the window can be

changed by the user.

o UIMS.WIN.VSCROLL: The

window has a vertical

scrollbar.

The following pre-defined

styles are also available:

o UIMS.WIN.ALL: The

combination of all the above.

o UIMS.NONE: None of the

above.

The BitTest subroutine can be used

to test the individual elements which

make up the returned value.

See CreateAppWin for a more

detailed description of these styles

and of App window scrollbars.

• Title: The title to be displayed at the

top of the window. Note that if the

window has no title bar, the title will

not be displayed.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

AppWinGetMenuBar,

AppWinRemoveMenuBar,

CreateMenuBar, AppWinMaximize,

AppWinMinimize, AppWinRestore,

AppWinGetStyle, CreateAppWin

6.10 BitTest

This subroutine returns the state of a specified element in a composite value.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL BitTest(Value, Bit, vState)

Syntax

elements

• Value: The value containing the

element you wish to test.

• Bit: The element you wish to test.

• vState: A variable in which to return

the state of the element. This will be

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 98 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1 if the element concerned is

selected or 0 if the element is not

selected.

Comments

BitTest allows the programmer to

determine the settings of individual

elements in the composite values returned

by certain UIMS subroutines.

Value will normally be a composite value

returned by a UIMS subroutine.

Bit will normally be a value defined in

UIMSDEFS.

Example

The following fragment of code determines

whether or not a dialog box can be moved:

* First fetch the style of the dialog

box

CALL DlgBoxGetStyle(DLGBOX, STYLE)

* Then pass the result to BitTest to

find out if it is movable

CALL BitTest(STYLE, UIMS.WIN.MOVABLE,

MOVABLE)

IF MOVABLE THEN PRINT "This dialog

box can be moved."

In this example:

• DLGBOX is a variable containing the

handle of the dialog box.

• UIMS.WIN.MOVABLE is a constant

defined in UIMSDEFS.

6.11 BrushGetColour

This subroutine returns the foreground colour of a Brush object.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL BrushGetColour(Context, Brush,

vColour, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Brush: The handle of the Brush

object.

• vColour: A variable in which a value

representing the colour of the brush

will be returned. This value will be a

UIMS logical colour or an RGB value

(see Appendix B).

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 99 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also BrushSetColour

6.12 BrushSetColour

This subroutine returns the colour of a Brush object.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL BrushSetColour(Context, Brush,

Colour, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Brush: The handle of the Brush

object.

• Colour: The colour of the brush. This

must be a UIMS logical colour or an

RGB value (see Appendix B). If zero

is specified a default of black will be

used.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also BrushGetColour

6.13 ChangeNVButtonGroup

This subroutine changes the titles of the buttons in a NewView button group and the

response strings generated by them. It can also be used to control whether or not

buttons in the group are visible.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL ChangeNVButtonGroup(Context,

Group, Control, aTitles, aResponses, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: The identifier of the required

contact group.

• Control: Whether or not the mapped

states of the buttons will be

changed. This must be one of the

following values:

o NV.CHANGE.MAP: Change

the mapped states of the

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 100 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

buttons, as specified in the

aTitles parameter.

o UIMS.NONE: Change only

the titles and responses.

• aTitles: A dynamic array, each

attribute of which must contain a

string to be displayed as the title of

one of the buttons in the group. If

any attribute contains a null string,

the title of the corresponding button

will remain unchanged.

If the Control parameter is set to

NV.CHANGE.MAP, buttons for

which there are attributes in this

array will be mapped (made visible)

and the remainder unmapped

(hidden).

• aResponses: A dynamic array, each

attribute of which must contain a

string that will be returned to the

application when a button in the

group is operated. If any attribute

contains a null string, the response

generated by the corresponding

button will remain unchanged.

Only the characters with the ASCII

values X'08' to X'0D', and X'20'

(space) to X'7E' (tilde) can be used

in a response string. If other

characters are required, they must

be specified as follows:

CHAR(11): 'XX'

where 'XX' is a hexadecimal value

made up of two ASCII characters in

the range '0' to '9' and 'A' to 'F'

(upper case only).

For example, the BEL character

(ASCII 7) is specified as follows:

CHAR(11):'07'

Note that if the VT character (X'0B')

is required, it must be specified as

CHAR(11):'0B'.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example
The NewView button group BGRP1 contains

five buttons, all of which are currently

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 101 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

displayed. Only three buttons are now

required, and the titles and responses of

these are to be changed.

EQUATE AM TO CHAR(254)

.

.

.

TITLES = "Main":...

AM:...

AM:"Back"

RESPONSES = "M":CHAR(13):...

AM:"K":CHAR(13):...

AM

CALL ChangeNVButtonGroup(CONTEXT, ...

BGRP1, ...

NV.CHANGE.MAP, ...

TITLES, ...

RESPONSES, ...

ERR)

When the above code has executed, the

following changes will have been made:

• Only the first three buttons in the

group will be displayed (the other

two will still exist but will be

hidden).

• The first button will have the title

"Main" and it will generate the

response string "M", followed by a

carriage return.

• The second button's title will be

unchanged, but it will now generate

the response string "K", followed by

a carriage return.

• The third button's response string

will be unchanged, but its title will

now be "Back".

See also

ChangeNVButtonGroup,

ChangeNVContacts,

CreateNVContactGroup,

DestroyNVGroup

6.14 ChangeNVContacts

This subroutine changes the response strings generated by contacts in a NewView

group.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL ChangeNVContacts(Context,

Group, FirstContact, Number, aResponses,

vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 102 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

application context.

• Group: The identifier of the required

contact group.

• FirstContact: The handle of the first

contact in the group to be changed.

• Number: The number of contacts to

be changed.

• aResponses: A dynamic array, each

attribute of which must contain a

string that will be returned to the

application when a contact in the

group is operated. The number of

attributes in the array must be the

same as the number parameter.

Only the characters with the ASCII

values X'08' to X'0D', and X'20'

(space) to X'7E' (tilde) can be used

in a response string. If other

characters are required, they must

be specified as follows:

CHAR(11): 'XX' where 'XX' is a

hexadecimal value made up of two

ASCII characters in the range '0' to

'9' and 'A' to 'F' (upper case only).

For example, the BEL character

(ASCII 7) is specified as follows:

CHAR(11):'07'

Note that if the VT character (X'0B')

is required, it must be specified as

CHAR(11):'0B'.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
CreateNVContactGroup,

DestroyNVGroup

6.15 CheckButtonDeselect

This subroutine deselects the specified CheckButton contact, clearing the 'X' (if any)

displayed in its check box.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CheckButtonDeselect(Context,

Button, vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 103 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

CheckButton contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

CheckButtonSelect,

CheckButtonSetSelected,

CheckButtonGetSelected

6.16 CheckButtonGetSelected

This subroutine returns the current state (selected or deselected) of a CheckButton

contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CheckButtonGetSelected(Context,

Button, vSelected, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

CheckButton contact.

• vSelected: A variable in which to

return the state (selected or

deselected) of the button. This will

be one of the following values:

o TRUE: The button is

selected.

o FALSE: The button is not

selected.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

CheckButtonSetSelected,

CheckButtonSetTitle,

CheckButtonSetToggle

6.17 CheckButtonSelect

This subroutine selects the specified CheckButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 104 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CheckButtonSelect(Context,

Button, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

CheckButton contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
When a check button is selected an 'X' is

displayed in its check box.

See also

CheckButtonDeselect,

CheckButtonSetSelected,

CheckButtonGetSelected

6.18 CheckButtonSetSelected – CheckButtonSetToggle

These subroutines change the attributes of a specified CheckButton contact.

• CheckButtonSetSelected sets the button to selected or deselected.

• CheckButtonSetTitle changes the title displayed beside the button.

• CheckButtonSetToggle changes the auto-toggle state of the button.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CheckButtonSetSelected(Context,

Button, Selected, vErr)

CALL CheckButtonSetTitle(Context,

Button, Title, vErr)

CALL CheckButtonSetToggle(Context,

Button, Toggle, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

CheckButton contact.

• Selected: The required button state.

This must be one of the following

values:

o TRUE: Select the button.

o FALSE: Deselect the button.

• Title: The new title for the button.

• Toggle: The required auto-toggle

state. This must be one of the

following values:

o TRUE: Enable auto-toggle.

o FALSE: Disable auto-toggle.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 105 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
When a check button is selected an 'X' is

displayed in its check box.

See also CheckButtonGetSelected

6.19 ChildWinGetHScroll – ChildWinGetVScroll

These subroutines return the different attributes of a ChildWindow contact.

• ChildWinGetHScroll returns the handle of the Child window's horizontal scrollbar, if

any.

• ChildWinGetStyle returns the style of the Child window.

• ChildWinGetVScroll returns the handle of the Child window's vertical scrollbar, if

any.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ChildWinGetHScroll(Context,

ChildWindow, vHScrollBar)

CALL ChildWinGetStyle(Context,

ChildWindow, vWinStyle)

CALL ChildWinGetVScroll(Context,

ChildWindow, vVScrollBar)

Syntax

elements

• Context: The handle of the

application context.

• ChildWindow: The handle of the

ChildWindow contact.

• vHScrollBar: A variable in which to

return the handle of the window's

horizontal scrollbar. If zero is

returned, the window either does

not have a horizontal scrollbar or its

horizontal scrollbar is hidden.

• See CreateChildWin for a more

detailed description of Child window

scrollbars.

• vWinStyle: A variable in which a

value representing the style of the

window will be returned. This value

will be a combination of one or more

of the following:

o UIMS.WIN.DIALOG: Permits

movement from child to child

with the TAB and SHIFT+TAB

keys, as in a dialog box.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 106 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.WIN.HSCROLL: The

window has a horizontal

scrollbar.

o UIMS.WIN.TEXT: The window

has a text canvas attached.

o UIMS.WIN.VSCROLL: The

window has a vertical scrollbar.

The BitTest subroutine can be

used to test the individual

elements which make up the

returned value.

See CreateChildWin for a more

detailed description of these

styles.

• vVScrollBar: A variable in which to

return the handle of the window's

vertical scrollbar. If zero is returned,

the window either does not have a

vertical scrollbar or its vertical

scrollbar is hidden. See

CreateChildWin for a more detailed

description of Child window

scrollbars.

See also ChildWinSetStyle

6.20 ChildWinSetDefButton, ChildWinSetStyle

These subroutines change the different attributes of an ChildWindow contact.

• ChildWinSetDefButton sets which titled button within the window is the default.

• ChildWinSetStyle changes the style of the Child window.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ChildWinSetDefButton(Context,

ChildWindow, Button, vErr)

CALL ChildWinSetStyle(Context,

ChildWindow, WinStyle, vErr)

Syntax

elements

• Context: The handle of the

application context.

• ChildWindow: The handle of the

ChildWindow contact.

• Button: The handle of the

TitledButton contact that is to be

the default.

• WinStyle: The style of the window.

This must be a combination of the

following values:

o UIMS.WIN.DIALOG:

Permits movement from child

to child with the TAB and

SHIFT+TAB keys, as in a

dialog box.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 107 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.WIN.HSCROLL: The

window has a horizontal

scrollbar.

o UIMS.WIN.VSCROLL: The

window has a vertical

scrollbar.

The following pre-defined

style is also available:

o UIMS.NONE: None of the

above.

See CreateChildWin for a more

detailed description of these styles

and of Child window scrollbars.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also ChildWinGetStyle

6.21 ClipboardGetContent, ClipboardGetSize

These subroutines provide access to the clipboard.

• ClipboardGetContent returns the contents of the clipboard.

• ClipboardGetSize returns the amount of data on the clipboard.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ClipboardGetContent(DataFormat,

vContent, vLength)

CALL ClipboardGetSize(Format, vSize)

Syntax

elements

• DataFormat: The format in which to

return the data from the clipboard.

This must be a string up to four

characters long. The following are

recognised formats:

o "TEXT": ASCII text.

o "PICT": Reserved for future

use.

Other, application defined, formats

can also be used.

• vContent: A variable in which to

return the data from the clipboard.

• vLength: A variable in which to

return the number of bytes of data

returned in vContent.

• Format: The format (see above) for

which the size of the data is

required.

• vSize: A variable in which to return

the length of the clipboard data. If

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 108 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

the data on the clipboard is not in

the requested format, zero is

returned.

Comments

An alternative method of retrieving the

clipboard contents is with the Paste

subroutine.

See also Copy, Cut, ClipboardSetContent, Paste

6.22 ClipboardSetContent

This subroutine places data on the clipboard.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ClipboardSetContent(Format,

Content, Length, vErr)

Syntax

elements

• Format: The format of the data to be

placed on the clipboard. The

following are recognised formats:

o "TEXT": ASCII text.

o "PICT": Reserved for future

use.

Other, application defined, formats

can also be used.

• Content: The data to place on the

clipboard.

• Length: The length of the data to be

placed on the clipboard.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Alternative methods of placing data on the

clipboard are the Copy and Cut

subroutines.

See also
Copy, Cut, Paste, ClipboardGetContent,

ClipboardGetSize

6.23 Copy

This subroutine is used to place on the clipboard, part or all the data from an EditBox or

TextEditor contact. The contents of the contact remain unchanged.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 109 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL Copy(Context, Contact, StartChar,

StartLine, EndChar, EndLine, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• StartChar: The character position of

the start of the copy. The position

must be specified as the number of

characters from the start of the line

specified in StartLine.

• StartLine: The number of the line

containing the position of the start

of the copy. If Contact is the handle

of an EditBox, this parameter will

be ignored.

• EndChar: The character position of

the end of the copy. The position

must be specified as the number of

characters from the start of the line

specified in EndLine.

• EndLine: The number of the line

containing the position of the end of

the copy. If Contact is the handle of

an EditBox, this parameter will be

ignored.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

If StartChar, StartLine, EndChar and

EndLine are all zero, all the data in the

contact will be copied to the clipboard.

If StartChar, StartLine, EndChar and

EndLine are all -1, the currently selected

data will be copied to the clipboard.

If Contact is handling of a contact other

than an EditBox or TextEditor, an error

will be returned.

See also

Cut, Paste, ClipboardSetContent,

ClipboardGetContent,

ClipboardGetState

6.24 CreateAppWin

This subroutine creates an AppWindow contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-

TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 110 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL CreateAppWin(Context, Ident, Title,

HPos, VPos, Width, Height, Style,

BorderStyle, Parent, vAppWindow)

Syntax

elements

• Context: The handle of the context

to which the App window will

belong.

• Indent: An integer value to use as

the handle for the AppWindow

contact. If this parameter is zero a

handle will be assigned by UIMS and

returned in the vAppWindow

parameter.

UIMS reserves handles 8000 to

9999 for its own use – these must

not be used by the application.

• Title: The title to be displayed at the

top of the window. Note that if the

window has no title bar, the title will

not be displayed.

• HPos: The horizontal position of the

window in coordinate units. This

specifies the position of the left-

hand edge of the window, relative to

the left-hand edge of the screen.

• VPos: The vertical position of the

window in coordinate units. This

specifies the position of the top edge

of the window, relative to the top

edge of the screen.

• Width: The overall width of the

window in coordinate units.

• Height: The overall height of the

window in coordinate units.

• Style: The style of the window. This

must be a combination of the

following values:

o UIMS.WIN.CLOSABLE: The

window can be closed by the

user.

o UIMS.WIN.DIALOG:

Permits movement from child

to child with the TAB and

SHIFT+TAB keys, as in a

dialog box.

o UIMS.WIN.HSCROLL: The

window has a horizontal

scrollbar.

o UIMS.WIN.ICONISABLE:

The window has a minimise

box.

o UIMS.WIN.MOVABLE: The

window can be moved by the

user.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 111 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.WIN.SIZABLE: The

size of the window can be

changed by the user.

o UIMS.WIN.TEXT: The

window has a text canvas

attached.

o UIMS.WIN.VSCROLL: The

window has a vertical

scrollbar.

The following pre-defined styles are

also available:

o UIMS.WIN.ALL: The

combination of all the above,

except UIMS.WIN.TEXT.

o UIMS.NONE: None of the

above.

• BorderStyle: The style of the

window's border. This must be one

of the following values:

o UIMS.BORDER: Give the

window a border.

o UIMS.NONE: No border.

• Parent: The handle of the parent of

the window, if required. The parent

must be the application context. If a

parent is specified, the window will

be drawn immediately.

If Parent is a null string, the window

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vAppWindow: A variable in which to

return the handle of the newly

created App window.

If it could not be created for any

reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle

has been supplied in the Ident

parameter, this handle will always

be returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

Comments

Window styles

The different window and border styles

have the following effects:

• UIMS.WIN.CLOSABLE: Generates

a single border (overriding the

border style), a title bar, and a

system menu with the Close and

Move commands enabled.

• UIMS.WIN.ICONISABLE:

Generates a single border

(overriding the border style), a title

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 112 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

bar, a minimise box, and a system

menu with the Move and Minimize

commands enabled.

• UIMS.WIN.MOVABLE: Generates a

single border (overriding the border

style), a title bar, and a system

menu with the Move command

enabled.

• UIMS.WIN.SIZABLE: Generates a

double border (overriding the border

style and any other

• window styles), a title bar, a

maximise box, and a system menu

with the Size, Maximize and Move

commands enabled.

• UIMS.WIN.HSCROLL and

UIMS.WIN.VSCROLL: Generate a

single border (overriding the border

style) and the appropriate scrollbar.

• UIMS.WIN.TEXT: This creates a

text canvas on which text strings

and their positions in the client area

are stored.

Note

1. A window with a system menu, title

bar and border can always be moved

by the user, whether or not style

UIMS.WIN.MOVABLE is selected.

2. If a window is to have no border, or a

border but no title bar, its style cannot

include style elements

UIMS.WIN.MOVABLE,

UIMS.WIN.CLOSABLE,

UIMS.WIN.ICONISABLE or

UIMS.WIN.SIZABLE.

3. If the window does not have a title

bar, the title of the window is not

displayed.

Window size

and position

HPos, VPos, Width and Height will be

interpreted according to the coordinate

mode (text or graphics) currently selected

for the application context.

The position of the window is specified in

screen-relative coordinates (position 0,0 is

the top left-hand corner of the screen).

See also

AppWinSetMenuBar, AppWinSetSizing,

AppWinSetStyle, AppWinSetTitle,

CreateChildWin

6.25 CreateCheckButton

This subroutine creates a CheckButton contact.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 113 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateCheckButton(Context, Ident,

Title, HPos, VPos, Width, Height, Parent,

vButton)

Syntax

elements

• Context: The handle of the context to

which the App window will belong.

• Indent: An integer value to use as

the handle for the CheckButton

contact. If this parameter is zero a

handle will be assigned by UIMS and

returned in the cButton parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title to be displayed next to

the check button.

• HPos: The horizontal position of the

window in coordinate units, relative

to the left-hand edge of its parent's

client area.

• VPos: The vertical position of the

window in coordinate units, relative

to the top edge of its parent's client

area.

• Width: The width of the button in

coordinate units. This specifies the

total width of the button graphics

and the title. If Width is specified as

zero, a button will be created just

wide enough to contain the graphic

and the title.

• Height: The height of the button in

coordinate units. If Height is

specified as zero, a button will be

created just tall enough to contain

the graphic or the title, whichever is

the taller.

• Parent: The handle of the parent of

the titled button, if required. This can

be any type of window. If the parent

is currently displayed the button will

be drawn immediately.

If Parent is a null string, the button is

created without a parent and can be

attached later using AddChild or

AddChildren.

• vButton: A variable in which to

return the handle of the newly

created button. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 114 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The Width and Height parameters will be

interpreted according to the coordinate mode

(text or graphics) currently selected for the

application context.

HPos and VPos specify the position of the top

left-hand corner of the button, relative to the

top left-hand corner of its parent's client area

(position 0,0).

See also

CheckButtonSetSelected,

CheckButtonSetTitle,

CheckButtonSetToggle,

CreateOptionButton, CreateTitledButton

6.26 CreateChildWin

This subroutine creates a ChildWindow contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateChildWin(Context, Ident,

Title, HPos, VPos, Width, Height, Style,

BorderStyle, Parent, vChildWindow)

Syntax

elements

• Context: The handle of the context to

which the Child window will belong.

• Ident: An integer value to use as the

handle for the ChildWindow contact.

If this parameter is zero, a handle

will be assigned by UIMS and

returned in the vChildWindow

parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• HPos: The horizontal position of the

window in coordinate units. This

specifies the position of the left-hand

edge of the window, relative to the

left-hand edge of its parent's client

area.

• VPos: The vertical position of the

window in coordinate units. This

specifies the position of the top edge

of the window, relative to the top

edge of its parent's client area.

• Width: The overall width of the

window in coordinate units.

• Height: The overall height of the

window in coordinate units.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 115 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Style: The style of the window. This

must be a combination of the

following values:

o UIMS.WIN.DIALOG: Permits

movement from child to child

with the TAB and SHIFT+TAB

keys, as in a dialog box.

o UIMS.WIN.HSCROLL: The

window has a horizontal

scrollbar.

o UIMS.WIN.TEXT: The

window has a text canvas

attached.

o UIMS.WIN.VSCROLL: The

window has a vertical

scrollbar.

The following pre-defined

style is also available:

o UIMS.NONE: None of the

above.

• BorderStyle: The style of the

window's border. This must be one of

the following values:

o UIMS.BORDER: Give the

window a border.

o UIMS.NONE: No border.

• Parent: The handle of the parent of

the window, if required. This must be

an AppWindow, a ChildWindow, a

DialogBox or an InclusiveGroup.

If the parent is currently displayed

the window will be drawn

immediately.

If Parent is a null string, the window

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vChildWindow: A variable in which to

return the handle of the newly

created Child window. If it could not

be created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

HPos, VPos, Width and Height will be

interpreted according to the coordinate mode

(text or graphics) currently selected for the

application context.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 116 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The position of the window is specified in

screen-relative coordinates (position 0,0 is the

top left-hand corner of the screen).

See also ChildWinSetStyle, CreateAppWin

6.27 CreateDlgBox

This subroutine creates a DialogBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateChildWin(Context, Ident,

Title, HPos, VPos, Width, Height, Style,

Parent, vDlgBox)

Syntax

elements

• Context: The handle of the context to

which the dialog box will belong.

• Ident: An integer value to use as the

handle for the DialogBox contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vDlgBox parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title to be displayed at the

top of the dialog box. Note that if the

dialog box has no title bar; the title

will not be displayed.

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the dialog box, relative to the

left-hand edge of its parent's client

area.

• VPos: The vertical position in

coordinate units of the top edge of

the dialog box, relative to the top

edge of its parent's client area.

• Width: The overall width of the dialog

box in coordinate units.

• Height: The overall height of the

dialog box in coordinate units.

• Style: The required style for the

dialog box. This must be a

combination of the following values:

o UIMS.WIN.CLOSABLE: The

dialog box can be closed by

the user.

o UIMS.WIN.MOVABLE: The

dialog box can be moved by

the user.

The following pre-defined

styles are also available:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 117 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.NONE: No system

menu or title bar; not

movable or closable.

o UIMS.DEFAULT: The default

setting (movable and

closable).

• Parent: The handle of the parent of

the dialog box, if required. This can

be the application context or an

AppWindow. If the parent is

currently displayed the dialog box

will be drawn immediately.

If Parent is a null string, the dialog

box is created without a parent and

can be attached later using

AddChild or AddChildren.

• vDlgBox: A variable in which to

return the handle of the newly

created dialog box. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

Size and

position

HPos, VPos, Width and Height will be

interpreted according to the coordinate mode

(text or graphics) currently selected for the

application context.

The position of the window is specified in

parent-relative coordinates (position 0,0 is the

top left-hand corner of the parent's client

area). Note, however, that if the parent of the

dialog box is the application context, the

position must be specified relative to the top

left-hand corner of the screen.

Mode

When first created, a dialog box is application

modal. This can be changed with

DlgBoxSetMode if required.

See also ChildWinSetStyle, CreateAppWin

6.28 CreateDrawBrush

This subroutine creates a Brush object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateDrawBrush(Context, Ident,

Colour, style, vBrush)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 118 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the context to

which the brush object will belong.

• Ident: An integer value to use as the

handle for the Brush object. If this

parameter is zero, a handle will be

assigned by UIMS and returned in

the vBrush parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Colour: The colour of the brush. This

must be a UIMS logical colour or an

RGB value (see Appendix B). If zero

is specified a default of black will be

used.

• Style: The style of the brush. This

must be one of the following values:

o UIMS.BRUSH.SOLID: Solid

colour.

o UIMS.BRUSH.HOLLOW:

Transparent.

• vBrush: A variable in which to return

the handle of the newly created

Brush object. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

See also BrushSetColour, CreateDrawPen

6.29 CreateDrawFont

This subroutine creates a Font object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateDrawFont(Context, Ident,

Style, TypeFace, PointSize, vFont)

Syntax

elements

• Context: The handle of the context to

which the font will belong.

• Ident: An integer value to use as the

handle for the Font object. If this

parameter is zero, a handle will be

assigned by UIMS and returned in

the vFont parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 119 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Style: The style of the font. This

must be a combination of the

following:

o UIMS.FONT.BOLD

o UIMS.FONT.ITALIC

o UIMS.FONT.OUTLINE

o UIMS.FONT.UNDERLINE

o UIMS.FONT.STRIKEOUT

If none of the above are required,

the style should be set to

UIMS.NONE.

In some typefaces not all the above

are available. If a style that is not

available is selected, UIMS will use

the nearest equivalent.

• TypeFace: The handle of a TypeFace

object. If this parameter is zero, the

default typeface is used.

• PointSize: The required point size for

the font.

• The point size should one of those

which is available for the selected

typeface - use

TypeFaceGetPointSizes to find out

which sizes are available. If the

requested size is not available, UIMS

will try to create it by scaling one of

the available sizes; if this cannot

easily be done, the nearest

equivalent will be selected. Note that

some typefaces can be scaled to any

size.

If this parameter is zero, the first

size in the typeface's list is used.

• vFont: A variable in which to return

the handle of the newly created Font

object. If it could not be created for

any reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

See also

FontSetPointSize,

TypeFaceGetPointSize,

TypeFaceGetPointSizes, FontSetStyle,

FontSetTypeFace, GetTypeFace,

GetTypeFaces

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 120 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.30 CreateDrawPen

This subroutine creates a Pen object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateDrawPen(Context, Ident,

Colour, Width, Style, vPen)

Syntax

elements

• Context: The handle of the context to

which the pen will belong.

• Ident: An integer value to use as the

handle for the Pen object. If this

parameter is zero, a handle will be

assigned by UIMS and returned in

the vPen parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Colour: The colour of the pen. This

must be a UIMS logical colour or an

RGB value (see Appendix B).

• Width: The width, in pixels, of lines

drawn by the pen.

If the width is set to zero, the pen

will draw the thinnest and/or most

efficient lines available on the display

platform.

• Style: The style of the pen. This must

be one of the following values:

o UIMS.PEN.SOLID: A

continuous line.

o UIMS.PEN.HOLLOW: An

invisible line.

If this parameter is zero, the style is

set to UIMS.PEN.SOLID.

• vPen: A variable in which to return

the handle of the newly created Pen

object. If it could not be created for

any reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

See also
PenSetColour, PenSetWidth,

CreateDrawBrush

6.31 CreateDrawrule

This subroutine creates a Drawrule object.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 121 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateDrawrule(Context, Ident,

Foreground, Background, DrawMode,

TextMode, vDrawrule)

Syntax

elements

• Context: The handle of the context to

which the drawrule will belong.

• Ident: An integer value to use as the

handle for the Drawrule object. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vDrawrule parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Foreground: The foreground colour

for text output. This must be a UIMS

logical colour or an RGB value (see

Appendix B).

If this parameter is set to

UIMS.DEFAULT, the foreground

colour is set to that of the default

Drawrule.

• Background: The background colour

for text and graphics output. This

must be a UIMS logical colour or an

RGB value (see Appendix B).

If this parameter is set to

UIMS.DEFAULT, the background

colour is set to that of the default

Drawrule.

• DrawMode: The drawing mode used

for graphics (pen and brush) output.

This must be one of the following

values:

o UIMS.DRAW.CLEAR

o UIMS.DRAW.COPY

o UIMS.DRAW.NOTCLEAR

o UIMS.DRAW.NOTCOPY

o UIMS.DRAW.NOTOR

o UIMS.DRAW.NOTXOR

o UIMS.DRAW.OR

o UIMS.DRAW.XOR

If this parameter is zero, the drawing

mode will be set to

UIMS.DRAW.COPY.

The effects of the different graphics

drawing modes are described in

Appendix B.

• TextMode: The drawing mode used

for text output. This must be one of

the following values:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 122 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.TEXT.OPAQUE: Fill the

text background with the

selected background colour.

o UIMS.TEXT.HOLLOW: Do

not fill the text background.

If this parameter is zero, text mode

will be set to UIMS.TEXT.OPAQUE.

• vDrawrule: A variable in which to

return the handle of the newly

created Drawrule object. If it could

not be created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The default Brush, Font and Pen objects

for the application context will be attached

to the newly created drawrule. These can be

changed with the appropriate subroutines.

See also
DrawruleSetBrush, DrawruleSetColour,

DrawruleSetFont, DrawruleSetPen

6.32 CreateEditBox

This subroutine creates an EditBox object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateEditBox(Context, Ident, HPos,

VPos, Width, Height, Style, Mask, Parent,

vEditBox)

Syntax

elements

• Context: The handle of the

application context to which the edit

box will belong.

• Ident: An integer value to use as the

handle for the EditBox contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vEditBox parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the edit box, relative to the

left-hand edge of its parent's client

area.

• VPos: The vertical position in

coordinate units of the top of the edit

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 123 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

box, relative to the top edge of its

parent's client area.

• Width: The width of the edit box in

coordinate units.

• Height: The height of the edit box in

coordinate units.

• Style: The required style for the edit

box. This must be one of the

following values:

o UIMS.EBOX.BORDER:

Enclose the edit field in a box.

o UIMS.NONE: Do not enclose

the edit field in a box.

• Mask: This parameter is for future

use. It must be set to a string when

calling CreateEditBox, but its value

will be ignored.

• Parent: The handle of the parent of

the edit box, if required. This can be

any type of window or an inclusive

group. If the parent is currently

displayed the edit box will be drawn

immediately.

If Parent is a null string, the edit box

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vEditBox: A variable in which to

return the handle of the newly

created edit box. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

The position of the edit box is specified in

parent-relative coordinates (position 0,0 is

the top left-hand corner of the parent's

client area).

The EditBox contact allows only a single

line of text to be edited. To edit text with

more than one line, use the TextEditor

contact.

See also
EditBoxSetContent, EditBoxSetSelected,

CreateTextEditor

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 124 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.33 CreateExGroup

This subroutine creates an ExclusiveGroup contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateExGroup(Context, Ident, Title,

HPos, VPos, Width, Height, Style, Parent,

vGroup)

Syntax

elements

• Context: The handle of the

application context to which the

exclusive group will belong.

• Ident: An integer value to use as the

handle for the ExclusiveGroup

contact. If this parameter is zero, a

handle will be assigned by UIMS and

returned in the vGroup parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title of the exclusive group.

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the group, relative to the

left-hand edge of its parent's client

area.

• VPos: The vertical position in

coordinate units of the top of the

group, relative to the top edge of its

parent's client area. Note that the

top of the group is aligned with the

top of the title text, not with the top

of the bounding box.

• Width: The width of the group in

coordinate units.

• Height: The height of the group in

coordinate units. Note that this value

must allow for the group title, which

extends above the bounding box.

• Style: The required style for the

group. This can be either of the

following values:

o UIMS.BORDER: Enclose the

group in a box.

o UIMS.NONE: Do not enclose

the group in a box.

• Parent: The handle of the parent of

the exclusive group, if required. This

can be any type of window. If the

parent is currently displayed the

group will be drawn immediately.

If Parent is a null string, the group is

created without a parent and can be

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 125 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

attached later using AddChild or

AddChildren.

• vGroup: A variable in which to return

the handle of the newly created

exclusive group. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

The position of the group is specified in

parent-relative coordinates (position 0,0 is

the top left-hand corner of the parent's

client area).

If the group has no bounding box, the title

will not be displayed.

The children of an exclusive group must be

OptionButton contacts. If any are not, the

contact will not be created and zero will be

returned.

See also CreateOptionButton, CreateIncGroup

6.34 CreateIncGroup

This subroutine creates an InclusiveGroup contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateIncGroup(Context, Ident,

Title, HPos, VPos, Width, Height, Style,

Parent, vGroup)

Syntax

elements

• Context: The handle of the

application context to which the

exclusive group will belong.

• Ident: An integer value to use as the

handle for the InclusiveGroup

contact. If this parameter is zero, a

handle will be assigned by UIMS and

returned in the vGroup parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title of the inclusive group.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 126 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the group, relative to the

left-hand edge of its parent's client

area.

• VPos: The vertical position in

coordinate units of the top of the

group, relative to the top edge of its

parent's client area. Note that the

top of the group is aligned with the

top of the title text, not with the top

of the bounding box.

• Width: The width of the group in

coordinate units.

• Height: The height of the group in

coordinate units. Note that this value

must allow for the group title, which

extends above the bounding box.

• Style: The required style for the

group. This can be either of the

following values:

o UIMS.BORDER: Enclose the

group in a box.

o UIMS.NONE: Do not enclose

the group in a box.

• Parent: The handle of the parent of

the exclusive group, if required. This

can be any type of window. If the

parent is currently displayed the

group will be drawn immediately.

If Parent is a null string, the group is

created without a parent and can be

attached later using AddChild or

AddChildren.

• vGroup: A variable in which to return

the handle of the newly created

exclusive group. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

The position of the group is specified in

parent-relative coordinates (position 0,0 is

the top left-hand corner of the parent's

client area).

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 127 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If the group has no bounding box, the title

will not be displayed.

Only the following types of contact can be

attached as children of an inclusive group:

• CheckButton

• ChildWindow

• EditBox

• ExclusiveGroup

• InclusiveGroup

• Line

• ListBox

• OptionButton

• Rectangle

• ScrollBar

• Text

• TextEditor

See also
CreateExGroup, IncGroupSetStyle,

IncGroupSetTitle

6.35 CreateLine

This subroutine creates a Line contact. The line is drawn between two specified points on

the client area of the parent window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateLine(Context, Ident, HStart,

VStart, HEnd, VEnd, EndStyles, Parent,

vLine)

Syntax

elements

• Context: The handle of the

application context to which the Line

contact will belong.

• Ident: An integer value to use as the

handle for the Line contact. If this

parameter is zero, a handle will be

assigned by UIMS and returned in

the vLine parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• HStart: The horizontal position in

coordinate units of the start of the

line.

• VStart: The vertical position in

coordinate units of the start of the

line.

• HEnd: The horizontal position in

coordinate units of the end of the

line, relative to the start of the line.

• VEnd: The vertical position in

coordinate units of the end of the

line, relative to the start of the line.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 128 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• EndStyles: This parameter is for

future use. It must be set to a

numeric value when calling

CreateLine, but its value will be

ignored.

• Parent: The handle of the parent of

the line contact, if required. This can

be any type of window. If the parent

is currently displayed the line will be

drawn immediately.

If Parent is a null string, the line is

created without a parent and can be

attached later using AddChild or

AddChildren.

• vLine: A variable in which to return

the handle of the newly created Line

contact.

If it could not be created for any

reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

Comments

The position of the start of the line is

specified in parent-relative coordinates

(position 0,0 is the top left-hand corner of

the parent's client area), using the

coordinate mode (text or graphics) currently

selected for the application context.

Other line attributes (width, colour, etc.) are

set by means of a Drawrule object

attached to the Line contact. Initially the

drawing rule is that attached to the parent

object, but this can be changed by calling

the SetDrawrule subroutine.

See also SetDrawrule, CreateRect, CreateText

6.36 CreateListBox

This subroutine creates a ListBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateListBox(Context, Ident, HPos,

VPos, Width, Height, Controls, Parent,

vListBox)

Syntax

elements

• Context: The handle of the

application context to which the list

box will belong.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 129 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Ident: An integer value to use as the

handle for the ListBox contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vListBox parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• HPos: The horizontal position of the

list box in coordinate units, relative

to the left-hand edge of its parent's

client area (position 0).

• VPos: The vertical position of the list

box in coordinate units, relative to

the top edge of its parent's client

area (position 0).

• Width: The width of the list box in

coordinate units.

• Height: The height of the list box in

coordinate units.

• Controls: The required control

settings for the list box. This can be

either of the following values:

o UIMS.LBOX.MULTISELECT:

Multiple selections allowed.

o UIMS.NONE: Allow only one

item to be selected at a time.

• Parent: The handle of the parent of

the list box, if required. This can be

any type of window. If the parent is

currently displayed the list box will

be drawn immediately.

• If Parent is a null string, the list box

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vListBox: A variable in which to

return the handle of the newly

created list box. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

See also
ListBoxAddContent,

ListBoxAddContents,

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 130 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

ListBoxAddSelection,

ListBoxAddSelections, ListBoxSetLink

6.37 CreateMenuBar

This subroutine creates a MenuBar contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateMenuBar(Context, Ident,

Parent, vMenubar)

Syntax

elements

• Context: The handle of the

application context to which the

menu bar will belong.

• Ident: An integer value to use as the

handle for the MenuBar contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vMenuBar parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Parent: The handle of the parent of

the MenuBar if required. If specified,

this must be an AppWindow. If the

parent is currently displayed the

menu bar will be drawn immediately.

If Parent is a null string, the contact

is created without a parent and can

be attached later using

AppWinSetMenuBar.

• vMenuBar: A variable in which to

return the handle of the newly

created MenuBar. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

See also

CreatePullDownMenu,

MakePullDownMenu, CreateMenuItem,

AppWinSetMenuBar

6.38 CreateMenuItem

This subroutine creates a MenuItem contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 131 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateMenuItem(Context, Ident,

Title, Parent, vMenuItem)

Syntax

elements

• Context: The handle of the

application context to which the

menu item will belong.

• Ident: An integer value to use as the

handle for the MenuItem contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vMenuItem parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title of the menu item. An

ampersand (&) preceding a character

in this string designates that

character as the selector key for the

menu item.

If a single hyphen is used as the title,

a separator item is created. This

appears as a continuous line across

the width of its parent menu. A

separator item cannot be selected by

the user and should be used to

visually group related menu items.

Note that a separator item cannot be

attached to a menu bar.

• Parent: The handle of the parent of

the menu item, if required. If

specified, this must be either a Menu

or a MenuBar. If the parent is

currently displayed the menu item

will be drawn immediately.

If Parent is a null string, the contact

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vMenuItem: A variable in which to

return the handle of the newly

created MenuItem. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

See also

CreateMenuBar, CreatePullDownMenu,

MakePullDownMenu, AddChild,

AddChildren

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 132 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.39 CreateMessageBox

This subroutine creates and displays a MessageBox.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateMessageBox(Context, Style,

Title, Message, aButtonTitles, vResponse,

vErr)

Syntax

elements

• Context: The handle of the

application context to which the

message box will belong.

• Style: The style of the message box;

that is, the number of buttons, the

type of icon and which button is to be

the default. This must be a

combination of values, formed by

adding together one from each of the

following groups:

Number of buttons

0 Use pre-defined style.

1 One button.

2 Two buttons.

3 Three buttons.

Icon

0 Use pre-defined styles.

16 Information icon.

32 Warning icon.

48 Alert icon.

64 Query icon.

Default button

0
The left-most button is

the default.

256
The second button is the

default.

512
The third button is the

default.

If the number of buttons is zero, the Icon

value selects a pre-defined style, as follows:

Icon value

16
Information icon and single

OK button.

32
Warning icon; OK and

Cancel buttons.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 133 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

48
Alert icon; Retry and

Cancel buttons.

64
Query icon; OK and

Cancel buttons.

If no icon is specified, a pre-defined style is

used. The following styles are available:

Pre-defined styles

UIMS.INF

O

Information icon and single

OK button.

UIMS.WAR

N2

Warning icon; OK and

Cancel buttons.

UIMS.WAR

N3

Warning icon; Yes, No

and Cancel buttons.

UIMS.ALE

RT2

Alert icon; Retry and

Cancel buttons.

UIMS.ALE

RT3

Alert icon; Abort, Retry

and Ignore buttons.

UIMS.QUE

RY2

Query icon; OK and

Cancel buttons.

UIMS.QUE

RY3

Query icon; Yes, No and

Cancel buttons.

Examples:

STYLE = 2 + 48

specifies two buttons and an Alert

Icon. The first button is the default.

STYLE = UIMS.WARN3 + 256

specifies a Warning icon, and Yes, No

and Cancel buttons. The No button is

the default.

• Message: The message to be

displayed. A newline character –

CHAR(10) – can be used to start new

a line where required.

• aButtonTitles: A dynamic array

containing a list of button names

(one in each attribute).

If any attribute is a null string, a

default button name will be used for

the corresponding button (see Style

parameter).

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 134 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

If you are using a pre-defined style,

this parameter should normally be a

null string.

• vResponse: A variable in which to

return a value representing the

button that has been operated.

The value will be one of the

following:

Return

value
Buttons

0 Leftmost button

1 Next button

2 Next button

-1 ESC key

• vErr: This is a variable that must

be supplied to return the

completion status of the

subroutine. It will contain a UIMS

error code if an error has

occurred or will be zero for

successful completion.

Comments

In addition to the message, the message

box will contain a graphic icon appropriate

to the type of message box specified.

A message box is always application modal.

See also CreateDlgBox

6.40 CreateNVContactGroup

This subroutine creates a NewView contact group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL CreateNVContactGroup (Context,

Group, FirstContact, Number, aResponses,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: A unique user-assigned

integer which will subsequently

be used to identify the contact

group.

• FirstContact: The handle of the

first contact in the group.

• Number: The number of contacts

in the group.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 135 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• aResponses: A dynamic array,

each attribute of which must

contain a string that will be

returned to the application when

a contact in the group is

operated. The number of

attributes in the array must be

the same as the Number

parameter.

Only the characters with the

ASCII values X'08' to X'0D', and

X'20' (space) to X'7E' (tilde) can

be used in a response string. If

other characters are required,

they must be specified as follows:

CHAR(11): 'XX'

where 'XX' is a hexadecimal value

made up of two ASCII characters

in the range '0' to '9' and 'A' to 'F'

(upper case only).

For example, the BEL character

(ASCII 7) is specified as follows:
CHAR(11):'07'

Note that if the VT character

(X'0B') is required, it must be

specified as

CHAR(11):'0B'.

• vErr: This is a variable that must

be supplied to return the

completion status of the

subroutine. It will contain a UIMS

error code if an error has

occurred or will be zero for

successful completion.

Comments

The contact making up the group must have

been previously created or loaded using

LoadAppRes.

The handles of the contacts in the group

must be consecutive.

Only the following types of contact can be

used in a NewView contact group:

• MenuItem

• TitledButton

• CheckButton

• OptionButton

Note that CheckButton and OptionButton

contacts must have auto-toggling enabled.

The required initial states of these types of

button should be set before using the group.

See also

ChangeNVButtonGroup,

ChangeNVContacts,

SetEnabledNVGroup,

SetMappedNVGroup, DestroyNVGroup,

CheckButtonSetToggle,

OptionButtonSetToggle,

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 136 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CheckButtonSetSelected,

OptionButtonSetSelected

6.41 CreateNVHotspotGroup

This subroutine creates a group of NewView hot spots within the application's terminal

emulation window.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL CreateNVHotspotGroup(Context,

Group, Number, aHPos, aVPos, aWidth,

aHeight, aResponses, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: A unique user-assigned

integer which will subsequently be

used to identify the hot-spot group.

• Number: The number of hot spots in

the group.

• aHPos: A dynamic array, each

attribute of which contains the

horizontal position in text coordinates

of one of the hot spots in the group.

Each position is relative to the left-

hand edge of the TE window's

terminal area.

• aVPos: A dynamic array, each

attribute of which contains the

vertical position in text coordinates of

one of the hot spots in the group.

Each position is relative to the top

edge of the TE window's terminal

area.

• aWidth: A dynamic array, each

attribute of which contains the width

in text coordinates of one of the hot

spots in the group.

• aHeight: A dynamic array, each

attribute of which contains the height

in text coordinates of one of the hot

spots in the group.

• aResponses: A dynamic array, each

attribute of which must contain a

string that will be returned to the

application when a hot spot in the

group is clicked with the mouse.

Only the characters with the ASCII

values X'08' to X'0D', and X'20'

(space) to X'7E' (tilde) can be used in

a response string. If other characters

are required, they must be specified

as follows:

CHAR(11): 'XX'

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 137 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

where 'XX' is a hexadecimal value

made up of two ASCII characters in

the range '0' to '9' and 'A' to 'F'

(upper case only).

For example, the BEL character

(ASCII 7) is specified as follows:
CHAR(11):'07'

Note that if the VT character (X'0B')

is required, it must be specified as

CHAR(11):'0B'.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The TE window's terminal area is the current

display page – that is, the area which

receives all terminal output generated by

the host. The size of the terminal area is

defined in the RealLink Terminal

Preferences and is unaffected by changes in

the size of the TE window. HPos and VPos

specify the positions of the top left-hand

corners of the hot-spots, relative to the top

left-hand corner (position 0,0) of this

terminal area.

The aHPos, aVPos, aWidth, aHeight and

aResponses arrays must contain the same

number of attributes as there are hot spots.

See also DestroyNVGroup, SetTeWindow

6.42 CreateOptionButton

This subroutine creates an OptionButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL CreateOptionButton(Context, Ident,

Title, HPos, VPos, Width, Height, Parent,

vButton)

Syntax

elements

• Context: This is the handle of the

context that the option button will

belong to.

• Ident: An integer value to use as the

handle for the OptionButton

contact. If this parameter is zero, a

handle will be assigned by UIMS and

returned in the vButton parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 138 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Title: The title to be displayed next to

the OptionButton graphics.

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the button, relative to the

left-hand edge of its parent's client

area (position 0).

• VPos: The vertical position in

coordinate units of the top edge of

the button, relative to the top edge

of its parent's client area (position

0).

• Width: The width of the button in

coordinate units. This specifies the

total width of the button graphics

and the title. If Width is specified as

zero, a button will be created just

wide enough to contain the graphic

and the title.

• Height: The height of the button in

coordinate units. If Height is

specified as zero, a button will be

created just tall enough to contain

the graphic or the title, whichever is

the taller.

• Parent: The handle of the parent of

the option button. This may be any

one of the window types. If the

parent is currently displayed the

button will be drawn immediately.

• vButton: A variable in which to

return the handle of the newly

created button. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context. The aHPos, aVPos, aWidth, aHeight

and aResponses arrays must contain the

same number of attributes as there are hot

spots.

See also

OptionButtonSetSelected,

OptionButtonSetTitle,

OptionButtonSetToggle,

CreateCheckButton, CreateTitledButton

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 139 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.43 CreatePointer

This subroutine creates a mouse Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreatePointer(Context, Ident, Type,

vPointer)

Syntax

elements

• Context: The handle of the context to

which the pointer will belong.

• Ident: An integer value to use as the

handle for the Pointer object. If this

• parameter is zero, a handle will be

assigned by UIMS and returned in

the vPointer parameter.

• UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Type: The shape of the pointer. This

must be one of the following values:

o UIMS.PTR.ARROW Standard

arrow pointer.

o UIMS.PTR.IBEAM Text I-beam

pointer.

o UIMS.PTR.CROSS Diagonal

crosshair pointer.

o UIMS.PTR.PLUS Horizontal

and vertical crosshair pointer.

o UIMS.PTR.WAIT Wait pointer -

normally an hourglass.

• vPointer: A variable in which to

return the handle of the newly

created Pointer object. If it could

not be created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

See also PointerSetType

6.44 CreatePullDownMenu

This subroutine creates a Menu contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreatePullDownMenu(Context,

Ident, Title, Parent, vMenu)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 140 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

application context to which the

menu will belong.

• Ident: An integer value to use as the

handle for the Menu contact. If this

parameter is zero, a handle will be

assigned by UIMS and returned in

the vMenu parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title of the menu. An

ampersand (&) preceding a character

in this string designates that

character as the selector key for the

menu.

• Parent: The handle of the parent of

the menu, if required. If specified,

this must be either a MenuBar or

another Menu. If the parent is

currently displayed the menu will be

drawn immediately.

• If Parent is a null string, the contact

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vMenu: A variable in which to return

the handle of the newly created

Menu. If it could not be created for

any reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

See also

MakePullDownMenu, CreateMenuBar,

CreateMenuItem, AddChild,

AddChildren

6.45 CreateRect

This subroutine creates a Rectangle contact. The rectangle is drawn at a specified

position on the client area of the parent window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateRect(Context, Ident, HPos,

VPos, Width, Height, Style, Parent, vRect)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 141 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

application context to which the

rectangle contact will belong.

• Ident: An integer value to use as the

handle for the Rectangle contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vRect parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• HPos: The position of the left-hand

edge of the rectangle in coordinate

units, relative to the left-hand edge

of its parent's client area (position

0).

• VPos: The position of the top edge of

the rectangle in coordinate units,

relative to the top edge of its

parent's client area. (position 0).

• Width: The width of the rectangle in

coordinate units.

• Height: The height of the rectangle in

coordinate units.

• Style: The required style for the

rectangle. This must be one of the

following values:

o UIMS.RECT.BORDER: Draw

a rectangle with square

corners.

o UIMS.NONE: No border.

• Parent: The handle of the parent of

the rectangle contact, if required.

This can be any type of window. If

the parent is currently displayed the

rectangle will be drawn immediately.

If Parent is a null string, the

rectangle is created without a parent

and can be attached later using

AddChild or AddChildren.

• vRect: A variable in which to return

the handle of the newly created

Rectangle contact. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 142 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

currently selected for the application

context.

Other attributes (line width, foreground and

background colours, and so on...) are set by

means of a Drawrule object attached to the

Rectangle contact. Initially the drawrule is

that attached to the parent object, but this

can be changed by calling the SetDrawrule

subroutine.

See also SetDrawrule, CreateLine, CreateText

6.46 CreateScrollbar

This subroutine creates a ScrollBar contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateScrollbar(Context, Ident,

Type, HPos, VPos, Width, Height, Parent,

vScrollBar)

Syntax

elements

• Context: The handle of the

application context to which the

scrollbar will belong.

• Ident: An integer value to use as the

handle for the ScrollBar contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vScrollBar parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Type: The orientation of the

scrollbar. This must be one of the

following values:

o UIMS.SCROLLBAR.VERT:

Vertical scroll-bar.

o UIMS.SCROLLBAR.HORZ:

Horizontal scroll-bar.

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the scrollbar, relative to the

left-hand edge of its parent's client

area (position 0).

• VPos: The vertical position in

coordinate units of the top of the

scrollbar, relative to the top edge of

its parent's client area (position 0).

• Width: The width of the scrollbar in

coordinate units.

• Height: The height of the scrollbar in

coordinate units.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 143 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Parent: The handle of the parent of

the scrollbar, if required. This can be

any type

• of window. If the parent is currently

displayed the scrollbar will be drawn

immediately.

If Parent is a null string, the scrollbar

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vScrollBar: A variable in which to

return the handle of the newly

created scrollbar. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

When the scrollbar is created its range,

thumb position, and line and page

increments will all be set to zero. Also,

tracking will be off. Each of these attributes

must be set by calling the appropriate

subroutine (see below).

See also

ScrollBarSetInc, ScrollBarSetRange,

ScrollBarSetThumb,

ScrollBarSetTracking

6.46 CreateText

This subroutine creates a Text contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateText(Context, Ident, String,

HPos, VPos, Width, Height, Parent, vText)

Syntax

elements

• Context: The handle of the

application context to which the Text

contact will belong.

• Ident: An integer value to use as the

handle for the Text contact. If this

parameter is zero, a handle will be

assigned by UIMS and returned in

the vText parameter.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 144 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• String: The text string to be

displayed.

• HPos: The horizontal position of the

text in coordinate units, relative to

the lefthand edge of its parent's

client area.

• VPos: The vertical position of the text

in coordinate units, relative to the

top edge of its parent's client area.

• Width: The width of the containing

window in coordinate units. If Width

is specified as zero, a window wide

enough to fit all the text onto a

single line will be created.

• Height: The height of the containing

window in coordinate units. If Height

is specified as zero, the text will be

divided into separate lines, each

Width or under in length, and the

Text contact will be made tall

enough to display all the text.

Parent The handle of the parent of

the text contact, if required. This can

be any type of window or an inclusive

group. If the parent is currently

displayed the text will be drawn

immediately. If Parent is a null

string, the text is created without a

parent and can be attached later

using AddChild or AddChildren.

• vText: A variable in which to return

the handle of the newly created Text

contact. If it could not be created for

any reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

HPos and VPos specify the position of the

top left-hand corner of the text, relative to

the top left-hand corner of its parent's client

area (position 0,0).

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 145 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The text is initially left aligned. This can be

changed with the TextSetJustification

subroutine.

The text style (font, and so on…) is specified

in the associated drawrule (initially that

attached to the parent window). This can be

changed by using SetDrawrule.

• Automatic sizing: If Width and/or

Height are specified as zero, the

metrics of the font must be known to

calculate the size of the contact. The

contact's size is therefore set when it

is attached to its parent. If its parent

does not have a drawrule, the size is

not set until its parent is itself given

a parent. Refer also to the

description of the Drawrule object in

Chapter 3.

If both Width and Height are specified

as zero, a window will be created

large enough to fit all the text onto a

single line.

The size of a Text contact can be

recalculated by making it an orphan,

setting its width and/or height to zero

and then reattaching it to its parent.

See also
DrawTextString, TextSetContent,

TextSetJustification, SetDrawrule

6.47 CreateTextEditor

This subroutine creates a TextEditor contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateTextEditor(Context, Ident,

HPos, VPos, Width, Height, Style, Parent,

vEditor)

Syntax

elements

• Context: The handle of the

application context to which the text

editor will belong.

• Ident: An integer value to use as the

handle for the TextEditor contact. If

this parameter is zero, a handle will

be assigned by UIMS and returned in

the vEditor parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• HPos: The horizontal position in

coordinate units of the left-hand

edge of the text editor, relative to

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 146 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

the left-hand edge of its parent's

client area.

• VPos: The vertical position in

coordinate units of the top of the text

editor, relative to the top edge of its

parent's client area.

• Width: The width of the text editor in

coordinate units.

• Height: The height of the text editor

in coordinate units.

• Style: The required style for the text

editor. This must be a combination of

the following values:

o UIMS.TXED.AUTOSCROLL:

Auto scroll when the mouse is

dragged outside the text

editor window.

o UIMS.TXED.BORDER:

Enclose the text editor in a

box.

o UIMS.TXED.HSCROLLBAR:

Provide a horizontal scroll-bar.

o UIMS.TXED.READONLY:

Display-only field; no editing

allowed.

o UIMS.TXED.VSCROLLBAR:

Provide a vertical scroll-bar.

The value representing the required

style is produced by adding the

appropriate values together.

The following pre-defined styles are

also available:

o UIMS.DEFAULT: The default

setting (all style components

disabled).

o UIMS.NONE: All style

components disabled.

• Parent: The handle of the parent of

the text editor, if required. This can

be any type of window. If the parent

is currently displayed the text editor

will be drawn immediately.

If Parent is a null string, the text

editor is created without a parent

and can be attached later using

AddChild or AddChildren.

• vEditor: A variable in which to return

the handle of the newly created text

editor. If it could not be created for

any reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 147 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

The top left-hand corner of the parent's

client area is position 0,0.

See also TextEditorSetContent, CreateEditBox

6.48 CreateTitledButton

This subroutine creates a TitledButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL CreateTitledButton(Context, Ident,

Title, HPos, VPos, Width, Height, Parent,

vButton)

Syntax

elements

• Context: The handle of the

application context to which the

button will belong.

• Ident: An integer value to use as the

handle for the TitledButton contact.

If this parameter is zero, a handle

will be assigned by UIMS and

returned in the vButton parameter.

UIMS reserves handles 8000 to 9999

for its own use – these must not be

used by the application.

• Title: The title to be displayed within

the button, or the name of a file

containing a bitmapped image.

• HPos: The horizontal position of the

button in coordinate units, relative to

the left-hand edge of its parent's

client area.

• VPos: The vertical position of the

button in coordinate units, relative to

the top edge of its parent's client

area.

• Width: The width of the button in

coordinate units. If Width is specified

as zero, a button will be created just

wide enough to contain the title or

image.

• Height: The height of the button in

coordinate units. If Height is

specified as zero, a button will be

created just tall enough to contain

the title or image.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 148 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Parent: The handle of the parent of

the titled button, if required. This can

be any type of window. If the parent

is currently displayed the button will

be drawn immediately.

If Parent is a null string, the button is

created without a parent and can be

attached later using AddChild or

AddChildren.

• vButton: A variable in which to

return the handle of the newly

created button. If it could not be

created for any reason, zero is

returned. Note, however, that if

asynchronous error handling is

selected and a handle has been

supplied in the Ident parameter, this

handle will always be returned, and

any error will be reported by means

of a UIMS.MSG.NOTIFY message.

See SetSync for more details.

Image files

Image files can be of the following types:

• Windows bitmaps (.BMP).

• Windows icon files (.ICO).

• Windows programs (.EXE).

• Windows dynamic link libraries

(.DLL).

When specifying an image file, the full

pathname should normally be given,

including the drive letter and file-type

extension. Note, however, that in the case

of bitmap and icon files, the path can be

omitted – the file will then be assumed to be

in the directory specified in the Bitmaps

entry in the [RealLink] section of the

RFW.INI file on the PC.

Where a program, DLL or icon file contains

more than one bitmap, the first will be

displayed.

Comments

The HPos, VPos, Width and Height

parameters will be interpreted according to

the coordinate mode (text or graphics)

currently selected for the application

context.

HPos and VPos specify the position of the

top left-hand corner of the button, relative

to the top left-hand corner of its parent's

client area (position 0,0).

The following limitations apply to

TitledButton contacts that contain images:

• TitledButton contacts containing

images can only be created with the

CreateTitledButton subroutine. It is

not possible to specify an image in a

resource script.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 149 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• The TitledButtonSetStyle and

TitledButtonSetTitle subroutines

cannot be used to change the

appearance of a titled button that

contains an image.

• TitledButtonSetTitle cannot be

used to substitute an image for the

title of an existing button.

See also

TitledButtonSetStyle,

TitledButtonSetTitle,

CreateCheckButton,

CreateOptionButton

6.49 Cut

This subroutine is used to cut and place on the clipboard, part or all the data from an

EditBox or TextEditor contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Cut(Context, Contact, StartChar,

StartLine, EndChar, EndLine, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• StartChar The character position of

the start of the cut. The position

must be specified as the number of

characters from the start of the line

specified in StartLine.

• StartLine: The number of the line

containing the position of the start of

the cut. If Contact is the handle of an

EditBox, this parameter will be

ignored.

• EndChar: The character position of

the end of the cut. The position must

be specified as the number of

characters from the start of the line

specified in EndLine.

• EndLine: The number of the line

containing the position of the end of

the cut. If Contact is the handle of an

EditBox, this parameter will be

ignored.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 150 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

If StartChar, StartLine, EndChar and

EndLine are all zero, all the data in the

contact will be cut to the clipboard.

If StartChar, StartLine, EndChar and

EndLine are all -1, the currently selected

data will be cut to the clipboard.

If Contact is the handle of a contact other

than an EditBox or TextEditor, an error

will be returned.

See also
Copy, ClipboardSetContent, Paste,

ClipboardGetContent, ClipboardGetState

6.50 DDE.ADVISE

Obtains data from an 'advise' dynamic-data exchange (DDE) link established with

DDE.OPENADVISE.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DDE.OPENADVISE(LinkIdent, vData,

vStatus)

Syntax

elements

• LinkIdent: A value, returned by the

DDE.OPENADVISE subroutine, that

identifies the required DDE

conversation.

• vData: A variable in which to return

the contents of the conversation

item.

• vStatus: This is a variable that must

be supplied to return the completion

status of the subroutine. The value

returned will be one of the following:

o ADV.NODATA: The

conversation item has not

changed since

o DDE.ADVISE: was last

called. The contents of vData

should be ignored.

o ADV.MOREDATA: The

conversation item has

changed more than once since

DDE.ADVISE was last called.

vData contains the result of

the first change. To obtain the

result of the next change,

DDE.ADVISE must be called

again.

o ADV.LASTDATA: The

conversation item has

changed once since

o DDE.ADVISE: was last

called. vData contains the

result of this change.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 151 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Any other value indicates an error.

Refer to Appendix D for a list of DDE

error codes.

Comments

An 'advise' DDE conversation maintains a

link to the application, topic and item

specified in the call to DDE.OPENADVISE.

Each time the item changes, the result is

returned to UIMS, which adds it to a first-in-

first-out buffer. DDE.ADVISE removes one

item from this buffer and returns it to the

calling application. The value returned in the

vStatus parameter indicates whether the

stack was empty, contained only a single

item, or contains more data.

See also
DDE.OPENADVISE, DDE.CLOSEADVISE,

DDE.PEEK

6.51 DDE.CLOSEADVISE

Obtains data from an 'advise' dynamic-data exchange (DDE) link established with

DDE.CLOSEADVISE.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DDE.CLOSEADVISE(LinkIdent, vErr)

Syntax

elements

• LinkIdent: A value, returned by the

DDE.OPENADVISE subroutine, that

identifies the required DDE

conversation.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion; if an error occurs, one of

the DDE error codes listed in

Appendix D is returned.

Note

DDE.CLOSEADVISE errors are always

returned synchronously.

UIMS.MSG.NOTIFY messages are not

generated.

Comments
The server application is not closed by

DDE.CLOSEADVISE.

See also DDE.OPENADVISE, DDE.ADVISE

6.52 DDE.EXECUTE

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows

application and then sends the specified command or commands to that application. The

application is started if it is not already running. On completion, the DDE conversation is

terminated.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 152 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DDE.EXECUTE(Application, Topic,

Command, vErr)

Syntax

elements

• Application: The name used to

specify a Windows application that

supports DDE as a DDE server. This

is usually the name of the

application's .EXE file without the

.EXE filename extension.

• Topic: The name of a topic

recognised by Application. An open

document is a typical topic (if Topic

is a document name, the document

must be open). If Application does

not recognise Topic, DDE.EXECUTE

returns an error code.

• Command: The command or

commands to be executed by the

server application.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion. If the DDE conversation

could not be initiated, one of the DDE

error codes listed in Appendix D is

returned.

Note

DDE.EXECUTE errors are always

returned synchronously.

UIMS.MSG.NOTIFY messages are not

generated.

Comments

Many applications that support DDE

recognise a topic named System, which is

always available and can be used to find out

which other topics are available. For more

information on the System topic, see

DDE.PEEK.

If a DDE.EXECUTE command string contains

an invalid command, an error will occur in

the server application (if the application is

minimised, its icon will flash). The

DDE.EXECUTE function will not return until

this error message has been acknowledged

by the user.

If Application is started by DDE.EXECUTE, it

continues running when the subroutine

returns.

See also DDE.POKE

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 153 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.53 DDE.OPENADVISE

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows

application and then sends the specified command or commands to that application. The

application is started if it is not already running. On completion, the DDE conversation is

terminated.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DDE.EXECUTE(Application, Topic,

Command, vErr)

Syntax

elements

• Application: The name used to

specify a Windows application that

supports DDE as a DDE server. This

is usually the name of the

application's .EXE file without the

.EXE filename extension.

• Topic: The name of a topic

recognised by Application. An open

document is a typical topic (if Topic

is a document name, the document

must be open). If Application does

not recognise Topic, DDE.EXECUTE

returns an error code.

• Command: The command or

commands to be executed by the

server application.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion. If the DDE conversation

could not be initiated, one of the DDE

error codes listed in Appendix D is

returned.

Note

DDE.EXECUTE errors are always

returned synchronously.

UIMS.MSG.NOTIFY messages are not

generated.

Comments

The result of any change to the conversation

item can be obtained by calling the

DDE.ADVISE subroutine.

See also DDE.CLOSEADVISE, DDE.ADVISE

6.54 DDE.PEEK

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows

application and then requests an item of information from that application. The

application is started if it is not already running. On completion, the DDE conversation is

terminated.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 154 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DDE.PEEK(Application, Topic, Item,

vData, vErr)

Syntax

elements

• Application: The name used to

specify a Windows application that

supports DDE as a DDE server. This

is usually the name of the

application's .EXE file without the

.EXE filename extension.

• Topic: The name of a topic

recognised by Application. An open

document is a typical topic. (If Topic

is a document name, the document

must be open.) If Application does

not recognise Topic, DDE.PEEK

returns an error code.

• Item: An item within a DDE topic

recognised by the server application.

DDE.PEEK returns the entire

contents of the specified item. If the

server application does not recognise

Item, an error code is returned.

• vData: A variable in which to return

the contents of the specified item.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion. If the DDE conversation

could not be initiated, one of the DDE

error codes listed in Appendix D is

returned.

Note

DDE.PEEK errors are always returned

synchronously. UIMS.MSG.NOTIFY

messages are not generated.

The system

topic

Microsoft Excel and other applications that

support DDE recognise a topic named

System.

The following lists three standard items in

the System topic.

• SysItems: Returns a list of all items

in the System topic.

• Topics: Returns a list of available

topics.

• Formats: Returns a list of all the

supported Clipboard formats.

Note that you can get a list of the other

items in the System topic by using the item

SysItems.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 155 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

If Application is started by DDE.PEEK, it

continues running when the subroutine

returns.

If the item is not recognised by the server,

no data is returned.

See also DDE.ADVISE

6.55 DDE.POKE

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows

application and then requests an item of information from that application. The

application is started if it is not already running. On completion, the DDE conversation is

terminated.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DDE.POKE(Application, Topic, Item,

Data, vErr)

Syntax

elements

• Application: The name used to

specify a Windows application that

supports DDE as a DDE server. This

is usually the name of the

application's .EXE file without the

.EXE filename extension.

• Topic: The name of a topic

recognised by Application. An open

document is a typical topic. (If Topic

is a document name, the document

must be open.) If Application does

not recognise Topic, DDE.PEEK

returns an error code.

• Item: An item within a DDE topic

recognised by the server application.

DDE.PEEK returns the entire

contents of the specified item. If the

server application does not recognise

Item, an error code is returned.

• Data: The data to send to the server

application.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion. If the DDE conversation

could not be initiated, one of the DDE

error codes listed in Appendix D is

returned.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 156 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

1. DDE.POKE errors are always

returned synchronously.

UIMS.MSG.NOTIFY messages

are not generated.

2. If you specify a non-existent

item in a call to DDE.POKE, no

error is returned.

Comments

If Application is started by DDE.POKE, it

continues running when the subroutine

returns.

See also DDE.EXECUTE

6.56 DESTROY

This subroutine destroys an object or contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Destroy(Context, Object, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the object or

contact you wish to destroy.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Any children attached to the object will also

be destroyed.

If you destroy an application's root window

this will have the effect of making the

application invisible.

6.57 DestroyNVGroup

This subroutine destroys a NewView group created with CreateNVContactGroup or

CreateNVHotspotGroup.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

INCLUDE UIMSDEFS FROM UIMS-TOOLS

;* Only required for contact groups.

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS;* Only required for contact groups.

CALL DestroyNVGroup(Context, Group,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: The identifier of the group to

be destroyed.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 157 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
CreateNVContactGroup,

CreateNVHotspotGroup

6.58 Disable

This subroutine disables a specified contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Disable(Context, Contact, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

you wish to disable.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A disabled contact remains displayed but

cannot be selected by the user. The disabled

state is indicated by a greying effect, the

exact form of which is platform dependent.

See also Destroy, Enable, SetEnabled, GetState

6.59 DisplayGetMetrics, DisplayGetPixelSize

These subroutines return the different attributes of a Display object.

• DisplayGetMetrics returns information about the size of various window elements

when shown on the specified display.

• DisplayGetPixelSize returns the size in pixels of the display image.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DisableGetMetrics(Context, Display,

vBdrWidth, vBdrHeight, vSizeBdrWidth,

vSizeBdrHeight, vTitleBarHeight,

vMenuBarHeight, vVScrollWidth,

vHScrollHeight, vErr)

CALL DisplayGetPixelSize(Context,

Display, vPWidth, vPHeight, vErr)

Syntax

elements

• Context: The handle of the

application context.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 158 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Display: The handle of the Display

object.

• vBdrWidth: A variable in which to

return the width in pixels of a non-

sizeable singlewidth) border.

• vBdrHeight: A variable in which to

return the height in pixels of a non-

sizeable (singlewidth) border.

• vSizeBdrWidth: A variable in which to

return the width in pixels of a

sizeable (doublewidth) border.

• vSizeBdrHeight: A variable in which

to return the height in pixels of a

sizeable (doublewidth) border.

• vTitleBarHeight: A variable in which

to return the height in pixels of a title

bar.

• vMenuBarHeight: A variable in which

to return the height in pixels of a

menu bar.

• vVScrollWidth: A variable in which to

return the width in pixels of a vertical

scrollbar.

• vHScrollHeight: A variable in which

to return the height in pixels of a

horizontal scrollbar.

• vPWidth: A variable in which to

return the width in pixels of the

display device.

• vPHeight: A variable in which to

return the height in pixels of the

display device.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

While all the attributes of a Display object

can be read with these subroutines,

different platforms may offer differing

capabilities. For those attributes that are not

supported on a particular display platform,

the subroutine concerned should return the

appropriate error code (see Appendix D).

Note, however, that this is not guaranteed,

and that the values returned may be invalid.

See also AppWinGetDisplay, GetDefaults

6.60 DisplayImage

This subroutine displays the contents of a specified image file in the RealLink window, or

in an App or Child window. The image can be in any one of the following formats:

• Windows bitmap (.BMP)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 159 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Windows Metafile (.WMF)

• Tagged Image File Format (.TIF)

• PC Paintbrush (.PCX)

• CompuServe GIF (.GIF)

• Truevision Targa (.TGA)

Syntax INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DisableImage(ImageMan, Left, Top,

Right, Bottom, ImageFile, ScaleFactor,

Window, Context, vImage)

Syntax

elements

• ImageMan: The handle of the image

manager, returned by the

StartImage subroutine.

• Left: The position of the left-hand

edge of the image, relative to the

left-hand edge of the containing

window's client area.

• Top: The position of the top edge of

the image, relative to the top edge of

the containing window's client area.

• Right: The position of the right-hand

edge of the image, relative to the

left-hand edge of the containing

window's client area.

• Bottom: The position of the bottom

edge of the image, relative to the top

edge of the containing window's

client area.

• ImageFile: A string containing the

path and name of the image file.

• ScaleFactor: This parameter is for

future use. A value must be supplied

but will be ignored.

• Window: The handle of the window in

which to display the image. If this

parameter is zero, the image is

displayed in the currently active

'terminal emulation' (TE) window.

• Context: The handle of the

application context. If the Window

parameter is zero, this must also be

set to zero.

• vImage: A variable in which to return

the handle of the displayed image. If,

for any reason, it could not be

created, zero is returned.

Comments

If Window is zero, the HPos, VPos, Width

and Height parameters must be specified in

text coordinates. Otherwise, they must be in

graphics coordinates.

The image is scaled to fit within the area

defined by the Left, Top, Right and Bottom

parameters. It is not possible to crop the

image.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 160 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If the image file cannot be found, a message

is displayed and vImage is returned set to 0.

If you do not wish the user to see this

message, you should use the

SystemCommand

subroutine to check that the image file

exists before calling DisplayImage.

Dynamic Imaging Libraries:

For each supported image format, the

RealLink directory contains a Dynamic

Imaging

Library (DIL) file. The names of the DIL files

are constructed as follows:

IMG format .DIL

where format is, in most cases, the same as

the file name extension of the image file to

be displayed – for example, the PCX DIL is

called IMGPCX.DIL. (At present, the only

exception to this rule is the TIFF DIL, where

the image file name extension is TIF, but

the format part of the DIL file name is TIFF.)

If, when you call DisplayImage the image

file name extension does not correspond to

any of the available DILs, a message is

displayed and the vImage parameter is

returned set to 0. If you do not wish the

user to see this message, you should use

the SystemCommand

subroutine to check that the appropriate DIL

exists before calling DisplayImage.

See also EraseImage, StartImage, StopImage

6.61 DlgBoxGetMode, DlgBoxGetStyle

These subroutines return the different attributes of a DialogBox contact.

• DlgBoxGetMode returns the mode of the dialog box.

• DlgBoxGetStyle returns the style of the dialog box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DlgBoxGetMode(Context, DlgBox,

vMode)

CALL DlgBoxGetStyle(Context, DlgBox,

vStyle)

Syntax

elements

• Context: The handle of the

application context.

• DlgBox: The handle of the

DialogBox contact.

• vMode: A variable in which to return

the mode of the dialog box. The

value returned will be one of the

following:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 161 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.MODE.ALLAPPS:

UIMS application modal.

o UIMS.MODE.APP:

Application modal.

o UIMS.MODE.LESS:

Modeless.

o UIMS.MODE.SYS: System

modal.

• vStyle: A variable in which the style

of the dialog box will be returned.

The value returned is a combination

of one or more of the following:

o UIMS.WIN.CLOSABLE: The

dialog box can be closed by

the user.

o UIMS.WIN.MOVABLE: The

dialog box can be moved by

the user.

The BitTest subroutine can be used

to test the individual elements which

make up the returned value.

See CreateDlgBox for a more detailed

description of these styles.

See also DlgBoxSetMode, DlgBoxSetStyle

6.62 DlgBoxSetDefButton – DlgBoxSetTitle

These subroutines change the different attributes of a DialogBox contact.

• DlgBoxSetDefButton sets which titled button within the dialog box is the

default.

• DlgBoxSetMode sets the mode of the dialog box.

• DlgBoxSetStyle changes the style of the dialog box.

• DlgBoxSetTitle changes the title which appears at the top of the dialog box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DlgBoxSetDefButton(Context,

DlgBox, Button, vErr)

CALL DlgBoxSetMode(Context, DlgBox,

Mode, vErr)

CALL DlgBoxSetStyle(Context, DlgBox,

Style, vErr)

CALL DlgBoxSetTitle(Context, DlgBox,

Title, vErr)

Syntax

elements

• Context: The handle of the

application context.

• DlgBox: The handle of the

DialogBox contact.

• Button: The handle of the

TitledButton contact that is to be

the default.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 162 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Mode: The required mode for the

dialog box. This must be one of the

following values:

o UIMS.MODE.ALLAPPS

:UIMS application modal –

applications launched from

the current instance of

RealLink cannot be used until

the dialog box is cleared.

o UIMS.MODE.APP:

Application modal – the

current UIMS application

cannot be used until the

dialog box is cleared.

o UIMS.MODE.LESS: Modeless

– does not prevent the use of

the current or any other

application.

o UIMS.MODE.SYS: System

modal – no application can be

used until the dialog box is

cleared. When first created, a

dialog box is application

modal.

• Style: The required style for the

dialog box. This must be a

combination of the following values:

o UIMS.WIN.CLOSABLE: The

dialog box can be closed by

the user.

o UIMS.WIN.MOVABLE: The

dialog box can be moved by

the user.

The following pre-defined

styles are also available:

o UIMS.NONE: No system

menu or title bar; not

movable or closable.

o UIMS.DEFAULT: The default

setting (movable and

closable).

See CreateDlgBox for a

more detailed description of

these styles.

• Title: The title to be displayed above

the dialog box. Note that if the style

of the dialog box is UIMS.NONE, the

title will not be displayed.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 163 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also
CreateDlgBox, DlgBoxGetMode,

DlgBoxGetStyle

6.63 Draw

This subroutine draws a contact on the display.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Draw(Context, Contact, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

you wish to draw.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Draw bypasses the current update mode

and immediately draws the contact.

The contact must be mappable and have a

mappable parent before it can be drawn. If

the contact is an orphan, or it or its parent

are unmappable, the draw operation will fail

and an error code will be returned.

See also Move, Destroy, Resize

6.64 DrawLine, DrawRect

These subroutines draw graphics elements on the client area of the specified window.

• DrawLine draws a line. If required, the line can have arrowheads at the ends.

• DrawRect draws a rectangle.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DrawLine(Context, Contact, HStart,

VStart, HEnd, VEnd, EndStyles, vErr)

CALL DrawRect(Context, Contact, Left,

Top, Right, Bottom, RectStyle, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the window

contact. This must be an App

window, a Child window, a dialog box

or an inclusive group.

• HStart: The horizontal position in

coordinate units of the start of the

line.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 164 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• VStart: The vertical position in

coordinate units of the start of the

line.

• HEnd: The horizontal position in

coordinate units of the end of the

line.

• VEnd: The vertical position in

coordinate units of the end of the

line.

• EndStyles: This parameter is for

future use. It must be set to a

numeric value when calling

DrawLine, but its value will be

ignored.

• Left: The position of the left-hand

edge of the rectangle in coordinate

units, relative to the left-hand edge

of its parent's client area.

• Top: The position of the top edge of

the rectangle in coordinate units,

relative to the top edge of its

parent's client area.

• Right: The position of the right-hand

edge of the rectangle in coordinate

units, relative to the left-hand edge

of its parent's client area.

• Bottom: The position of the bottom

edge of the rectangle in coordinate

units, relative to the top edge of its

parent's client area.

• RectStyle: The required style for the

rectangle. This must be one of the

following values:

o UIMS.RECT.BORDER: Draw

a rectangle with square

corners.

o UIMS.NONE: No border.

• Bottom: The position of the bottom

edge of the rectangle in coordinate

units, relative to the top edge of its

parent's client area.

• RectStyle: The required style for the

rectangle. This must be one of the

following values:

o UIMS.RECT.BORDER: Draw

a rectangle with square

corners.

o UIMS.NONE: No border.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 165 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

The positions of the start and end of the

line, and the edges of the rectangle are

specified in parent-relative coordinates

(position 0,0 is the top left-hand corner of

the parent's client area), using the

coordinate mode (text or graphics) currently

selected for the application context.

Other attributes (line width, colours, and so

on...) are determined by the Drawrule

object attached to the window contact (see

Section 3).

See also CreateLine, CreateRect, DrawTextString

6.65 DrawruleGetBrush – DrawruleGetPen

These subroutines return the different attributes of a Drawrule object.

• DrawruleGetBrush returns the handle of the Brush object that is attached to the

drawrule.

• DrawruleGetColour returns the foreground and background colours.

• DrawruleGetFont returns the handle of the Font object that is attached to the

drawrule.

• DrawruleGetPen returns the handle of the Pen object that is attached to the

drawrule.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DrawruleGetBrush(Context,

Drawrule, vBrush)

CALL DrawruleGetColour(Context,

Drawrule, vForeground, vBackground, vErr)

CALL DrawruleGetFont(Context,

Drawrule, vFont)

CALL DrawruleGetPen(Context, Drawrule,

vPen)

Syntax

elements

• Context: The handle of the

application context.

• Drawrule: The handle of the

Drawrule object.

• vBrush: A variable in which to return

the handle of the Brush object which

is attached to the drawrule.

• vForeground: A variable in which to

return the foreground colour.

• vBackground: A variable in which to

return the background colour.

• vFont: A variable in which to return

the handle of the Font object which is

attached to the drawrule.

• vPen: A variable in which to return

the handle of the Pen object which is

attached to the drawrule.

• vErr: This is a variable that must be

supplied to return the completion

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 166 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
DrawruleSetBrush, DrawruleSetColour,

DrawruleSetFont, DrawruleSetPen

6.66 DrawruleSetBrush – DrawruleSetPen

These subroutines change the attributes of a specified Drawrule object.

• DrawruleSetBrush changes the Brush object attached to the drawrule.

• DrawruleSetColour changes the foreground and background colours.

• DrawruleSetFont changes the Font object attached to the drawrule.

• DrawruleSetPen changes the Pen object attached to the drawrule.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DrawruleSetBrush(Context,

Drawrule, Brush, vErr)

CALL DrawruleSetColour(Context,

Drawrule, Foreground, Background, vErr)

CALL DrawruleSetFont(Context, Drawrule,

Font, vErr)

CALL DrawruleSetPen(Context, Drawrule,

Pen, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Drawrule: The handle of the

Drawrule object.

• Brush: The handle of the Brush

object to be attached to the

drawrule. If this parameter is zero,

the application context default brush

is attached. The new brush replaces

that previously attached.

• Foreground: The foreground colour

for text output. This must be a UIMS

logical colour or an RGB value (see

Appendix B).

• Background: The background colour

for text and graphics output. This

must be a UIMS logical colour or an

RGB value (see Appendix B).

If this parameter is zero, the

background colour will be set to

white.

• Font: The handle of the Font object

to be attached to the drawrule. If this

parameter is zero, the application

context default font is attached. The

new font replaces that previously

attached.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 167 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Pen: The handle of the Pen object to

be attached to the drawrule. If this

parameter is zero, the application

context default pen is attached. The

new pen replaces that previously

attached.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

CreateDrawrule, DrawruleGetBrush,

DrawruleGetColour, DrawruleGetFont,

DrawruleGetPen

6.67 DrawTextString

This subroutine draws text on the client area or text canvas of the specified window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL DrawTextString(Context, Contact,

Text, HPos, VPos, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the window

contact. This must be an App

window, a Child window, a dialog box

or an inclusive group.

• Text: The text string to be drawn.

• HPos: The horizontal position of the

text in coordinate units, relative to

the lefthand edge of its parent's

client area.

• VPos: The vertical position of the text

in coordinate units, relative to the

top edge of its parent's client area.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The HPos and VPos parameters will be

interpreted according to the coordinate

mode (text or graphics) currently selected

for the application context.

HPos and VPos specify the position of the

top left-hand corner of the text, relative to

the top left-hand corner of its parent's client

area (position 0,0).

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 168 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The text style (font, and so on...) is

determined by the Drawrule attached to

the window contact.

See also CreateText, DrawLine, DrawRect

6.68 EditBoxGetContent

This subroutine returns the text contents of an EditBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL EditBoxGetContent(Context,

EditBox, vText, vComplete, vErr)

Syntax

elements

• Context: The handle of the

application context.

• EditBox: The handle of the EditBox

contact.

• vText: A variable in which to return

the text currently contained in the

edit box.

• vComplete: This parameter is for

future use. A variable must be

supplied, but it will always be

returned set to zero.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also EditBoxSetContent

6.69 EditBoxSetContent, EditBoxSetSelected

These subroutines change the different attributes of an EditBox contact.

• EditBoxSetContent assigns a text string to the edit box for editing or display.

• EditBoxSetSelected selects all or part of the text in the edit box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL EditBoxSetContent(Context,

EditBox, Text, vErr)

CALL EditBoxSetSelected(Context,

EditBox, StartPos, EndPos, State, vErr)

Syntax

elements

• Context: The handle of the

application context.

• EditBox: The handle of the EditBox

contact

• Text: The text string to be displayed

for editing in the edit box window.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 169 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The characters are entered as if

typed at the keyboard.

• StartPos: The position of the first

selected character.

• EndPos: The position of the last

selected character.

• State: Whether the text between

StartPos and EndPos is to be selected

or deselected. This must be one of

the following values:

o TRUE: Select the text.

o FALSE: Deselect the text.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The first (left-most) character in the edit

box is at position 0.

When calling EditBoxSetSelected, if both

StartPos and EndPos are set to zero, the

entire contents of the edit box will be

selected.

See also CreateEditBox, EditBoxGetContent

6.70 Enable

This subroutine enables a previously disabled contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Enable(Context, Contact, vErr)

Syntax

elements

• Contex: The handle of the application

context.

• Contact: The handle of the contact to

be enabled.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A disabled contact is displayed on the screen

but cannot be selected by the user. The

disabled state is indicated a greying effect,

the exact form of which is platform

dependent. This subroutine removes the

greying effect and permits the user to select

the contact.

See also Destroy, Disable, SetEnabled, GetState

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 170 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.71 Erase

This subroutine erases a part of a contact's the client area, or the whole of the text

canvas (if any). The erased area is filled with the current background colour, as specified

by the Drawrule attached to the contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Erase(Context, Contact, Left, Top,

Right, Bottom, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• Left: The position of the left-hand

edge of the area to be erased.

• Top: The position of the top edge of

the area to be erased.

• Right: The position of the right-hand

edge of the area to be erased.

• Bottom: The position of the bottom

edge of the area to be erased.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Contact must be the handle of an

AppWindow, ChildWindow, DialogBox or

InclusiveGroup. If the handle of any other

type of contact is specified, an error is

returned.

If Contact specifies an App or Child window,

Erase will clear the client area of the

window.

If Left, Right, Top and Bottom are all zero,

the whole of the client area will be erased.

If Left, Right, Top and Bottom are all set to -

1, the text canvas (if any) and the whole of

the client area will be erased.

See also DrawLine, DrawRect, DrawTextString

6.72 EraseImage

This subroutine removes an image displayed in the current TE window, or in an App or

Child window.

Syntax INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL EraseImage(ImageMan, Image,

vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 171 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• ImageMan: The handle of the image

manager, returned by the

StartImage subroutine.

• Image: The handle of the displayed

image, returned by the

DisplayImage subroutine.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion. Otherwise, one of the

error codes listed in Appendix D is

returned.

Note

EraseImage errors are always

returned synchronously.

UIMS.MSG.NOTIFY messages are not

generated.

Comments

If the image was displayed in the current TE

window, this is redrawn. Otherwise, the

erased area is filled with the current

background colour, as specified by the

Drawrule attached to the window.

See also DisplayImage, StartImage, StopImage

6.73 Execute

This subroutine starts a Windows application on the PC.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL Execute(CommandLine,

WindowState, Control, vErr)

Syntax

elements

• CommandLine: A string containing

the name of the program, plus any

optional parameters and/or switches.

If the program name does not

contain a directory path, UIMS will

search the PC for the executable file

as follows:

1. The currently selected directory

on the PC.

2. The Windows program directory

(that containing WIN.COM).

3. The Windows system directory

(that containing KERNEL.COM).

4. The directories listed in the PATH

environment variable.

• WindowState: Specifies how the

window containing the program

should appear. This must be one of

the following values:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 172 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o EXECUTE.HIDE: Hides the

window and passes activation

to another window.

o EXECUTE.MAXIMIZE: The

same as

EXECUTE.SHOWMAXIMIZE

D.

o EXECUTE.MINIMIZE:

Minimises the specified

window and activates the top-

level window in the window

manager's list.

o EXECUTE.NORMAL: The

same as

EXECUTE.SHOWNORMAL.

o EXECUTE.RESTORE: The

same as

EXECUTE.SHOWNORMAL.

o EXECUTE.SHOW: Activates a

window and displays it in its

current size and position.

o EXECUTE.SHOWMAXIMIZE

D: Activates the window and

displays it as a maximised

window.

o EXECUTE.SHOWMINIMIZE

D: Activates the window and

displays it as an icon.

o EXECUTE.SHOWMINNOACT

IVE: Displays the window as

an icon. The window that is

currently active remains

active.

o EXECUTE.SHOWNA:

Displays the window in its

current state. The window

that is currently active

remains active.

o EXECUTE.SHOWNOACTIVA

TE: Displays a window in its

most recent size and position.

The window that is currently

active remains active.

o EXECUTE.SHOWNORMAL:

Activates and displays the

window. If the window is

minimised or maximised,

UIMS restores it to its original

size and position.

• Control: Specifies whether or not the

subroutine should complete before

returning to the calling application.

This value will be a combination of

one or more of the following:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 173 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o EXECUTE.SINGLE: Do not

start a second instance the

program if it is already

running.

o EXECUTE.REFOCUS: Return

the focus to the calling

application once the called

program is running.

o EXECUTE.WAIT: Do not

return until the called

application has been closed.

o RFW.NONE: Do not return to

the calling application.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will be set

to ERR.RFW.SUCCESS for

successful completion or will contain

one of the Execute error codes listed

in Appendix D.

Comments
Execute cannot be used to start non-

windows applications.

See also SystemCommand, SendKeys

6.74 ExGroupGetSel

This subroutine returns the handle of the currently selected option button within an

ExclusiveGroup contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ExGroupGetSel(Context, Group,

vSelection)

Syntax

elements

• Context: The handle of the

application context.

• Group: The handle of the

ExclusiveGroup contact.

• vSelection: A variable in which to

return the handle of the currently

selected option button.

See also OptionButtonGetSelected

6.75 ExGroupSetStyle, ExGroupSetTitle

These subroutines change the different attributes of an ExclusiveGroup contact.

• ExGroupSetStyle changes the style of the group.

• ExGroupSetTitle changes the title displayed above the group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 174 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL ExGroupSetStyle(Context, Group,

Style, vErr)

CALL ExGroupSetTitle(Context, Group,

Title, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: The handle of the

ExclusiveGroup contact.

• Style: The required style for the

group. This can be either of the

following values:

o UIMS.BORDER: Enclose the

group in a box.

o UIMS.NONE: Do not enclose

the group in a box.

• Title: The new group title.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
If the group has no bounding box, the title

will not be displayed.

6.76 FontGetMetrics – FontGetTypeFace

These subroutines return the different attributes of a Font object.

• FontGetMetrics returns the metrics (dimensions) of the font.

• FontGetPointSize returns the font's point size.

• FontGetStyle returns the style of the font.

• FontGetTextLen returns the length of a string as it appears on the screen.

• FontGetTypeFace returns the typeface being used.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL FontGetMetrics(Context, Font,

vHeight, vAscent, vDescent, vLeading,

vLcWidth, vUcWidth, vMaxWidth, vErr)

CALL FontGetPointSize(Context, Font,

vPointSize)

CALL FontGetStyle(Context, Font, vStyle)

CALL FontGetTextLen(Context, Font,

String, vLength)

CALL FontGetTypeFace(Context, Font,

vTypeFace)

Syntax

elements

• Context: The handle of the

application context.

• Font: The handle of the Font object.

• vHeight: A variable in which to return

the font height. The returned value is

the sum of the ascent and the

descent.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 175 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• vAscent: A variable in which to

return the height of the tallest

character above the baseline.

• vDescent: A variable in which to

return the height of the longest

descender below the baseline.

• vLeading: A variable in which to

return the distance between adjacent

lines of type; that is, the distance

between the bottom of the longest

descender and the top of the tallest

character when printed on adjacent

lines.

• vLcWidth: A variable in which to

return the average width of a lower-

case character.

• vUcWidth: A variable in which to

return the average width of an

upper-case character.

• vMaxWidth: A variable in which to

return the width of the widest

character.

• vPointSize: A variable in which to

return the selected point size.

• vStyle: A variable in which a value

representing the selected font style

will be returned. This value will be a

combination of one or more of the

following:

o UIMS.FONT.BOLD

o UIMS.FONT.ITALIC

o UIMS.FONT.OUTLINE

o UIMS.FONT.UNDERLINE

o UIMS.FONT.STRIKEOUT

The BitTest subroutine can be used

to test the individual elements which

make up the returned value.

• String: A text string.

• vLength: A variable in which to

return the length of String. The value

returned is the length in pixels when

String printed in the specified font.

• vTypeFace: A variable in which to

return the handle of the selected

TypeFace object.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The values returned in vHeight, vAscent,

vDescent, vLeading, vLcWidth, vUcWidth

and vMaxWidth are all in pixels.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 176 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Refer to Section 3 for more details of font

metrics.

See also
FontSetPointSize, FontSetStyle,

FontSetTypeFace

6.77 FontSetPointSize – FontSetTypeFace

These subroutines change the attributes of a specified Font object.

• FontSetPointSize sets the point size of the font.

• FontSetStyle changes the font style.

• FontSetTypeFace changes the typeface.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL FontSetPointSize(Context, Font,

PointSize, vErr)

CALL FontSetStyle(Context, Font, Style,

vErr)

CALL FontSetTypeFace(Context, Font,

TypeFace, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Font: The handle of the Font object.

• PointSize: The required point size for

the font. The point size should one of

those which is available for the

selected typeface - use

TypeFaceGetPointSizes to find out

which sizes are available. If a size

that is not available is requested, the

closest match will be selected.

If this parameter is zero, the first

size in the typeface's list is used.

• Style: The style of the font. This

must be a combination of the

following:

o UIMS.FONT.BOLD

o UIMS.FONT.ITALIC

o UIMS.FONT.OUTLINE

o UIMS.FONT.UNDERLINE

o UIMS.FONT.STRIKEOUT

If none of the above are required,

the style should be set to

UIMS.NONE. In some typefaces not

all the above are available. If a style

that is not available is selected, UIMS

will use the nearest equivalent.

• TypeFace: The handle of a TypeFace

object. If this parameter is zero, the

default typeface is used.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 177 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

FontGetPointSize,

TypeFaceGetPointSize,

TypeFaceGetPointSizes, FontGetStyle,

FontGetTypeFace, CreateDrawFont

6.78 GetAppName

This subroutine returns the name of the application – that is, the name passed to the

SignOn subroutine.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetAppName(Context, vAppName,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• vAppName: A variable in which to

return the name of the application.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also SignOn

6.79 GetBorderStyle

This subroutine returns the border style of an App or Child window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetBorderStyle(Context, Contact,

vStyle)

Syntax

elements

• Contex: The handle of the application

context.

• Contact: The handle of the window.

• vStyle: A variable in which to return

a value representing the border

style. This value will be one of the

following:

o UIMS.BORDER: The window

has a border.

o UIMS.NONE: The window

does not have a border.

See also SetBorderStyle

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 178 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.80 GetChild – GetChildFocus

These subroutines return information about the children of an object.

• GetChild returns the handle of the child at a specified position in the list.

• GetChildCount returns the number of children attached to an object.

• GetChildren returns the complete list of children.

• GetChildFocus identifies which child within a contact currently has the focus.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetChild(Context, Object, Index,

vChild)

CALL GetChildCount(Context, Object,

vCount)

CALL GetChildren(Context, Object,

vaChildren, vErr)

CALL GetChildFocus(Context, Contact,

vFocus)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the parent

object.

• Index: The position in the list of the

child whose handle you require. The

list is numbered starting from 0.

• vChild: A variable in which to return

the handle of the child.

• vCount: A variable in which to return

the number of children the object

has.

• vaChildren: A variable in which to

return the list of children. The list will

be returned as a dynamic array, with

one handle to each attribute.

• Contact: The handle of the parent

contact.

• vFocus: A variable in which to return

the handle of the child that currently

has focus. If zero is returned, none

of the specified contact's children has

the focus.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

GetChildFocus always returns the handle

of a child of the specified contact. If the

child has children of its own, the focus may

in fact lie with one of these latter children.

See also

AddChild, AddChildren, RemoveChild,

RemoveChildren, GetObjectParent,

GetFrontWindow, SetContactFocus

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 179 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.81 GetClip

This subroutine returns the boundary of a window's clipping region.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetClip(Context, Window, vTop,

vLeft, vBottom, vRight, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Window: The handle of the window.

• vTop: A variable in which to return

the position of the top edge of the

window's clipping region.

• vLeft: A variable in which to return

the position of the left-hand edge of

the window's clipping region.

• vBottom: A variable in which to

return the position of the bottom

edge of the window's clipping region.

• vRight: A variable in which to return

the position of the right-hand edge of

the window's clipping region.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The values returned in vTop, vLeft, vBottom

and vRight will depend on the coordinate

mode (text or graphics) currently selected

for the application context. In all cases the

values are relative to the top left-hand

corner of the client area (position 0,0).

If vTop, vLeft, vBottom and vRight are all

zero, no clipping region has been set.

See also SetClip

6.82 GetCoordMode

This subroutine returns the coordinate mode by which screen positions are referenced.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetCoordMode(Context,

vCoordMode)

Syntax

elements

• Context: The handle of the

AppContext object.

• vCoordMode: A variable in which to

return a value representing the

coordinate mode.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 180 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This value will be one of the

following:

o UIMS.COORD.TEXT: Screen

positions are referenced to

the nearest character

position, where the size of a

character is that of an upper-

case character in the default

system typeface.

o UIMS.COORD.GRAPHIC:

Screen positions are

referenced to the nearest

pixel.

Comments
When an application signs on to UIMS, text

mode is selected.

See also SetCoordMode

6.83 GetCursorPosition, GetCursorState

These subroutines return the different attributes of the cursor within an AppWindow or

ChildWindow contact.

• GetCursorPosition returns the position of the text cursor within the window.

• GetCursorState returns the type of text cursor that is currently selected and

whether or not the cursor is visible.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetCursorPosition(Context,

Window, vHPos, vVPos, vErr)

CALL GetCursorState(Context, Window,

vVisible, vCurType, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Window: The handle of the

AppWindow or ChildWindow

contact.

• vHPos: A variable in which to return

the horizontal position of the cursor,

relative to the left-hand edge of the

client area.

• vVPos: A variable in which to return

the vertical position of the cursor,

relative to the top edge of the client

area.

• vVisible: A variable in which to return

whether or not the cursor is visible.

This will be one of the following

values:

o TRUE: The cursor is visible.

o FALSE: The cursor is

invisible.

• vCurType: A variable in which to

return a value representing the type

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 181 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

of cursor being used in the window.

This value will be one of the

following:

o UIMS.BAR: Vertical bar.

o UIMS.BLOCK: Block cursor.

o UIMS.OUTLINE: Outline

cursor.

o UIMS.UNDERLINE:

Underline cursor.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The values returned in vHPos and vVPos will

depend on the coordinate mode (text or

graphics) currently selected for the

application context. In all cases the values

are relative to the top left-hand corner of

the client area (position 0,0).

See also SetCursorPosition, SetCursorState

6.84 GetDefaults

This subroutine returns the handles of the default Display, Printer and TypeFace

objects from the SystemDictionary.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetDefaults(vDisplay, vPrinter,

vTypeFace, vErr)

Syntax

elements

• vDisplay: A variable in which to

return the handle of the default

Display object.

• vPrinter: A variable in which to

return the handle of the default

Printer object.

Note

Printer display objects are not
supported on this version of UIMS.

This parameter is provided for use on

later releases.

• vTypeFace: A variable in which to

return the handle of the default

TypeFace object.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 182 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

has occurred or will be zero for

successful completion.

See also GetDrawrule

6.85 GetDrawrule

This subroutine returns the handle of the Drawrule object that is attached to an object

or contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetDrawRule(Context, Object,

vDrawrule)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of an object or

contact.

• vDrawrule: A variable in which to

return the handle of the Drawrule

object.

Comments

A drawrule can be attached to only the

following objects and contacts:

• AppWindow

• ChildWindow

• Line

• Rectangle

• Text

• AppContext

If an object or contact other than those

listed above is specified, vDrawrule will be

returned set to zero.

See also SetDrawrule

6.86 GetErrorText

This subroutine returns a textual description of a specified UIMS error.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetErrorText(Error, vText, vErr)

Syntax

elements

• Error: An error code returned by a

UIMS subroutine.

• vText: A variable in which to return

the textual description of the error.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 183 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

A drawrule can be attached to only the

following objects and contacts:

• AppWindow

• ChildWindow

• Line

• Rectangle

• Text

• AppContext

If an object or contact other than those

listed above is specified, vDrawrule will be

returned set to zero.

See also SetDrawrule

6.87 GetEventMask

This subroutine returns the event mask applied to a specified object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetEventMask(Context, Object,

vEventMask)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of an object.

• vEventMask: A variable in which to

return a value representing the event

mask setting for the specified object.

This value will be a combination of

the event mask constants listed in

Section 4. The BitTest subroutine

can be used to test the individual

elements which make up the

returned value.

See also SetEventMask, GetSecondaryEventMask

6.88 GetFrontWindow

This subroutine returns the handle of the top window of an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetFrontWindow(Context,

vTopWindow)

Syntax

elements

• Context: The handle of the

AppContext.

• vTopWindow: A variable in which to

return the handle of the top window

in the specified AppContext.

Comments

The top window is that AppWindow which

either currently has the focus or which

contains the contact which currently has the

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 184 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

focus. If some other application has the

focus, the top window is that which last had

the focus.

See also GetRootWindow, GetChildFocus

6.89 GetHelpFile – GetHelpKey

These subroutines return the settings of the application's AppHelp object.

• GetHelpFile returns the name of the application's help file.

• GetHelpIndex returns the help-id of the help file section that is associated with a

• specified contact.

• GetHelpKey returns the virtual code of the key currently assigned as the help

accelerator.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetHelpFile(Context, vFilename,

vErr)

CALL GetHelpIndex(Context, Contact,

vSection)

CALL GetHelpKey(Context, vKey)

Syntax

elements

• Context: The handle of the

AppContext.

• vFilename: A variable in which to

return the name of the help file.

• Contact: The handle of a contact.

• vSection: A variable in which to

return the help-id of the section of

the help file that is associated with

the specified contact.

• vKey: A variable in which to return

the virtual key code of the key that is

assigned as the help accelerator.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also SetHelpFile, SetHelpIndex, SetHelpKey

6.90 GetMsg

This subroutine retrieves the next available message from the message queue.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetMsg(TimeOut, vContext,

vWindow, vContact, vMsgType,

vTimeStamp, vData1, vData2, vData3,

vData4)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 185 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• TimeOut: The time, in tenths of a

second, that GetMsg will wait for a

message if the queue is empty. If

this parameter is zero, GetMsg will

not return until a message is

available.

• vContext: A variable in which to

return the handle of the application

context in which the event occurred.

• vWindow: A variable in which to

return the handle of the window in

which the event occurred.

• vContact: A variable in which to

return the handle of the contact in

which the event occurred.

• vMsgType: A variable in which to

return the type of message. This will

be one of the message types listed in

Section 4. If GetMsg has returned

because no message is available (see

TimeOut parameter above),

vMsgType will be zero.

• vTimeStamp: A variable in which to

return a value representing the time

that the event occurred. Note that

not all messages return a time-stamp

value (see Section 4 for details).

• vData1, vData2, vData3, vData4:

Variables in which to return

message-specific data.

Comments

For some types of message, vContext,

vWindow and/or vContact are returned set

to zero - refer to Section 4 for details.

See also SetEventMask, GetEventMask

6.91 GetObjectParent

This subroutine returns the handle of an object's parent.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetObjectParent(Context, Object,

vParent)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the object

whose parent you require.

• vParent: A variable in which to return

the handle of the parent. If the

object has no parent, zero will be

returned.

See also GetChild, GetChildren

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 186 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.92 GetPointer

This subroutine returns the handle of the Pointer object that is attached to an object or

contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetPointer(Context, Object,

vPointer)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of an object or

contact.

• vPointer: A variable in which to

return the handle of the Pointer

object.

Comments

A pointer can be attached to only the

following objects and contacts:

• AppWindow

• ChildWindow

• AppContext

If an object or contact other than those

listed above is specified, vPointer will be

returned set to zero.

See also SetPointer

6.92 GetPointerPos

This subroutine returns the position of the mouse pointer, relative to either the screen or

a specified contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetPointerPos(Context, Contact,

vHPos, vVPos, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of a contact. If

this parameter is zero the position is

returned relative to the screen.

• vHPos: A variable in which to return

the horizontal coordinate of the

pointer's position.

• vVPos: A variable in which to return

the vertical coordinate of the

pointer's position.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 187 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

has occurred or will be zero for

successful completion.

Comments

GetPointerPos returns the position of the

pointer's hot spot. If a contact is specified,

the values returned specify the position

relative to the top left-hand corner of the

contact's client area (position 0,0);

otherwise, the position is relative to the top

left-hand corner of the screen.

The values returned will depend on the

coordinate mode (text or graphics) currently

selected for the application context.

See also SetPointerPos.

6.93 GetPosition

This subroutine returns the position of a contact relative to its parent.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetPosition(Context, Contact,

vHPos, vVPos, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

whose position you require.

• vHPos: A variable in which to return

the horizontal coordinate of the

position.

• vVPos: A variable in which to return

the vertical coordinate of the

position.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The values returned specify the position of

the top left-hand corner of the contact,

relative to the top left-hand corner of its

parent's client area (position 0,0). Note,

however, that for ExclusiveGroup and

InclusiveGroup contacts, the vertical

position returned is that of the top of the

title text (even if none is displayed), rather

than the top of the enclosing box.

The values returned will depend on the

coordinate mode (text or graphics) currently

selected for the application context.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 188 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

Contacts that can be moved by the user can be

positioned to the nearest pixel; whichever

coordinate mode is selected. In text mode,

therefore, the values returned by GetPosition

are accurate only to the nearest character

position

See also Move

6.94 GetRootWindow

This subroutine returns the handle of the root window of an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetRootWindow(Context,

vRootWindow)

Syntax

elements

• Context: The handle of the

AppContext.

• vRootWindow: A variable in which to

return the handle of the application's

root window.

Comments
The root window is the first AppWindow

contact created by the application.

See also GetFrontWindow, GetChildFocus

6.95 GetSecondaryEventMask

This subroutine returns the secondary event mask which has been set for an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetSecondaryEventMask(Context,

vEventMask, vUnmaskable, vAlert, vErr)

Syntax

elements

• Context: The handle of the

application context.

• vEventMask: A variable in which to

return a value representing the

secondary event mask setting for the

application. This value will be a

combination of the event mask

constants listed in Section 4. The

BitTest subroutine can be used to

test the individual elements which

make up the returned value.

• vUnmaskable: A variable in which to

return whether messages which

cannot be masked are allowed to

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 189 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

reach the application. This must be

one of the following values:

o TRUE: Non-maskable

messages are allowed to

reach the application.

o FALSE: Non-maskable

messages are not allowed to

reach the application.

• vAlert: This parameter is for future

use. A variable must be supplied, but

it will always be returned set to

FALSE.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
The secondary event mask is described in

Section 4.

See also SetSecondaryEventMask, GetEventMask

6.96 GetSize

This subroutine returns the size of a contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetSize(Context, Contact, vWidth,

vHeight, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

whose size you require.

• vWidth: A variable in which to return

the width of the contact.

• vHeight: A variable in which to return

the height of the contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

For ExclusiveGroup and InclusiveGroup

contacts, the size returned includes the

space occupied by the border and the title

text (even if none is displayed).

If the contact is minimised both values

returned will be zero.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 190 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The values returned will depend on the

coordinate mode (text or graphics) currently

selected for the application context.

Note

The user can resize a contact to the nearest

pixel, whichever coordinate mode is selected.

In text mode, therefore, the values returned

by GetSize are accurate only to the nearest

character position.

See also Resize

6.97 GetSolidColour

This subroutine returns the solid colour which is the closest available to a specified red,

green and blue colour combination.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetSolidColour(Context, Colour,

vSolidColour)

Syntax

elements

• Context: The handle of the

application context.

• Colour: A UIMS logical colour or an

absolute colour, specified as a

combination of red, green and blue.

• vSolidColour: A variable in which to

return the closest available solid

colour. This will be an absolute colour

- that is a red, green and blue colour

combination.

Comments

This subroutine should be used to ensure

that a solid colour is used as the background

to text or other foreground detail.

UIMS screen colours are described in detail

in Appendix B.

6.98 GetState

This subroutine returns the state of a contact - whether or not it is mappable and

whether or not it is enabled.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetState(Context, Contact, vState)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• vState: A variable in which to return

the state of the contact. The value

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 191 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

returned is a bit-significant value

consisting of the following elements:

o UIMS.ENABLED: If set, the

contact is enabled; if not, it is

disabled.

o UIMS.MAPPABLE: If set, the

contact is mappable; if not, it

is unmappable.

The BitTest subroutine can be used

to test the individual elements, which

make up this value.

See also
SetMapped, Map, UnMap, SetEnabled,

Enable, Disable

6.99 GetTeFontSize, GetTeFontSizes

These subroutines return information about the fonts available for use in the RealLink or

currently active 'terminal emulation' (TE) window.

• GetTeFontSize returns the currently selected font size.

• GetTeFontSizes returns a list of the available font sizes.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetTeFontSize(vPointSize, vWidth,

vHeight)

CALL GetTeFontSizes(vaPointSizes,

vaWidths, vaHeights)

Syntax

elements

• vPointSize: A variable in which to

return the currently selected point

size.

• vWidth: A variable in which to return

the width in pixels of characters in

the currently selected point size.

• vHeight: A variable in which to return

the height in pixels of characters in

the currently selected point size.

• vaPointSizes: A variable in which to

return a list of numbers representing

the available point sizes. The list is

returned as a dynamic array with one

point size in each attribute.

• vaWidths: A variable in which to

return a list of numbers representing

the widths in pixels of characters in

the available point sizes. The list is

returned as a dynamic array with one

value in each attribute.

• vaHeights: A variable in which to

return a list of numbers representing

the heights in pixels of characters in

the available point sizes. The list is

returned as a dynamic array with one

value in each attribute.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 192 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

The positions of the values returned in the

vaWidths and vaHeights arrays correspond

to the positions of the point sizes returned

in the vaPointSizes parameter.

See also SetTeFontSize, SetTeWindow

6.100 GetTypeFace, GetTypeFaces

These subroutines return the handles of TypeFace objects.

• GetTypeFace returns the handle of a specified typeface.

• GetTypeFaces returns a list of the typefaces available on the PC.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetTypeFace(Index, vTypeFace)

CALL GetTypeFaces(vaTypeFaces, vErr)

Syntax

elements

• Index: The position in the list of the

typeface whose handle you require.

The list is numbered starting from 0.

• vTypeFace: A variable in which to

return the handle of the typeface.

• vaTypeFaces: A variable in which to

return the list of typefaces. The list

will be returned as a dynamic array,

with one handle to each attribute.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
It is not necessary to fetch the list of

typefaces before calling GetTypeFace.

See also GetDefaults

6.101 GetUimsVersion

This subroutine returns the UIMS version number and revision level.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetUimsVersion(vMajor, vMinor,

vRevision, vErr)

Syntax

elements

• vMajor: A variable in which to return

the UIMS version number.

• vMinor: A variable in which to return

the UIMS release number.

• vRevision: A variable in which to

return the UIMS revision level.

• vErr: This is a variable that must be

supplied to return the completion

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 193 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The version number of a UIMS release is

made up as follows:

UIMS Major.Minor Revision Revision

For example: UIMS 1.0 Revision D.

6.102 GetUpdate

This subroutine returns the update mode of a contact; that is, when the contact will be

redrawn if a change occurs.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GetUpdateContext, Contact,

vUpdate)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

whose update mode you require.

• vUpdate: A variable in which to

return the update mode. The value

returned will be one of the following:

o UIMS.IMMEDIATE: Redraw

immediately.

o UIMS.NONE: Do not redraw;

wait for a Draw command.

See also SetUpdate

6.103 GrabPointer

This subroutine causes mouse messages to be sent to a specified contact, regardless of

the position of the pointer.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL GrabPointer(Context, Contact, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact to

which messages will be sent.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
In normal operation, pointer messages are

sent to the contact in which the pointer is

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 194 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

positioned. The position of the pointer is

reported relative to the current contact. If

the mouse is not within a contact, no pointer

messages are generated.

GrabPointer causes all pointer messages to

be diverted to a specified contact and the

position of the pointer to be reported

relative to that contact. In addition, pointer

motion messages are generated periodically,

even if the pointer does not move.

When the contact no longer requires all

pointer messages, the application should call

the UngrabPointer subroutine so that

other contacts can receive pointer

messages.

If pointer drag messages are enabled in a

contact's event mask, when a drag event

starts within that contact, UIMS will

automatically perform a GrabPointer,

followed by an UngrabPointer when the

drag ends.

GrabPointer does not affect the movement

of the pointer around the screen.

See also UngrabPointer

6.104 HiByte

This subroutine returns the value of the most-significant byte of a word (2 byte) value.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL HiByte(Word, vHiByte)

Syntax

elements

• Word: The word value from which

you require the most-significant

byte.

• vHiByte: A variable in which to return

the value of the most-significant

byte.

Comments

HiByte allows the programmer to determine

the values of the individual bytes in the

composite word values returned by the

GetMsg subroutine.

Word will normally be a composite value

returned by GetMsg.

Example

The following fragment of code determines

whether any other mouse buttons were held

down when a mouse button was clicked.
* Wait for the next message

CALL GetMsg(0, ...

CONTEXT, ...

WINDOW, ...

CONTACT, ...

MSGTYPE, ...

TIMESTAMP, ...

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 195 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

DATA1, ...

DATA2, ...

DATA3, ...

DATA4, ...

ERR)

BEGIN CASE

CASE MSGTYPE = UIMS.MSG.CLICK

* Use HiByte to separate out the mouse

buttons that are held down

CALL HiByte(DATA1, MOUSE.MOD)

IF MOUSE.MOD THEN

PRINT "Another mouse button was held

down."

END ELSE

PRINT "No other mouse buttons held down."

END

END CASE

See also GetMsg, LoByte

6.105 IncGroupSetStyle, IncGroupSetTitle

These subroutines change the different attributes of an InclusiveGroup contact.

• IncGroupSetStyle changes the style of the group.

• IncGroupSetTitle changes the title displayed above the group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL IncGroupSetStyle(Context, Group,

Style, vErr)

CALL IncGroupSetTitle(Context, Group,

Title, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: The handle of the

InclusiveGroup contact.

• Style: The required style for the

group. This can be either of the

following values:

o UIMS.BORDER: Enclose the

group in a box.

o UIMS.NONE: Do not enclose

the group in a box.

• Title: The new group title.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
If the group has no bounding box, the title

will not be displayed.

6.106 InitialiseUims

This subroutine initialises the UIMS environment.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 196 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL InitialiseUims

Comments

This subroutine must be called at the start

of an application, before any other UIMS

subroutines are used.

InitialiseUims calls the IsUimsCapable

subroutine and sets the COMMON variable

UIMS.CAPABLE to the result.

See also IsUimsCapable

6.107 IsUimsCapable

This subroutine returns whether or not the terminal supports UIMS.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL IsUimsCapable(vCapable)

Syntax

elements

vCapable: A variable in which to return

whether or not the terminal supports UIMS.

This will be one of the following values:

• TRUE: The terminal supports UIMS.

• FALSE: The terminal does not

support UIMS.

Comments

This subroutine allows the programmer to

determine whether or not the terminal

supports UIMS, without calling

InitialiseUims.

If UIMS has already been initialised,

interrogating the COMMON UIMS.CAPABLE

variable is quicker than calling

IsUimsCapable.

6.108 ListBoxAddContent – ListBoxAddSelections

These subroutines change the attributes of a ListBox contact.

• ListBoxAddContent adds a single item to the contents of a list box.

• ListBoxAddContents adds a group of items to the contents of a list box.

• ListBoxAddSelection marks an item within the list box as selected.

• ListBoxAddSelections marks multiple items within the list box as selected.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ListBoxAddContent(Context,

ListBox, Index, Item, vErr)

CALL ListBoxAddContents(Context,

ListBox, Index, aItemList, vErr)

CALL ListBoxAddSelection(Context,

ListBox, Selection, vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 197 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL ListBoxAddSelections(Context,

ListBox, aSelectList, vErr)

Syntax

elements

• Context: The handle of the

application context.

• ListBox: The handle of the ListBox

contact.

• Index: The point in the list of

contents at which the new items are

to be added.

The list is numbered starting from 0

and new items are added before the

specified existing item. An index of -

1 adds the new item to the end of

the list.

• Item: A string containing the text of

the item which is to be added to the

list box contents.

• aItemList: A dynamic array

containing the items that are to be

added to the contents of the list box,

each item consisting of a text string

that will be displayed in the list box.

• Selection: The position of the item to

be selected within the list box. The

list is numbered starting from zero.

• aSelectList: A dynamic array

containing a list of indexes into the

list box contents. The items in this

list will become marked as selected.

The list is numbered starting from

zero.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

If the list box allows only one selection,

ListBoxAddSelection and

ListBoxAddSelections

will cancel any previous selections.

If multiple selections are attempted in a list

box that allows only one selection at a time,

only the first selection in the list will be

made.

See also

ListBoxGetContent, ListBoxGetContents,

ListBoxRemoveContent,

ListBoxRemoveContents,

ListBoxGetSelections,

ListBoxRemoveSelection,

ListBoxRemoveSelections

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 198 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.109 ListBoxGetContent – ListBoxGetSelections

These subroutines return the different attributes of a ListBox contact.

• ListBoxGetContent returns the text of one item from a list box.

• ListBoxGetContents returns a list of all the items in a list box.

• ListBoxGetSelections returns the indexes of the currently selected items.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ListBoxGetContent(Context,

ListBox, Index, vItem, vErr)

CALL ListBoxGetContents(Context,

ListBox, vaItemList, vErr)

CALL ListBoxGetSelections(Context,

ListBox, vaSelectList, vErr)

Syntax

elements

• Context: The handle of the

application context.

• ListBox: The handle of the ListBox

contact.

• Index: The position in the list of the

first item whose text you require.

The list is numbered starting from 0.

• vItem: A variable in which to return

the requested item.

• vaItemList: A variable in which to

return the requested items. If there

is more than one item, this variable

will be returned as a dynamic array,

with one item in each attribute.

• vaSelectList: A variable in which to

return the indexes of the selected

items. If there is more than one item

selected, this variable will be

returned as a dynamic array, with

one index number in each attribute.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

ListBoxAddContent,

ListBoxAddContents,

ListBoxRemoveContent,

ListBoxRemoveContents,

ListBoxSetLink, ListBoxAddSelection,

ListBoxAddSelections,

ListBoxRemoveSelection,

ListBoxRemoveSelections.

6.110 ListBoxRemoveContent – ListBoxRemoveSelections

These subroutines change the attributes of a ListBox contact.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 199 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• ListBoxRemoveContent deletes a named item from the contents of the list box.

• ListBoxRemoveContents deletes a number of items from the list box, starting at

a specified position.

• ListBoxRemoveSelection marks an item within the list box as not selected.

• ListBoxRemoveSelections marks items within the list box as not selected.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ListBoxRemoveContent(Context,

ListBox, Item, vErr)

CALL ListBoxRemoveContents(Context,

ListBox, Index, Count, vErr)

CALL ListBoxRemoveSelection(Context,

Listbox, Selection, vErr)

CALL ListBoxRemoveSelections(Context,

Listbox, aSelectList, vErr)

Syntax

elements

• Context: The handle of the

application context.

• ListBox: The handle of the ListBox

contact.

• Item: The text of the item to be

deleted from the list.

• Index: The position in the list of

contents at which to start deleting

items. The list is numbered starting

from 0.

• Count: The number of items to be

deleted from the list. To remove

every item from the starting point

(Index parameter) to the end of the

list, specify a count of -1.

• Selection: The position in the list of

contents of the item which is to be

deselected.

• aSelectList: A dynamic array

containing the positions in the list of

contents of the items to be

deselected.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

ListBoxAddContent,

ListBoxAddContents,

ListBoxGetContent, ListBoxGetContents,

ListBoxAddSelection,

ListBoxAddSelections,

ListBoxGetSelections

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 200 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.111 ListBoxSetLink

This subroutine links a list box to an EditBox contact. A selection made in the list box

will then be automatically copied into the edit box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ListBoxSetLink(Context, ListBox,

EditBox, vErr)

Syntax

elements

• Context: The handle of the

application context.

• ListBox: The handle of the ListBox

contact.

• EditBox: The handle of the EditBox

contact to which the list box is to be

linked.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

6.112 LoadAppRes

This subroutine creates the objects and contacts defined in a compiled UIMS resource.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL LoadAppRes(Context, FileName,

vErr)

Syntax

elements

• Context: The application context.

• Filename: A string containing the

name of the resource file. If no path

is specified, the file is loaded from

the disk and directory specified in the

RFW.INI file on the PC.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

6.113 LoByte

This subroutine returns the value of the least-significant byte of a word (2 byte) value.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL LoByte(Word, vLoByte)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 201 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Word: The word value from which

you require the least-significant byte.

• vLoByte: A variable in which to

return the value of the least-

significant byte.

Comments

LoByte allows the programmer to

determine the values of the individual bytes

in the composite word values returned by

the GetMsg subroutine.

Word will normally be a composite value

returned by GetMsg.

Comments

The following fragment of code determines

whether any keyboard modifier keys (SHIFT,

CTRL, ALT) were held down when a mouse

button was clicked.
* Wait for the next message

CALL GetMsg(0, ...

CONTEXT, ...

WINDOW, ...

CONTACT, ...

MSGTYPE, ...

TIMESTAMP, ...

DATA1, ...

DATA2, ...

DATA3, ...

DATA4, ...

ERR)

BEGIN CASE

CASE MSGTYPE = UIMS.MSG.CLICK

* Use LoByte to separate out the modifier

keys

CALL LoByte(DATA1, MOD)

IF MOD THEN

PRINT "A keyboard modifier was held

down."

END ELSE

PRINT "No keyboard modifiers were held

down."

END

END CASE

Example GetMsg, HiByte

6.114 MakePullDownmenu

This subroutine creates a complete menu, including all its menu items.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL MakePullDownMenu(Context, Ident,

Title, FirstItem, aItemTitles, Parent, vMenu)

Syntax

elements

• Context: The handle of the

application context.

• Ident: An integer value to use as the

handle for the Menu contact. If this

parameter is zero, a handle will be

assigned by UIMS. In either case, the

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 202 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

handle of the newly created menu is

returned in the vMenu parameter.

• Title: The title of the menu. An

ampersand (&) preceding a character

in this string denotes that character

as the selector key for the menu.

• FirstItem: An integer value to use as

the handle for the first MenuItem

contact on the menu. UIMS will

assign handles to the remaining

menu items by incrementing this

value by one for each subsequent

menu item. If the FirstItem

parameter is zero, UIMS assign a

handle for the first menu item, by

incrementing the handle of the Menu

contact by one.

• aItemTitles: A dynamic array with

each attribute containing the title of

one of the items on the menu. If a

character in the string is preceded by

an ampersand (&), that character is

assigned as the selector key for the

menu item.

If a single hyphen is used as the title,

a separator item is created. This

appears as a continuous line across

the width of the menu. A separator

item cannot be selected by the user

and should be used to visually group

related menu items. Note that a

separator item cannot be attached to

a menu bar.

• Parent: The handle of the parent of

the menu, if required. If specified,

this must be either a MenuBar or

another Menu. If the parent is

currently displayed the menu will be

drawn immediately.

If Parent is a null string, the contact

is created without a parent and can

be attached later using AddChild or

AddChildren.

• vMenu: A variable in which to return

the handle of the newly created

Menu. If it could not be created for

any reason, zero is returned. Note,

however, that if asynchronous error

handling is selected and a handle has

been supplied in the Ident

parameter, this handle will always be

returned, and any error will be

reported by means of a

UIMS.MSG.NOTIFY message. See

SetSync for more details.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 203 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

LoByte allows the programmer to

determine the values of the individual bytes

in the composite word values returned by

the GetMsg subroutine.

Word will normally be a composite value

returned by GetMsg.

Cascading

menus

MakePullDownMenu can also be used to

create cascading menus – menus that are

children of other menus, rather than of the

menu bar. This is done by creating the

parent menu with space reserved for the

child menu, and then filling this reserved

space when creating the child menu.

Space for a child menu is reserved by

including a null title in the appropriate

position in the aItemTitles array. No

MenuItem contact will be created, but the

corresponding handle will be set aside for

later use. When MakePullDownMenu is

used to create the child menu, the Ident

parameter must specify the handle assigned

to the reserved space. Note, however, that

unless the reserved item is the last item on

the parent menu, when creating the child,

the FirstItem parameter cannot be zero; this

is because, when MakePullDownMenu

adds one to Ident to create the handle for

the child's first menu item, this handle will

be the same as that already assigned to the

next item on the parent menu.

Note

The parent and child menus can be created in

any order. If the child menu already exists

when its parent is created, the child will simply

be inserted into its reserved space.

Example

The following example creates a Format

menu with Character, Paragraph and Border

items and two cascaded menus: Tabs and

Page.
FORMATITEMS = "&Character..." ;* id =

101

FORMATITEMS<-1> = "&Paragraph..." ;*

id = 102

FORMATITEMS<-1> = "" ;* tabs id = 103

FORMATITEMS<-1> = "" ;* page id = 104

FORMATITEMS<-1> = "-" ;* separator id

= 105

FORMATITEMS<-1> = "&Border..." ;* id

= 106

TABITEMS = "&Set..." ;* id = 200

TABITEMS<-1> = "&Clear..." ;* id =

201

TABITEMS<-1> = "&Reset all" ;* id =

202

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 204 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

PAGEITEMS = "&Size..." ;* id = 300

PAGEITEMS<-1> = "&Margins..." ;* id =

301

PAGEITEMS<-1> = "&Numbers..." ;* id =

302

CALL MakePullDownMenu(CONTEXT, ...

100, ...

"&Format", ...

0, ...

FORMATITEMS, ...

0, ...

FILE)

CALL MakePullDownMenu(CONTEXT, ...

103, ...

"&Tabs", ...

200, ...

TABITEMS, ...

File, ...

FILETABS)

CALL MakePullDownMenu(CONTEXT, ...

104, ...

"&Page", ...

300, ...

PAGEITEMS, ...

File, ...

FILEPAGE)

Comments

UIMS reserves handles 8000 to 9999 for its

own use – these must not be used by the

application.

Example
CreatePullDownMenu, CreateMenuBar,

CreateMenuItem

6.115 Map

This subroutine makes a contact mappable; that is, it makes it possible to display the

contact on the screen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Map(Context, Contact, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 205 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A mappable contact will only be visible if it

has a parent and that parent is visible.

Making a contact with a visible parent

mappable will make it and any mappable

children visible.

Newly created contacts are mappable.

Example UnMap, SetMapped, GetState

6.116 MenuItemCheck

This subroutine displays a check mark beside a MenuItem.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL MenuItemCheck(Context,

MenuItem, vErr)

Syntax

elements

• Context: The handle of the

application context.

• MenuItem: The handle of the

MenuItem contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The type of check mark displayed is

platform dependent. On a PC running

Microsoft Windows, a tick is used.

Example

MenuItemSetCheckMark,

MenuItemUncheck,

MenuItemGetCheckMark,

MenuItemSetAutoCheck

6.117 MenuItemGetCheckMark

This subroutine displays a check mark beside a MenuItem.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL MenuItemGetCheckMark(Context,

MenuItem, vCheck)

Syntax

elements

• Context: The handle of the

application context.

• MenuItem: The handle of the

MenuItem contact.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 206 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• vCheck: A variable in which to return

whether or not the menu item is

checked.

This will be one of the following

values:

o TRUE: The menu item is

checked.

o FALSE: The menu item is not

checked.

Example

MenuItemSetAutoCheck,

MenuItemSetCheckMark,

MenuItemSetTitle

6.118 MenuItemSetAutoCheck – MenuItemSetTitle

These subroutines set different attributes of a MenuItem contact.

• MenuItemSetAutoCheck sets whether checking and unchecking the menu item

is automatic or not.

• MenuItemSetCheckMark checks or unchecks a menu item.

• MenuItemSetTitle changes the title of a menu item.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL MenuItemSetAutoCheck(Context,

MenuItem, Autocheck, vErr)

CALL MenuItemSetCheckMark(Context,

MenuItem, Check, vErr)

CALL MenuItemSetTitle(Context,

MenuItem, Title, vErr)

Syntax

elements

• Context: The handle of the

application context.

• MenuItem: The handle of the

MenuItem contact.

• Autocheck: Specifies whether to

automatically check and uncheck or

not. This must be one of the

following values:

o TRUE: Enable automatic

checking.

o FALSE: Disable automatic

checking.

Check Specifies whether the menu

item is to become checked or

unchecked. This must be one of the

following values:

o TRUE: Check the menu item.

o FALSE: Uncheck the menu

item.

Note that the type of check mark

displayed is platform dependent. On

a PC running Microsoft Windows, a

tick is used.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 207 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Title: The new title to be displayed

for the menu item. An ampersand

(&) preceding a character in this

string denotes that character as the

selector key for the menu.

If a single hyphen is used as the title,

a separator item is created. This

appears as a continuous line across

the width of its parent menu. A

separator item cannot be selected by

the user and should be used to

visually group related menu items.

Note that a separator item cannot be

attached to a menu bar.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example

MenuItemCheck, MenuItemUncheck,

CreateMenuItem,

MenuItemGetCheckMark

6.119 MenuItemUncheck

This subroutine removes the check mark (if any) displayed beside a MenuItem contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL MenuItemUncheck(Context,

MenuItem, vErr)

Syntax

elements

• Context: The handle of the

application context.

• MenuItem: The handle of the

MenuItem contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example

MenuItemCheck,

MenuItemSetCheckMark,

MenuItemGetCheckMark

6.120 MenuSetTitle

This subroutine changes the title of a Menu contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 208 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL MenuSetTitle(Context, Menu, Title,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Menu: The handle of the Menu

contact.

• Title: The new title to be displayed

for the menu. An ampersand (&)

preceding a character in this string

denotes that character as the

selector key for the menu.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example
CreatePullDownMenu,

MakePullDownMenu

6.121 Move

This subroutine changes the position of a contact within its parent.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Move(Context, Contact, HPos, VPos,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

you wish to move.

• HPos: The new horizontal position for

the contact in coordinate units.

• VPos: The new vertical position for

the contact in coordinate units.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

HPos and VPos specify the position of the

top left-hand corner of the contact, relative

to the top left-hand corner of its parent's

client area (position 0,0). Note, however,

the following exceptions:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 209 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• For contacts that are children of the

application context, the position must

be specified relative to the top, left-

hand corner of the display (position

0,0).

• For ExclusiveGroup and

InclusiveGroup contacts, the top of

the contact is aligned with the top of

the title text (even if none is

displayed), rather than with the top

of the enclosing box.

The position specified is interpreted in

accordance with the coordinate mode (text

or graphics) currently selected for the

application context.

Provided the contact is mappable when it is

moved it will always be redrawn

immediately.

Example GetPosition

6.122 OptionButtonDeselect

This subroutine deselects the specified OptionButton contact, clearing the check mark if

one is displayed.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL OptionButtonDeselect(Context,

Button, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

OptionButton contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example

OptionButtonSelect,

OptionButtonSetSelected,

OptionButtonGetSelected

6.123 OptionButtonGetSelected

This subroutine returns the current state (selected or deselected) of an OptionButton

contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 210 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL OptionButtonGetSelected(Context,

Button, vSelected)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

OptionButton contact.

• vSelected: A variable in which to

return whether or not the button is

selected. This will be one of the

following values:

o TRUE: The button is selected.

o FALSE: The button is not

selected.

Example OptionButtonSetSelected

6.124 OptionButtonSetSelected – OptionButtonSetToggle

These subroutines change the attributes of a specified OptionButton contact.

• OptionButtonSetSelected sets the button to selected or deselected.

• OptionButtonSetTitle changes the title displayed beside the button.

• OptionButtonSetToggle changes the auto-toggle state of the button.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL OptionButtonSetSelected(Context,

Button, Selected, vErr)

CALL OptionButtonSetTitle(Context,

Button, Title, vErr)

CALL OptionButtonSetToggle(Context,

Button, Toggle, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

OptionButton contact.

• Selected: The required button state.

This must be one of the following

values:

o TRUE: Select the button.

o FALSE: Deselect the button.

• Title: The new title for the button.

• Toggle: The required auto-toggle

state. This must be one of the

following values:

o TRUE: Enable automatic

toggling.

o FALSE: Disable automatic

toggling.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 211 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

has occurred or will be zero for

successful completion.

Comments
When an option button is selected its check

circle is displayed filled in.

Example OptionButtonGetSelected

6.125 Paste

This subroutine pastes the contents of the clipboard into an EditBox or TextEditor

contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Paste(Context, Contact, Character,

Line, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• Character: The character position at

which to paste the data. The position

must be specified as the number of

characters from the start of the line

specified in Line.

• Line: The number of the line

containing the position at which to

paste the data. If Contact is the

handle of an EditBox, this parameter

will be ignored.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

If Character and Line are both -1, the

Clipboard contents are inserted at the

current cursor position, replacing any

selected text.

If Contact is the handle of a contact other

than an EditBox or TextEditor, an error

will be returned.

Example

ClipboardGetContent,

ClipboardGetState, Copy, Cut,

ClipboardSetContent

6.126 PenGetColour, PenGetWidth

These subroutines return the different attributes of a Pen object.

• PenGetColour returns the colour of the pen.

• PenGetWidth returns the width of the pen.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 212 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL PenGetColour(Context, Pen,

vColour)

CALL PenGetWidth(Context, Pen, vWidth)

Syntax

elements

• Context: The handle of the

application context.

• Pen: The handle of the Pen object.

• vColour: A variable in which to return

the colour of the pen. The value

returned will be a UIMS logical colour

or an RGB value (see Appendix B).

• vWidth: A variable in which to return

the width, in pixels, of the pen.

Comments

If Character and Line are both -1, the

Clipboard contents are inserted at the

current cursor position, replacing any

selected text.

If Contact is the handle of a contact other

than an EditBox or TextEditor, an error

will be returned.

Example PenSetColour, PenSetWidth

6.127 PenSetColour, PenSetWidth

These subroutines change the attributes of a specified Pen object.

• PenSetColour changes the colour of the pen.

• PenSetWidth changes the width of the pen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL PenSetColour(Context, Pen, Colour,

vErr)

CALL PenSetWidth(Context, Pen, Width,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Pen: The handle of the Pen object.

• Colour: The colour of the pen. This

must be a UIMS logical colour or an

RGB value (see Appendix B).

• Width: The width, in pixels, of lines

drawn by the pen.

If the width is set to zero, the pen

will draw the thinnest and/or most

efficient lines available on the display

platform.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 213 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

has occurred or will be zero for

successful completion.

Example PenGetColour, PenGetWidth

6.128 PointerGetType

This subroutine returns the shape of a Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL PointerGetType(Context, Pointer,

vType)

Syntax

elements

• Context: The handle of the

application context.

• Pointer: The handle of the Pointer

object.

• vType: A variable in which to return

the shape of the pointer. This will be

one of the following values:

o UIMS.PTR.ARROW:

Standard arrow pointer.

o UIMS.PTR.IBEAM: Text I-

beam pointer.

o UIMS.PTR.CROSS: Diagonal

crosshair pointer.

o UIMS.PTR.PLUS: Horizontal

and vertical crosshair pointer.

o UIMS.PTR.WAIT: Wait

pointer - normally an

hourglass.

Example PointerSetType

6.129 PointerSetType

This subroutine changes the shape of a specified Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL PointerSetType(Context, Pointer,

Type, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Pointer: The handle of the Pointer

object.

• Type: The shape of the pointer. This

must be one of the following values:

o UIMS.PTR.ARROW:

Standard arrow pointer.

o UIMS.PTR.IBEAM: Text I-

beam pointer.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 214 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o UIMS.PTR.CROSS: Diagonal

crosshair pointer.

o UIMS.PTR.PLUS: Horizontal

and vertical crosshair pointer.

o UIMS.PTR.WAIT: Wait

pointer - normally an

hourglass.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example CreatePointer, PointerGetType

6.130 ReMapNVLine25

This subroutine allows you to use a UIMS message box to display system messages

which the host sends to line 25 of the terminal screen.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL ReMapNVLine25(Context, Enable,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Enabled: The required state. This

must be one of the following values:

o TRUE: Display messages in a

message box.

o FALSE: Display messages on

line 25.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The message box in which host system

messages are displayed has a single OK

button, and therefore, requires a response

from the user.

Applications which use line 25 for a

continuous display of status information

should not map system messages to a

message box.

Example CreateMessageBox

6.131 RemoveChild, RemoveChildren

These subroutines remove objects from another object's list of children.

• RemoveChild removes a particular child from the list.

• RemoveChildren removes a number of children from the list, starting at a

specified position.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 215 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL RemoveChild(Context, Object, Child,

vErr)

CALL RemoveChildren(Context, Object,

Index, Count, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the parent

object.

• Child: The handle of the child you

wish to remove.

• Index: The position in the list of the

child or children to be removed. The

list is numbered starting from 0.

• Count: The number of children to be

removed. To remove every child from

the starting point (Index parameter)

to the end of the list, specify a count

of -1.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example
AddChild, AddChildren, GetChild,

GetChildren, GetObjectParent

6.132 RemoveTimer

This subroutine removes a timer which was created with AddTimer.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL RemoveTimer(Context, Timer, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Timer: The handle of the timer.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Example AddTimer

6.133 Resize

This subroutine changes the size of a contact.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 216 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Resize(Context, Contact, Width,

Height, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

whose size you wish to change.

• Width: The required contact width in

coordinate units.

• Height: The required contact height

in coordinate units.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

For ExclusiveGroup and InclusiveGroup

contacts, this subroutine sets the overall

size of the contact including any title text,

rather than the size of the enclosing box.

The Width and Height parameters will be

interpreted according to the coordinate

mode (text or graphics) currently selected

for the application context.

Provided the contact is mappable, when it is

resized, it will always be redrawn

immediately.

An App or Child window has a minimum

size, which depends on the style and

content of the

window. Any attempt to make either the

width or height smaller than the minimum

will fail.

Example GetSize

6.134 Scroll

This subroutine scrolls the client area of the specified window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL Scroll(Context, Window, HScroll,

VScroll, Left, Top, Right, Bottom, vErr)

Syntax

elements

• Context: The handle of the

application context.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 217 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Window: The window which is to be

scrolled.

• HScroll: The amount of horizontal

movement. If HScroll is positive, the

contents of the client area move to

the right, relative to the window

border; if HScroll is negative, the

contents of the client area move to

the left.

• VScroll: The amount of vertical

movement. If VScroll is positive, the

contents of the client area move

downwards, relative to the window

border; if VScroll is negative, the

contents of the client area move

upwards.

• Left: The position of the left-hand

edge of the area to be scrolled.

• Top: The position of the top edge of

the area to be scrolled.

• Right: The position of the right-hand

edge of the area to be scrolled.

• Bottom: The position of the bottom

edge of the area to be scrolled.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Left, Top, Right and Bottom permit only a

part of the client area to be scrolled; if all

are zero, the entire client area will be

scrolled. If specified, the edges of the

scrolled area are relative to the top left-

hand corner of the window's client area

(position 0,0).

The HScroll, VScroll, Left, Top, Right and

Bottom parameters will be interpreted

according to the coordinate mode (text or

graphics) currently selected for the

application context.

If the window does not have a text canvas,

text data which is scrolled out of the window

is lost and, if re-displayed, must be redrawn

by the application.

6.135 ScrollBarGetThumb

This subroutine returns the value corresponding to the current thumb position of a

ScrollBar contact.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 218 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ScrollBarGetThumb(Context,

ScrollBar, vPosition)

Syntax

elements

• Context: The handle of the

application context.

• ScrollBar: Handle of the ScrollBar

object

• vPosition: A variable in which to

return the value corresponding to the

current position of the thumb.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also

ScrollBarSetInc, ScrollBarSetRange,

ScrollBarSetThumb,

ScrollBarSetTracking

6.136 ScrollBarSetInc – ScrollBarSetTracking

These subroutines change the different attributes of a ScrollBar contact.

• ScrollBarSetInc sets the increments by which the thumb position value is

changed when line and page scrolling are used.

• ScrollBarSetRange sets the minimum and maximum thumb position values,

corresponding to the opposite ends of the thumb track.

• ScrollBarSetThumb moves the scroll-bar thumb.

• ScrollBarSetTracking changes the scroll-bar thumb tracking mode.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL ScrollBarSetInc(Context, ScrollBar,

PageInc, LineInc, vErr)

CALL ScrollBarSetRange(Context,

ScrollBar, Min, Max, vErr)

CALL ScrollBarSetThumb(Context,

ScrollBar, Position, vErr)

CALL ScrollBarSetTracking(Context,

ScrollBar, Track, vErr)

Syntax

elements

• Context: The handle of the

application context.

• ScrollBar: The handle of the

scrollbar.

• PageInc: The required value for the

page scroll increment.

• LineInc: The required value for the

line scroll increment.

• Min: A value corresponding to the

top or left-hand end of the thumb

track.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 219 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Max: A value corresponding to the

bottom or right-hand end of the

thumb track.

• Position: A value representing the

required thumb position.

• Track: The required tracking mode

for the scrollbar. This must be one of

the following values:

o TRUE: Enable tracking.

o FALSE: Disable tracking.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
If the Min parameter is greater than Max an

error is returned.

See also CreateScrollBar, ScrollBarGetThumb

6.137 SendKeys

Sends a sequence of keypresses to the active Windows application, as if they had been

typed at the keyboard.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SendKeys(Keys, Control, vErr)

Syntax

elements

• Keys: A string containing a key

sequence.

• Control: One of the following control

settings:

o SENDKEYS.WAIT: Do not

send the keypresses until the

next call to the Execute

subroutine.

o RFW.NONE: Send the

keypresses immediately.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will be set

to ERR.RFW.SUCCESS for

successful completion or will contain

one of the SendKeys error codes

listed in Appendix D.

Non-printable

characters

When SendKeys is used in an application,

the item RFWKEYS must be included from

the file UIMS-TOOLS. This item contains key

definitions for non-printable characters as

listed in Table 6-1.

Table 6-1: SendKeys Key Definitions

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 220 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Key Code Key Code

ALT GR SVK.ALT

GRKEY

CAPS

LOCK

SVK.CAP

SLOCK

ALT
SVK.ALT

KEY

CTRL SVK.CTR

LKEY

Backspa

ce

SVK.BKS

P

DELETE SVK.DEL

BREAK

(CTRL+P

AUSE)

SVK.BRE

AK

DOWN

(cursor

key)

SVK.DO

WN

END SVK.END
Function

key F9

SVK.F9

RETURN
SVK.ENT

ER

Keypad

minus (-)

SVK.GRE

YMINUS

ESC SVK.ESC
Keypad

plus (+)

SVK.GRE

YPLUS

Function

key F1
SVK.F1

HOME SVK.HO

ME

Function

key F10
SVK.F10

INSERT SVK.INS

Function

key F11
SVK.F11

LEFT

(cursor

key)

SVK.LEF

T

Function

key F12
SVK.F12

SHIFT

(left)

SVK.LSH

IFTKEY

Function

key F13
SVK.F13

NUM

LOCK

SVK.NU

MLOCK

Function

key F14
SVK.F14

PAUSE SVK.PAU

SE

Function

key F15
SVK.F15

PAGE

DOWN

SVK.PGD

N

Function

key F16
SVK.F16

PAGE UP SVK.PGU

P

Function

key F2
SVK.F2

PRINT

SCREEN

SVK.PRT

SC

Function

key F3
SVK.F3

RIGHT

(cursor

key)

SVK.RIG

HT

Function

key F4
SVK.F4

SHIFT

(right)

SVK.RSH

IFTKEY

Function

key F5
SVK.F5

SCROLL

LOCK

SVK.SCR

OLL

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 221 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Function

key F6
SVK.F6

TAB SVK.TAB

Function

key F7
SVK.F7

UP

(cursor

key)

SVK.UP

Function

key F8
SVK.F8

In addition, the following key modifiers are

available:

ALT: SVK.ALT

ALT: GR SVK.ALTGR

CTRL: SVK.CTRL

SHIFT: SVK.SHIFT

Key rate

The following allow you to control the rate at

which the keys are sent:

• SVK.KEYRATE:time:terminator

where,

: is the DATA/BASIC string

concatenation operator.

time: is the time between keys, in

18ths of a second.

terminator: is any non-numeric

character.

• SVK.DELAY:delay:terminator

where,

: is the DATA/BASIC string

concatenation operator.

delay: is the time to pause before

sending the next key, in seconds.

terminator: is any non-numeric

character.

Examples

CALL SendKeys("s", RFW.NONE, ERR)

Sends a lower case 's' without waiting for

the next Execute call.
* check that the file exists

FILE = "C:\TMP\SKTEXT.TXT"

CALL SystemCommand(SYS.EXIST, RFW.NONE,

FILE, RESPONSE, ERR)

IF ERR = ERR.SYS.SUCCESS THEN

KEYS = SVK.KEYRATE:9:"." ;* Set the key

rate

CALL SendKeys(KEYS, SENDKEYS.WAIT, ERR)

* ALT+E,A - select the whole file

KEYS = SVK.ALT:"ea"

* CTRL+INSERT - copy to clipboard

KEYS = KEYS:SVK.CTRL:SVK.INS

* ALT+F4 - close Notepad

KEYS = KEYS:SVK.ALT:SVK.F4

CALL SendKeys(KEYS, SENDKEYS.WAIT, ERR)

COMMANDLINE = "NOTEPAD.EXE ":FILE

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 222 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL Execute(COMMANDLINE, ...

EXECUTE.SHOWMAXIMIZED, ...

EXECUTE.WAIT, ...

ERR)

END

Tests for the existence of the file

C:\TMP\SKTEXT.TXT and then, if it exists,

builds up a key sequence which sets a key

rate of one every half second, selects the

entire contents of the file, places it on the

Windows clipboard, and then closes the

application. Finally, the Windows Notepad

utility is executed with the file SKTEXT.TXT

loaded, and the stored key sequence is sent

to this application.

Comments

Only one instance of key replay can occur at

a time. A applications that use this facility

must be programmed to handle the

ERR.SENDKEYS.INUSE error when calling

the SendKeys and Execute functions.

If required, successive calls to SendKeys

can be used to build up a sequence of keys,

before sending them all with a single

Execute call.

Note

Use great care when sending keys to other

programs. UIMS has no way to detect or

correct errors generated by other programs,

and always sends the programmed series of

keystrokes. Make sure that you test your

program under a variety of conditions to ensure

that the keystrokes required by the other

program remain the same. If the other program

requires different keystrokes to those

programmed, data could be lost. If more

keystrokes are required than are programmed
(for instance, if a RETURN is required to respond

to a message box), the program will freeze

while waiting for the missing input. If there are

too many keystrokes in the programmed

sequence the results will be unpredictable.

See also Execute

6.138 SetBorderStyle

This subroutine changes the border style of an App or Child window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 223 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL SetBorderStyle(Context, Contact,

Style, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the window.

• Style: The new border style. This

must be one of the following values:

o UIMS.BORDER: Give the

window a border.

o UIMS.NONE: No border.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
GetBorderStyle, CreateAppWin,

CreateChildWin

6.139 SetClip

This subroutine sets the boundaries of a window's clipping region.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetClip(Context, Window, Top, Left,

Bottom, Right, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Window: The handle of the window.

• Top: The position, in coordinate

units, of the top edge of the clipping

region.

• Left: The position, in coordinate

units, of the left-hand edge of the

clipping region.

• Bottom: The position, in coordinate

units, of the bottom edge of the

clipping region.

• Right: The position, in coordinate

units, of the right-hand edge of the

clipping region.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 224 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

Top, Left, Bottom and Right must be

specified relative to the top left-hand corner

of the window's client area (position 0,0).

These parameters will be interpreted

according to the coordinate mode (text or

graphics) currently selected for the

application context.

Setting Top, Left, Bottom and Right all to

zero removes any previously set clipping

region. With no clipping region set, text and

graphics will be clipped at the edges of the

client area, whatever its size.

See also GetClip

6.140 SetContactFocus

This subroutine gives the focus to a particular contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetContactFocus(Context, Contact,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

which is to receive the focus.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Some contacts cannot accept the focus. If

the specified contact has children, the focus

will normally pass to the first child in its list

of children which can accept the focus. If

the contact has no children, an error will be

returned.

See also GetChildFocus

6.141 SetCoordMode

This subroutine sets the coordinate mode by which positions on the screen are

referenced.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetCoordMode(Context, CoordMode,

vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 225 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

AppContext object.

• CoordMode: The required coordinate

mode. This must be one of the

following values:

o UIMS.COORD.TEXT: Screen

positions are referenced to

the nearest character

position, where the size of a

character is that of an upper-

case character in the default

system typeface.

o UIMS.COORD.GRAPHIC:

Screen positions are

referenced to the nearest

pixel.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
When an application signs on to UIMS, text

mode is selected.

See also GetCoordMode

6.142 SetCursorPosition, SetCursorState

These subroutines change the different attributes of the cursor within an AppWindow or

ChildWindow contact.

• SetCursorPosition changes the position of the text cursor within the window.

• SetCursorState sets the type of text cursor that is currently selected and

whether or not the cursor is visible.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetCursorPosition(Context, Window,

HPos, VPos, vErr)

CALL SetCursorState(Context, Window,

Visible, CurType, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Window: The handle of the

AppWindow or ChildWindow

contact.

• HPos: The horizontal coordinate of

the cursor position.

• VPos: The vertical coordinate of the

cursor position.

Visible Specifies whether or not the

cursor is visible. This must be one of

the following values:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 226 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o TRUE: Make the cursor

visible.

o FALSE: Hide the cursor.

• CurType: A value representing the

type of cursor displayed. This will be

one of the following:

o UIMS.BAR: Vertical bar.

o UIMS.BLOCK: Block cursor.

o UIMS.OUTLINE: Outline

cursor.

o UIMS.UNDERLINE:

Underline cursor.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

HPos and VPos must be specified relative to

the top left-hand corner of the window's

client area (position 0,0). These parameters

will be interpreted according to the

coordinate mode (text or graphics) currently

selected for the application context.

See also GetCursorPosition, GetCursorState

6.143 SetDrawrule

This subroutine attaches a new Drawrule object to the specified object or contact. This

changes attributes such as foreground and background colour (refer to the description of

the Drawrule object in Section 3).

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetDrawrule(Context, Object,

Drawrule, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the object or

contact to which the drawrule is to be

attached.

• Drawrule: The handle of the

Drawrule object. If this parameter is

zero, the current drawrule will be

removed. Note, however, that if the

contact has a parent, the old

drawrule will be replaced by that

attached to the parent object.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 227 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

has occurred or will be zero for

successful completion.

Comments

A drawrule can be attached to only the

following objects and contacts:

• AppWindow

• ChildWindow

• Line

• Rectangle

• Text

• AppContext

Attempting to attach a drawrule to an object

or contact other than those listed above will

result in an error.

See also GetDrawrule

6.144 SetEnabled

This subroutine enables or disables a contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetEnabled(Context, Contact,

Enabled, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact to

be enabled or disabled.

• Enabled: The required state. This

must be one of the following values:

o TRUE: Enable the contact.

o FALSE: Disable the contact.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A disabled contact remains displayed but

cannot be selected by the user. The disabled

state is indicated a greying effect, the exact

form of which is platform dependent.

See also Enable, Disable, GetState

6.145 SetEnabledNVGroup

This subroutine enables or disables a NewView group.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 228 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

INCLUDE UIMSDEFS FROM UIMS-TOOLS

;* Only required for contact groups

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS ;* Only required for contact groups

CALL SetEnabledNVGroup(Context,

Group, Enable, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: The identifier for the group to

be enabled or disabled.

• Enabled: The required state. This

must be one of the following values:

o TRUE: Enable the group.

o FALSE: Disable the group.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A disabled group remains displayed but

cannot be selected by the user. In the case

of groups of contacts, the disabled state is

indicated a greying effect, the exact form of

which is platform dependent. For groups of

hot spots, the mouse pointer does not

change shape as it passes over them.

See also SetMappedNVGroup

6.146 SetEventMask

This subroutine specifies which types of message will be received by the application. A

mask can be applied to the whole application, or to individual objects.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetEventMask(Context, Object,

EventMask, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of an object.

• EventMask: The new event mask for

the object. This must be a

combination of the event mask

constants listed in Section 4.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 229 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

An event mask specifies which types of

messages will be passed on from an object

to its parent. Since all objects and contacts

are ultimately children of the application

context, an event mask applied to the

AppContext object controls which types of

messages will be received by the

application.

See also GetEventMask, SetSecondaryEventMask

6.147 SetHelpFile – SetHelpKey

These subroutines change the settings of the application's AppHelp object.

• SetHelpFile attaches a help file on the PC to the application.

• SetHelpIndex associates a contact with a section of the help file.

• SetHelpKey assigns a key as the help accelerator.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetHelpFile(Context, Filename, vErr)

CALL SetHelpIndex(Context, Contact,

Section, vErr)

CALL SetHelpKey(Context, Key, vErr)

Syntax

elements

• Context: The handle of the

AppContext.

• Filename: A string containing the

name of the help file. If no path is

specified, the file is loaded from the

disk and directory specified in the

RFW.INI file on the PC.

• Contact: The handle of a contact.

• Section: The help-id of the section of

the help file that is to be associated

with the specified contact.

• Key: The virtual key code of the key

that is to be assigned as the help

accelerator.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also
GetHelpFile, GetHelpIndex, GetHelpKey,

SetNVHelp

6.148 SetMapped

This subroutine allows you to decide whether or not a contact is displayed on the screen.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 230 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetMapped(Context, Contact,

Mapped, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact.

• Mapped: The required state. This

must be one of the following values:

o TRUE: Make the contact

visible (mappable).

o FALSE: Make the contact

invisible (unmappable).

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A mappable contact will only be visible if it

has a parent and that parent is visible.

• Making a contact with a visible

parent mappable will make it and any

mappable children visible.

• Conversely, making a contact with a

visible parent unmappable will make

it and any children invisible.

Newly created contacts are mappable.

Menu and MenuItem contacts cannot be

made unmappable.

See also Map, UnMap, GetState

6.149 SetMappedNVGroup

This subroutine allows you to decide whether or not a NewView group is displayed on the

screen.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

INCLUDE UIMSDEFS FROM UIMS-TOOLS

;* Only required for contact groups

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS ;* Only required for contact groups

CALL SetMappedNVGroup(Context,

Group, Mapped, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Group: The identifier for the group.

• Mapped: The required state. This

must be one of the following values:

o TRUE: Make the group

visible.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 231 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o FALSE: Make the group

invisible.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The effect of this subroutine depends on

whether the group consists of contacts or

hot-spots, and on the type of contact:

• For button contacts, setting them

mappable makes them visible;

setting them unmappable makes

them invisible. Since an invisible

contact cannot be operated by the

user, unmappable buttons are in

effect also disabled.

• MenuItem contacts cannot be made

unmappable, so this subroutine will

have no effect on this type of

contact.

• For hot spots, setting them mappable

makes them visible by drawing a

border around them; setting them

unmappable makes them invisible.

However, unlike button contacts,

invisible hot-spots can still be

operated by the user – to disable the

hot-spots use the

SetEnabledNVGroup subroutine.

See also SetEnabledNVGroup

6.150 SetNVHelp

This subroutine attaches a help file on the PC to a NewView application.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL SetNVHelp(Filename, vErr)

Syntax

elements

• Filename: A string containing the

name of the help file. If no path is

specified, the file is loaded from the

disk and directory specified in the

RFW.INI file on the PC.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 232 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

This subroutine allows a NewView

application to provide application-specific

help. The file specified is displayed when the

user selects the Application (or equivalent)

command from the RealLink Help menu.

Refer to Section 5 for more details.

See also SetHelpFile

6.151 SetPointer

This subroutine attaches a new Pointer object to the specified object or contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetPointer(Context, Object, Pointer,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Object: The handle of the object or

contact to which the pointer is to be

attached.

• Pointer: The handle of the Pointer

object.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

A pointer can be attached to only the

following objects and contacts:

• AppWindow

• ChildWindow

• AppContext

Attempting to attach a pointer to an object

or contact other than those listed above will

result in an error.

See also GetPointer

6.152 SetPointerPos

This subroutine sets the position of the mouse pointer, relative to either the screen or a

specified contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetPointerPos(Context, Contact,

HPos, VPos, vErr)

Syntax

elements

• Context: The handle of the

application context.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 233 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Contact: The handle of a contact. If

this parameter is zero the position is

set to the screen.

• HPos: The new horizontal position for

the pointer in coordinate units.

• VPos: The new vertical position for

the pointer in coordinate units.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

SetPointerPos sets the position of the

pointer's hot spot. If a contact is specified,

the position is set relative to the top left-

hand corner of the contact's client area

(position 0,0); otherwise, the position is set

relative to the top left-hand corner of the

screen.

The position specified is interpreted in

accordance with the coordinate mode (text

or graphics) currently selected for the

application context.

See also GetPointerPos

6.153 SetSecondaryEventMask

This subroutine sets a secondary event mask for an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetSecondaryEventMask(Context,

EventMask, Unmaskable, Alert, vErr)

Syntax

elements

• Context: The handle of the

application context.

• EventMask: The secondary event

mask for the application. This must

be a combination of the event mask

constants listed in Section 4.

• Unmaskable: This specifies whether

messages which cannot be masked

should be allowed to reach the

application. This must be one of the

following values:

o TRUE: Allow non-maskable

messages to reach the

application.

o FALSE: Prevent non-

maskable messages reaching

the application.

• Alert: This parameter is reserved for

future use – it must be set to FALSE.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 234 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
The secondary event mask is described in

Section 4.

See also GetSecondaryEventMask, SetEventMask

6.154 SetSync

This subroutine selects synchronous or asynchronous error response handling for UIMS

subroutine calls.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetSync(Context, Mode, vErr)

Syntax

elements

• Context: The handle of the

application context.

Note

In UIMS version 2.0 this parameter is

reserved for future use – any value will

be ignored.

• Mode: The required error handling

mode. This must be one of the

following values:

o TRUE: Synchronous.

o FALSE: Asynchronous.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments
Unless changed, UIMS handles errors

asynchronously.

See also GetMsg

6.155 SetTeFontSize

This subroutine sets the point size for text displayed in the RealLink or currently active

'terminal emulation' (TE) window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetTeFontSize(PointSize, Flags,

vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 235 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• PointSize: The required point size.

This should one of those which is

available for use in the RealLink or

TE window – use GetTePointSizes

to find out which sizes are available.

If a size that is not available is

requested, an error is returned.

• Flags: This parameter is reserved for

future use – it must be set to zero.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The point size currently in use in the

RealLink or TE window can be obtained by

calling GetTeFontSize.

See also GetTeFontSize, GetTeFontSizes

6.156 SetTeWindow

This subroutine changes the window that is used as the application's 'terminal emulation'

(TE) window – that is the window in which output printed to the terminal (using PRINT,

CRT, and so on…) will be displayed.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetTeWindow(Context, Window,

Controls, Err)

Syntax

elements

• Context: The handle of the

application context. If this parameter

is zero, the current RealLink context

is assumed.

• Window: The handle of the App or

Child window that is to act as the TE

window. If this parameter is zero, the

terminal emulation function is

returned to the RealLink window.

• Controls: Determines whether or not

the RealLink window is to remain

visible, and the characteristics of the

new TE window. This must be a

combination of the following values:

o TE.SHOWWIN: The RealLink

window is to remain visible. If

not set, the RealLink window

will be hidden.

o TE.NOAUTOSCROLL:

Disables the horizontal scroll

bar. If not set, a horizontal

scroll bar will appear should

the TE window become too

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 236 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

narrow to display 80

characters at the current point

size.

o TE.NOAUTORESIZE:

Disables the RealLink Auto

Resize Window feature (if

selected for the RealLink

window).

o TE.NOAUTOFONT: Disables

the RealLink Auto Select Font

feature (if selected for the

RealLink window).

o TE.10PTFONT: Changes the

text point size to 10pt. If not

set, the point size currently

selected for the RealLink

window will be retained.

The following pre-defined style

is also available:

o UIMS.NONE: None of the

above.

In general, when setting a new TE

window the RealLink window should

be hidden (do not select the

TE.SHOWWIN option). When the

terminal emulation function is

returned to the RealLink window

(Window = 0), TE.SHOWWIN must

be selected.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

The screen coordinate mode (see

SetCoordMode) must be set before calling

SetTeWindow. Changing the coordinate

mode once the TE window is set is not

recommended, but should this be done,

SetTeWindow must be called again, even if

the TE window is to remain unchanged.

When a UIMS application is run, the

RealLink window will remain visible unless

hidden by SetTeWindow. Applications

which do not change the TE window can

hide the RealLink window by calling

SetTeWindow with the Context and

Window parameters both set to zero, and

TE.SHOWWIN not selected. For example:

CALL SetTeWindow(0, 0, UIMS.NONE, ERR)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 237 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Before leaving the application and returning

to RealLink, the RealLink window must be

redisplayed as follows:

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR)

See also
GetTeFontSize, GetTeFontSizes,

SetTeFontSize

6.157 SetUimsMode

This subroutine restores message processing after calls to:

• NewView subroutines.

• The Execute, SendKeys, or SystemCommand subroutines.

• DATA/BASIC commands that send data to or receive data from the terminal.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetUimsMode

Comments

This subroutine must be used before calling

GetMsg, if any subroutines or commands of

the types listed above have been used. If

this is not done, Keyboard messages will be

ignored.

6.158 SetUpdate

This subroutine allows you to specify when a contact will be redrawn if a change occurs.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SetUpdate(Context, Contact, Update,

vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

whose update mode you wish to

change.

• Update: The update mode you

require for the contact; this must be

one of the following values:

o UIMS.IMMEDIATE: Redraw

immediately.

o UIMS.NONE: Do not redraw;

wait for a Draw command.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 238 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Comments

Some operations (for example, Move,

Resize) occur immediately whatever the

update mode.

The update mode of Menu and MenuItem

contacts is always the same as the MenuBar

to which they are attached and cannot be

changed independently. If Contact is the

handle of a Menu or a MenuItem,

SetUpdate returns an error.

See also GetUpdate, Draw

6.159 SignOff

This subroutine signs off a UIMS session.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SignOff(Context, vErr)

Syntax

elements

• Context: The handle of the

AppContext object that is to be

signed off.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

When this subroutine is called, UIMS

destroys any remaining objects created

during the session. The session is then

terminated.

See also SignOn

6.159 SignOn

This subroutine signs on a UIMS session and creates an AppContext object for the new

session.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SignOn(AppName, vContext)

Syntax

elements

• AppName: A string containing the

name of the application.

• vContext: A variable in which to

return the handle of the newly

created AppContext object. If the

sign on was not successful, the

handle returned will be zero.

Comments
The subroutine must be called before any of

the other UIMS subroutines can be used

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 239 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

during the session. The session is then

terminated.

See also SignOff

6.160 SoundSpeaker

This subroutine sounds the loudspeaker in the PC.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL SoundSpeaker(Pitch, Duration,

Repeat, Delay, vErr)

Syntax

elements

• Pitch: The frequency in Hertz of the

required sound.

• Duration: The duration of the sound

in milliseconds.

• Repeat: The number of repeats

required.

• Delay: The time delay between

repeats.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

6.161 StartImage

Loads the image manager, thus permitting the use of the DisplayImage and

EraseImage subroutines.

Syntax INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL StartImage(vImageMan)

Syntax

elements

• vImageMan: A variable in which to

return the handle of the image

manager. If the Image Manager

could not be loaded for any reason,

zero is returned.

Comments

The StopImage routine must be called to

unload the image manager before closing

the application.

See also DisplayImage, EraseImage, StopImage

6.162 StopImage

Unloads the image manager. Once this has been done, the DisplayImage and

EraseImage subroutines can no longer be used.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 240 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL StopImage(ImageMan, vErr)

Syntax

elements

• ImageMan: The handle of the image

manager, returned by the

StartImage subroutine.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. A return

value of zero indicates successful

completion. Otherwise, one of the

error codes listed in Appendix D is

returned.

Note

StopImage errors are always

returned synchronously.

UIMS.MSG.NOTIFY messages are

not generated

Comments
This routine must be called before closing

the application.

See also DisplayImage, EraseImage, StartImage

6.163 SystemCommand

Runs a DOS system command on the PC.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL SystemCommand(CommandCode,

Options, ParamString, vResponse, vErr)

Syntax

elements

• CommandCode: A value representing

the required system command.

• Options: A value which specifies

command options.

• ParamString: A string containing

command parameters. This can

contain any combination of

characters, except for "%" which

must be used to enclose

substitutable parameters (see

below).

• vResponse: A variable in which to

return the result of the command.

• vErr: A variable in which to return

the completion status of the

subroutine. In most cases this will be

ERR.SYS.SUCCESS for success,

ERR.SYS.FAIL for failure, or

ERR.SYS.INVCOMMAND for an invalid

command (but see below).

Commands The following commands are available:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 241 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

SYS.CREATED

IR

Creates a directory on the PC.

Options None. Must be set to zero.

ParamString

The name for the new

directory. This must not contain

ambiguous characters (* or ?).

vResponse Returned set to a null string.

vErr

Returned set to

ERR.SYS.SUCCESS for

success or ERR.SYS.FAIL for

failure.

SYS.DELDIR

Deletes a directory on the PC.

Options None. Must be set to zero.

ParamString

The name for the directory to

delete. This must not contain

ambiguous characters (* or ?).

vResponse Returned set to a null string.

vErr

Returned set to

ERR.SYS.SUCCESS for

success or ERR.SYS.FAIL for

failure.

Note

1. A directory can only be deleted if it is

empty.

2. It is not possible to delete the root

directory or the current working

directory.

SYS.DELFILE

Deletes a file on the PC.

Options None. Must be set to zero.

ParamString

The name for the directory to

delete. This must not contain

ambiguous characters (* or ?).

vResponse Returned set to a null string.

vErr

Returned set to

ERR.SYS.SUCCESS for

success or ERR.SYS.FAIL for

failure.

SYS.DOSEXEC

Starts a DOS or Windows program on the

PC.

Options None. Must be set to zero.

ParamString

A string containing the name of

the program, plus any optional

parameters and/or switches.

The program name can be that

of a PIF file. If the program

name does not contain a

directory path, UIMS will search

the PC for the executable file as

follows:

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 242 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1. The currently selected

directory on the PC.

2. The directories listed in

the PATH environment

variable.

vResponse Returned set to a null string.

vErr

Returned set to

ERR.SYS.SUCCESS for

success or to one of the

Execute error codes listed in

Appendix D.

SYS.EXIST

Checks whether a file or directory exists on

the PC and, if required, returns information

about that file or directory.

Options

The information required. This

must be a combination of the

following values:

• EXIST.TIMESTAMP:

Return the date and

time that the file or

directory was last

modified.

• EXIST.SIZE: Return

the size of the file in

bytes.

• EXIST.HEADER:

Return the first line of

the file.

• RFW.NONE: Check

whether the file or

directory exists, but do

not return any

information about it.

ParamString

The name of a file or directory.

This must not contain

ambiguous characters (* or ?).

vResponse

A dynamic array containing the

result of the command. Each

attribute contains the result of

one of the selected options, in

the order EXIST.TIMESTAMP,

EXIST.SIZE, EXIST.HEADER.

Only the results of selected

options are returned.

The results of the different

options are as follows:

• EXIST.TIMESTAMP

A string in the format:

weekday month day

hour : min : sec year

X'0D' X'0A'.

For example: Wed Jan 02
04:26:55 1992

• EXIST.SIZE

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 243 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The size of the file in

bytes.

• EXIST.HEADER

A string containing up to

36 characters from the

beginning of the file.

Only printable

characters [CHAR(32) to

CHAR(127)] are

returned – the string

ends at the first non-

printable character or

after 36 characters,

whichever is the sooner.

If no options are selected, a

null string is returned.

vErr

Returned set to one of the

following values:

• ERR.SYS.SUCCESS: A

file with the specified

name exists.

• ERR.SYS.DIRECTORY:

A directory with the

specified name exists.

• ERR.SYS.NOFILE: The

file or directory does not

exist.

SYS.LOOKUP

Performs any substitutions in the

ParamString parameter and returns the

result.

 Options None. Must be set to zero.

 ParamString

A command parameter string

containing substitutable

parameters (see below).

 vResponse

Returned containing the string

which results from replacing

any substitutable parameters in

ParamString.

 vErr
Always returned set to

ERR.SYS.SUCCESS.

Substitutable

parameters

The ParamString parameter can contain

substitutable parameters enclosed in

percent signs.

The following substitutions are available:

%EnvVar%

where EnvVar is the name of a DOS

environment variable.

The percent signs and the text in between

are replaced by the contents of the specified

variable. For example, %path% is replaced

by the DOS executable search path.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 244 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

%Section!Key!Default!IniFile%

where,

Section is the name of a section in the INI

file specified in IniFile (see below).

The default value is "reallink".

Key is the name specific parameter within

that section.

Default is the string to be returned if the

specified key cannot be found. The default is

a null string.

IniFile is the name of a Windows INI file.

The default value is "RFW.INI".

For example, %!rfwdir!!% is replaced by

the name of the RealLink for Windows

program directory, and

%intl!iCountry!!WIN.INI% is replaced by

the current Windows country code.

%%

is replaced by a single percent sign.

Note

1. After substitution, any pairs of
backslashes ("\\") are converted to

single backslashes ("\").

2. Substitutable parameters that do not

conform to the above rules are

removed from ParamString.

Examples

CALL SystemCommand(SYS.CREATEDIR, 0,

"c:\uimstemp", RESPONSE, ERR)

Creates a directory called c:\uimstemp on

the PC.
CALL SystemCommand(SYS.DELDIR, 0,

"c:\uimstemp", RESPONSE, ERR)

Deletes the directory called c:\uimstemp
from the PC.

CALL SystemCommand(SYS.DELFILE, ...

0, ...

"c:\uimstemp\myfile.txt", ...

RESPONSE, ...

ERR)

Deletes the file called

c:\uimstemp\myfile.txt from the PC.
CALL SystemCommand(SYS.EXIST, ...

EXIST.SIZE + EXIST.HEADER, ...

"%!resourcepath!!%\generic.res", ...

RESPONSE, ...

ERR)

Checks whether the file generic.res exists on

the PC in RealLink's resource directory

and, if it does, returns a dynamic array

containing its size (in the first attribute) and

its first 36 bytes (in the second attribute).

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 245 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CALL SystemCommand(SYS.LOOKUP, 0,

"%!helppath!!%", RESPONSE, ERR)

Returns the directory on the PC that

contains the RealLink help files.

See also Execute

6.164 TextEditorGetContent, TextEditorGetTextLen

These subroutines return the different attributes of a TextEditor contact.

• TextEditorGetContent returns the text from the text editor.

• TextEditorGetTextLen returns the length of the text.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL TextEditorGetContent(Context,

Editor, vText, vErr)

CALL TextEditorGetTextLen(Context,

Editor, vLength)

Syntax

elements

• Context: The handle of the

application context.

• Editor: The handle of the TextEditor

contact.

• vText: A variable in which to return

the contents of the text editor. The

text will be returned as a null

terminated string with attribute

marks separating the individual lines.

• vLength: A variable in which to

return the number of text characters.

Note that the attribute marks

separating multiple lines are included

in the count.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also TextEditorSetContent

6.165 TextEditorSetContent

This subroutine assigns a text string to a TextEditor contact for editing or display.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL TextEditorSetContent(Context,

Editor, Text, vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 246 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

application context.

• Editor: Handle of the TextEditor

object

• Text: The text string to be displayed

for editing in the text editor window.

The text can consist of one or more

lines, with multiple lines separated

by attribute marks.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also CreateTextEditor, TextEditorGetContent

6.166 TextGetContent

This subroutine returns the text displayed in a Text contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL TextGetContent(Context, Text,

vString, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Text: The handle of the Text contact.

• vString: A variable in which to return

the text string.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also TextSetContent

6.167 TextSetContent, TextSetJustification

These subroutines change the different attributes of a Text contact.

• TextSetContent changes the text displayed.

• TextSetJustification changes the alignment of the text.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL TextSetContent(Context, Text,

String, vErr)

CALL TextSetJustification(Context, Text,

Just, vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 247 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• Context: The handle of the

application context.

• Text: The handle of the Text contact.

• String: The new text string.

Just The alignment of the text. This

must be one of the following values:

o UIMS.JUST.LEFT: Left

aligned.

o UIMS.JUST.RIGHT: Right

aligned.

o UIMS.JUST.BOTH: Both left

and right aligned (justified).

o UIMS.JUST.CENTRED:

Centered.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also CreateText, TextGetContent

6.168 TitledButtonSetStyle, TitledButtonSetTitle

These subroutines change the different attributes of a TitledButton contact.

• TitledButtonSetStyle changes the style of the button.

• TitledButtonSetTitle changes the title displayed inside the button.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL TitledButtonSetStyle(Context,

Button, Style, vErr)

CALL TitledButtonSetTitle(Context,

Button, Title, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Button: The handle of the

TitledButton contact.

• Style: The required style for the

button. This must be one of the

following values:

o UIMS.NONE: Normal (thin)

border.

o UIMS.TB.THICK: Thickened

border - indicates a default

button.

• Title: The new button title.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 248 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

See also CreateTitledButton

6.169 TypeFaceGetName – TypeFaceGetPointSizes

These subroutines return different attributes of a TypeFace object.

• TypeFaceGetName returns the name of the typeface.

• TypeFaceGetPointSize returns one of the available point sizes.

• TypeFaceGetPointSizes returns a list of the available point sizes for the

typeface.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL TypeFaceGetName(Context,

TypeFace, vFontName, vErr)

CALL TypeFaceGetPointSize(Context,

TypeFace, Index, vPointSize)

CALL TypeFaceGetPointSizes(Context,

TypeFace, vaPointsizes, vErr)

Syntax

elements

• Context: The handle of the

application context.

• TypeFace: The handle of a TypeFace

object.

• vFontName: A variable in which to

return the name of the typeface.

• Index: The position in the list of the

point size you require. The list is

numbered starting from 0.

• vPointSize: A variable in which to

return the point size. If zero is

returned, there is no point size at the

requested position.

• vaPointsizes: A variable in which to

return a list of numbers representing

the available point sizes. The list is

returned as a dynamic array with one

point size in each attribute.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also GetTypeFace, GetTypeFaces

6.170 UngrabPointer

This subroutine releases the pointer following a call to GrabPointer.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL UngrabPointer(vErr)

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 249 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax

elements

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

See also GrabPointer

6.171 UnMap

This subroutine makes a contact unmappable; that is, it removes the contact from the

screen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL UnMap(Context, Contact, vErr)

Syntax

elements

• Context: The handle of the

application context.

• Contact: The handle of the contact

you wish to remove from the screen.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

Making a contact unmappable also removes

its children from the screen. The mapped

state of the children, however, remains

unchanged.

See also Map, SetMapped, GetState

6.172 WaitPointerOff

This subroutine changes the mouse pointer from the wait pointer to the pointer type

specified by the Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL WaitPointerOff(Context, vErr)

Syntax

elements

• Context: The handle of the

AppContext.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

This subroutine should be called following a

call to WaitPointerOn, to restore the

pointer type to its previous state.

Section 6: Subroutine reference

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 250 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note that WaitPointerOff also performs an

UngrabPointer.

See also
WaitPointerOn, PointerSetType,

UngrabPointer

6.173 WaitPointerOn

This subroutine changes the mouse pointer to a wait pointer (normally an hourglass),

overriding the pointer type specified by the Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS

INCLUDE UIMSCOMMON FROM UIMS-

TOOLS

CALL WaitPointerOnf(Context, vErr)

Syntax

elements

• Context: The handle of the

AppContext.

• vErr: This is a variable that must be

supplied to return the completion

status of the subroutine. It will

contain a UIMS error code if an error

has occurred or will be zero for

successful completion.

Comments

This subroutine should be called to change

the appearance of the mouse pointer while

lengthy processing is in progress. When this

processing is complete, the WaitPointerOff

subroutine should be called to restore the

pointer type to that specified by the Pointer

object.

Note that WaitPointerOn also performs a

GrabPointer.

See also
WaitPointerOff, PointerSetType,

GrabPointer

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 251 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 7: Resource compiler
This chapter describes how to use the UIMS Resource Compiler to create resource files on

the PC.

7.1 Introduction

The UIMS resource compiler allows the graphical objects used by an application to be

defined on the PC rather than the host. This has two advantages:

• Processing is shared between the PC and the host, reducing communication

between the two systems and therefore improving performance.

• Resources created in this way are loaded only when the application is run,

allowing a programmer to produce different versions of an application, without

having to change the host program.

Resources are defined in a source file (resource script) on the PC; this can be produced

by any ASCII text editor (Windows Notepad, for example). The completed source must

then be compiled, using the UIMS Resource Compiler, RLRC. A host UIMS application

loads the compiled resources by calling the LoadAppRes subroutine.

7.2 Object definitions

Each object must be defined by a statement with the form:

OBJECTTYPE = Ident

{

ATTRIBUTE = Value

[ATTRIBUTE = Value

…]

}

where,

• OBJECTTYPE is the type of object being defined: SCROLLBAR, EDITBOX, and so

on... - see the list of object types in Appendix C. This must be in upper case.

• Ident is an integer value by which the object will be identified. Once the object

has been loaded into the UIMS application, this value will be used as a handle.

If the value 0 is used, UIMS will assign a handle to the object. Note, however, that

there is no way of discovering the value of this handle, and that this should

therefore only be done for objects to which the application will never require

access. Typical examples are separators in a menu and static text in a dialog box.

Note

UIMS reserves handles 8000 to 9999 for its own use – these must not be used by the

application.

• ATTRIBUTE is an attribute of the object: SIZE, ENABLED, and so on... This must

be in upper case.

• Value is the value to be assigned to this attribute. This can be any of the

following:

o A numeric value; for example: 10.

o A valid Resource Compiler keyword for the specified attribute; for example:

TRUE.

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 252 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

o A literal string, enclosed in single quotes; for example: 'Title'. If the string

itself contains a single quote, this must be preceded by another single

quote; for example: 'Type ' 'c' ' to continue'.

o A list of similar or dissimilar settings (depending on the attribute)

separated by commas; for example: CHILDREN 200, 221, 234, 378.

7.2.1 Exiting the TDM menu

The following example defines a titled button called Cancel. The button is 60 coordinate

units wide by 18 high and is positioned 80 coordinate units across and 24 down relative

to its parent. The title displayed in the button is Cancel.

TITLEDBUTTON = 102

{

SIZE = 60, 18

POSITION = 80, 24

TITLE = 'Cancel'

}

Any number of attributes may be specified between the braces. Note however, that the

braces must always be present.

7.2.2 Nested definitions

Object definitions can be nested to associate children with their parents. For example, a

dialog box might be designed with three option buttons and two titled buttons. To

automatically associate the buttons with the window, a definition of the following form

would be needed:

DIALOGBOX = 200

{

TITLE = 'Choose a sentence'

POSITION = 200,300

SIZE = 266,62

STYLE = CLOSABLE,MOVABLE

OPTIONBUTTON = 201

{

TITLE = 'Hello'

POSITION = 10,6

SIZE = 68,16

}

OPTIONBUTTON = 202

{

TITLE = 'Good-bye'

POSITION = 10,23

SIZE = 96,16

}

OPTIONBUTTON = 203

{

TITLE = 'Good morning'

POSITION = 10,40

SIZE = 133,16

}

TITLEDBUTTON = 221

{

TITLE = 'OK'

POSITION = 167,7

SIZE = 88,21

}

TITLEDBUTTON = 222

{

TITLE = 'CANCEL'

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 253 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

POSITION = 167,31

SIZE = 88,21

}

}

The same result can be achieved by defining the option and titled buttons separately and

then specifying the CHILDREN attribute for the dialog window. Note, however, that if

nesting is not used, the children must be defined before their associated parent object, in

order that the parent can be created successfully. If this is not done, the resource

compilation will fail. The following example shows this alternative method:

OPTIONBUTTON = 201

{

TITLE = 'Hello'

POSITION = 10,6

SIZE = 68,16

}

OPTIONBUTTON = 202

{

TITLE = 'Good-bye'

POSITION = 10,23

SIZE = 96,16

}

OPTIONBUTTON = 203

{

TITLE = 'Good morning'

POSITION = 10,40

SIZE = 133,16

}

TITLEDBUTTON = 221

{

TITLE = 'OK'

POSITION = 167,7

SIZE = 88,21

}

TITLEDBUTTON = 222

{

TITLE = 'CANCEL'

POSITION = 167,31

SIZE = 88,21

}

DIALOGBOX = 200

{

TITLE = 'Choose a sentence'

POSITION = 200,300

SIZE = 266,62

STYLE = CLOSABLE,MOVABLE

CHILDREN = 201,202,203,221,222

}

7.2.3 Menus

Additional features are available when defining MenuBar and Menu contacts.

7.2.3.1 MenuItem definition

Within the definition of a menu bar or menu, simple menu items can be automatically

defined as part of the CHILDREN attribute. There is no need for separate menu item

definitions, either nested within or separate from the definition of the parent.

To create menu items in this way, the CHILDREN attribute must be defined as a list of

menu item titles, each followed by an equals sign and an identifying number. Each menu

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 254 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

item title must be enclosed in single quotes. For example, in a MENU called Edit, there

might be items such as Cut, Paste, Delete. These would be coded as follows:

MENU = 250

{

TITLE = 'Edit'

CHILDREN = 'Cut'=251,'Paste'=252,'Delete'=253

}

The Resource Compiler will create a MenuItem contact for each entry in the list of

children. The example given above would be equivalent to:

MENUITEM = 251

{

TITLE = 'Cut'

}

MENUITEM = 252

{

TITLE = 'Paste'

}

MENUITEM = 253

{

TITLE = 'Delete'

}

MENU = 250

{

CHILDREN = 251,252,253

}

7.2.3.2 MenuItem attributes

When a menu item is defined in a CHILDREN statement as described above, certain

attributes can be set by including additional characters in the title text.

• & (ampersand): Designates the following character as a selector key. When the

menu item is displayed, the character concerned is shown underlined and the user

can select the item by pressing that key.

Note

1. You can also use an ampersand in this way when defining Menu contacts.

2. The user must press the ALT key to activate the menu bar before using a selector

key to select an item from the menu bar.

• ! (exclamation mark): This causes the menu item to be checked – equivalent to

setting the CHECKMARK attribute to TRUE. For example:

MENU = 75

{

TITLE = 'View'

CHILDREN = 'Normal!'=80,'Draft'=81,'Page'=82

}

defines a View menu with Normal, Draft and Page items. The Normal item is

checked.

• + (plus sign): Causes the menu item to be disabled (greyed) – equivalent to

setting the ENABLED attribute to FALSE. For example:

MENU = Edit

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 255 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

{

TITLE = 'Edit'

CHILDREN = 'Cut+','Paste','Delete+'

}

defines an Edit menu with Cut, Paste and Delete items. The Cut and Delete items

are disabled.

Note that these substitutions only apply to the CHILDREN attribute of MenuBar and

Menu definitions.

7.4.3 Separator items

If a single hyphen is used as the title of a menu item, a separator item is created. This

appears as a continuous line across the width of its parent menu. A separator item

cannot be selected by the user and should be used to visually group related menu items.

Note that a separator item cannot be attached to a menu bar.

7.2.4 Screen coordinates

Most types of contact have Size and Position attributes which can be set in the resource

script. When the resources are loaded into an application, these attributes are interpreted

in accordance with the coordinate mode (text or graphics) set for the application:

• If text mode is selected, the coordinates are interpreted as character positions,

based on the average size of the upper-case characters in the default system font.

• If graphics mode is selected, the coordinates are interpreted as pixel positions on

an arbitrary screen 1000 pixels wide by 1000 pixels high. When the resources are

loaded into an application, the coordinates are scaled to fit within the actual

screen.

For example, if an application is displayed on a VGA screen (640 pixels wide by

480 pixels high), and the resource file specifies position 500, 500 for a contact,

when the resource is loaded into the application, the horizontal coordinate will be

converted to position 320 and the vertical coordinate to position 240 – that is half-

way across and half-way down the screen. Similarly, if the size of a contact is

specified as 250 pixels wide by 750 high, when loaded and displayed, it will always

be one quarter of the screen wide and three quarters of the screen high, whatever

the screen resolution.

7.2.5 Resource file control

The first line of the source file may contain the version number in the form.

VERSION = string

This will be written after the first record of the output file. If it is not the first line of the

source file, it will be ignored.

7.2.5.1 Comments

Comments may be included in the source code at any point except within literal strings or

in the middle of a word. A comment can be indicated in three ways:

• It can be placed between the characters '/*' and '*/', as in the C programming

language. For example:
/* These two lines

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 256 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

form a single comment */

• It can be placed on a separate line which starts with an asterisk (*), as in

DATA/BASIC. For example:

* This is a comment

• It can be placed on the end of a line, if preceded by the characters ';*', as in

DATA/BASIC. For example:

TITLEDBUTTON = 102 ;* Cancel button

7.2.6 White-space characters

Spaces, newline characters and tab characters may be used freely within the source code

to aid readability. They will be ignored by the compiler. Note, however, that a single line

cannot be longer than 200 characters.

7.3 White-space characters

The UIMS Resource Compiler includes a pre-processor which manipulates the text of a

source file as the first phase of compilation. Pre-processor commands are typically used

to make resource files easy to change and easy to compile for different execution

environments. Commands in the source file tell the pre-processor to perform specific

actions. For example, the pre-processor can replace identifiers in the text, insert the

contents of other files into the source file, or suppress some definitions by removing

sections of the text.

The pre-processor recognises the following commands:

#DEFINE

EQUATE

EQU

#INCLUDE

#IFDEF

#ELSE

#ENDIF

A pre-processor command will only be recognised if it occurs at the beginning of a line - if

the command is preceded by spaces or tabs, it will be ignored. Note that, except for the

EQUATE and EQU commands which must always be in upper case, these commands can

be in upper case, as shown, or in lower case, as used in C language program and header

files.

7.3.1 Constant definitions

Constants may be used to associate meaningful identifiers (tokens) with values and

keywords. A token can be redefined as many times as required within the source code,

the new value applying only to code which follows the re-definition.

A constant can be defined in three ways:

#DEFINE token[value]

EQUATE token TO value

EQU token TO value

where,

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 257 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

#DEFINE, EQUATE and EQU are the three forms of the pre-processor command. Note

that in the case of #DEFINE, this can be in upper case as shown, or in lower case as used

in C language program and header files. The EQUATE and EQU keywords must be in

upper case.

token is an identifier which is used later in the source code.

TO is an additional keyword required by the EQUATE and EQU forms of the command.

This must be in upper case.

value is the value which will replace the identifier wherever it is found in the source code

following this definition. It may be a number, a text string (enclosed in single quotes) or

another identifier.

If no substitution is required (for instance, when defining tokens to be used by the

#IFDEF statement – see below), the #DEFINE form can be used with no value

parameter.

7.3.1.1 Example

#DEFINE HEAD 'Heading to be used for all windows'

#DEFINE Win1 100

#DEFINE Win2 150

APPWINDOW = Win1

{

TITLE = HEAD

.

.

.

}

APPWINDOW = Win2

{

TITLE = HEAD

.

.

.

}

In this example, the pre-processor will replace every occurrence of the token HEAD with

the text 'Heading to be used for all windows', and the contact names Win1 and Win2 with

the identifiers 100 and 150 respectively.

7.3.2 File inclusion

The #INCLUDE command inserts the contents of a named file into the source code. You

can create files which contain constant definitions and then use #INCLUDE commands to

add these definitions to any source file.

#INCLUDE tells the pre-processor to treat the contents of the named file as if it appeared

in the source at the point where the command appears. The included text can also

contain preprocessor commands and these are carried out before processing of the

original source file resumes. An included file can itself contain #INCLUDE commands, up

to a maximum of 5 levels.

The syntax of the #INCLUDE command is as follows:

#INCLUDE [drive:][path] filename

Where,

#INCLUDE is the pre-processor command.

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 258 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

[drive:][path] filename

specifies the file to be included.

7.3.3 Conditional compilation

If required, the same source file can be used to generate different versions of an

application. Directives are provided which allow you to suppress compilation of parts of a

source file by testing a constant expression or identifier to determine which text blocks

should be removed from the source file during pre-processing.

The syntax of these directives is as follows:

#IFDEF ident

 source code block

[#ELSE

 source code block]

#ENDIF

where ident is an identifier which might have been previously defined by a constant

definition pre-processor command. If ident has been defined, regardless of its value, the

source code lines immediately following the #IFDEF statement are included in the source

to be compiled and those following the #ELSE statement (if any) are removed. If ident

has not been defined, the source code following the #ELSE statement (if any) is included

instead.

Source code blocks can include both object definitions and pre-processor directives.

#IFDEF statements can be nested within each other, up to a maximum of 9 levels. An

#ELSE statement is always assumed to be associated with the most recent open #IFDEF

statement. Consider the following:

#IFDEF Ident1

 Block1

#IFDEF Ident2

 Block2
#ELSE

 Block3
#ENDIF

#ENDIF

The blocks which are compiled depend on the states of Ident1 and Ident2 as follows:

Indent1 Indent2 Block compiled

 None

Defined Block1, Block3

 Defined None

Defined Defined Block1, Block2

However, in

#IFDEF Ident1

 Block1

#IFDEF Ident2

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 259 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 Block2
#ENDIF

#ELSE

 Block3
#ENDIF

the following applies:

Indent1 Indent2 Block compiled

 Block3

Defined Block1

 Defined Block3

Defined Defined Block1, Block2

7.4 Compiling a resource script

A resource script source file is compiled by using the RLRC command. This has the

following syntax:

RLRC [filename]

If you omit the filename parameter, you will be prompted for the name of your source

file:

Resource script filename (.ucl) :

The source-file name supplied as input to the RLRC command must have the suffix '.UCL'

(UIMS Command Language). Files included with the #INCLUDE pre-processor command

can have the suffixes '.UCL' or '.H'.

The compilation process creates an output file with the same name as the source file, but

with the suffix '.RES'.

Note

The resource compiler can be run from any directory but must have access to the files RC.DAT

and RC.MSG. These files must be in the directory specified by the DOS environment variable

URCPATH. If this variable is not set, the files are assumed to be in the current directory.

If you intend to run RLRC from directories other that containing RC.DAT and RC.MSG, you

should set URCPATH to the correct directory. For example:

SET URCPATH=C:\RFW

tells the resource compiler that RC.DAT and RC.MSG are in the directory C:\RFW.

If required, URCPATH can be set at boot time by including the above command in

the AUTOEXEC.BAT file.

7.4.1 Errors

When a compilation error occurs, the action taken depends on whether it has been

detected by the pre-processor or the compiler.

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 260 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• If the error occurs during pre-processing, an error message is displayed and the

line containing the error is ignored.

• If the error occurs during compilation, the number of the line in which the error

occurred is displayed, together with an error message. All subsequent source lines

are ignored, up to the closing brace of the current outer nested level. Compilation

then continues from this point.

Note that the line numbers reported are not those in the original source file, but in

a temporary file, RCTEMP, created in the current directory. If errors occur, this file

should be examined to determine their location.

7.4.1.1 Example

The following example illustrates how errors are reported.

The file RESOURCE.UCL, shown below, contains two errors:

(1) This line contains an incomplete pre-processor command.

(2) A mandatory OptionButton attribute – SIZE – has been commented out.

EQU Dialog TO 200

EQU Hi TO 201

EQU Bye TO 202

EQU Morning TO 203

EQU OK (1).
EQU Cancel TO 222

OPTIONBUTTON = Hi

{

TITLE = 'Hello'

* SIZE = 68,16 (2)
POSITION = 10,6

}

OPTIONBUTTON = Bye

{

TITLE = 'Good-bye'

POSITION = 10,23

SIZE = 96,16

}

OPTIONBUTTON = Morning

{

TITLE = 'Good morning'

POSITION = 10,40

SIZE = 133,16

}

TITLEDBUTTON = OK

{

TITLE = 'OK'

POSITION = 167,7

SIZE = 88,21

}

TITLEDBUTTON = Cancel

{

TITLE = 'CANCEL'

POSITION = 167,31

SIZE = 88,21

}

DIALOGBOX = Dialog

{

TITLE = 'Choose a sentence'

POSITION = 200,300

SIZE = 266,62

STYLE = CLOSABLE,MOVABLE

CHILDREN = Hi, Bye, Morning, OK, Cancel

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 261 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

}

When this file is compiled, the following error messages are produced:

RLRC RESOURCE.UCL

RealLink for Windows Resource Compiler - Version 1.0 Rev A

(c) Copyright 1992

McDonnell Douglas Information Systems Limited

- EQUATE or EQU without corresponding TO

Line 7 - All the parameters required for create have not been set up

Line 16 - compiling continued

Line 23 - Syntax error

Line 30 - compiling continued

Line 43 - Syntax error

- EQUATE or EQU without corresponding TO: This is a pre-processor error caused by error

(1); the offending line has been ignored. To locate this error, examine the original source

file.

Line 7: This error was caused by error (2) but was not detected until the closing brace.

The line number refers to a line in RCTEMP, which must be examined to locate the error.

Line 16: This is the line at which compilation continued after the error in line 7.

Line 23: This syntax error is caused by error (1). Because of this error, the OK token

in the TitledButton definition could not be changed to an identifier value.

Line 30: This is the line at which compilation continued after the error in line 23.

Line 43: This syntax error is also caused by error (1). Once again, the OK token could not

be changed to an identifier value, resulting in an invalid CHILDREN statement.

The errors in lines 7, 23 and 43 can best be found by examining RCTEMP. The temporary

file produced by the above example is shown below. The lines reported by the

compilation process are marked with the number of the source error concerned. The lines

in the example are numbered for clarity; in a real RCTEMP file they would not be

numbered, though your text editor may be able to display line numbers.

1

2 OPTIONBUTTON = 201

3 {

4 TITLE = 'Hello'

5 * SIZE = 68,16

6 POSITION = 10,6

7 } •
8

9 OPTIONBUTTON = 202

10 {

11 TITLE = 'Good-bye'

12 POSITION = 10,23

13 SIZE = 96,16

14 }

15

16 OPTIONBUTTON = 203 •
17 {

18 TITLE = 'Good morning'

19 POSITION = 10,40

20 SIZE = 133,16

21 }

Section 7: Resource compiler

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 262 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

22

23 TITLEDBUTTON = OK .
24 {

25 TITLE = 'OK'

26 POSITION = 167,7

27 SIZE = 88,21

28 }

29

30 TITLEDBUTTON = 222 .
31 {

32 TITLE = 'CANCEL'

33 POSITION = 167,31

34 SIZE = 88,21

35 }

36

37 DIALOGBOX = 200

38 {

39 TITLE = 'Choose a sentence'

40 POSITION = 200,300

41 SIZE = 266,62

42 STYLE = CLOSABLE,MOVABLE

43 CHILDREN = 201, 202, 203, OK ., 222
44 }

7.5 Using the compiled resources

The compiled resource file must be held on the PC, in the directory specified by the

resourcepath variable in the [reallink]section of the RFW.INI file; this file is held in

the Windows program directory on the PC.

An application loads the resources by calling the LoadAppRes subroutine, specifying the

handle of the application context, the name of the file containing the resources and a

variable in which to return an error. For example, the following loads the resources

contained in the file RESOURCE.RES:

CALL LoadAppRes(CONTEXT, "RESOURCE.RES", ERR)

Once loaded, the objects and contacts concerned can be used in the same way as those

created with the create subroutines.

Section 8: The help system

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 263 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: The help system
This chapter describes how to provide the user of a UIMS application with online help.

8.1 Introduction

A UIMS application provides help to the user by means of an AppHelp object. This

consists of a compiled Windows Help Resource file on the PC that contains named

sections of help text. The help text is displayed in the Windows help window, which

provides search and browse facilities. In addition, sections of the help file can be linked

by means of 'hot words' embedded in the text, which act as links to other sections of the

file; if the user clicks on a hot word, the associated section of the help file is displayed.

The help file can also contain an index, containing hot words which give access to every

section of the file.

There are two ways in which the user can be given help:

• The application can display a specified section of the Help file by calling the

AppHelp subroutine. The programmer must provide the user with access to the

help file by, for instance, creating a Help menu.

• A help key can be defined which, when pressed, will display the section of the help

file appropriate to the context. The programmer must link contacts displayed by

the application to the corresponding sections of the help file.

8.2 Creating the help file

The process of creating a Help Resource file is described in detail in the Tools manual

supplied with the Windows Software Development Kit. The following summarises the

requirements:

• One or more Help Topic files, saved in Microsoft Rich Text Format (RTF). Word

processors that support RTF include Microsoft Word for Windows and Word for

DOS.

• A Help Project file, which specifies the files which will be compiled into the

application help file and various compile options. Note that UIMS can only access a

section of the help file by means of a Help Index number; this means that the

Help Project file must contain a [Map] section to assign a Help Index number (the

Microsoft term is context number) to each section of the help file.

• The Help Project file and Help Topic files must be compiled using the Windows

help compiler (HC), to form a Help Resource file for the application.

• The Help Resource file must be loaded onto the PC. It is recommended that it be

placed in the directory specified in the RFW.INI file, or in a sub-directory of this

directory.

Other development tools are available which include the Windows Help compiler and a

description of how to create the various Help files. We recommend Microsoft Visual Basic

3.0 for Windows, Professional Edition.

8.3 Making help available to the user

The first step in making help available to the user is to load a Help Resource file by

calling the SetHelpFile subroutine. This has the following syntax:

SetHelpFile(Context, Filename, vErr)

Section 8: The help system

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 264 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

where,

• Context is the handle of the application's context.

• Filename is a string containing the name of the help file. If no path name is

specified, the file is loaded from the disk and directory specified in the RFW.INI file

on the PC.

• vErr is a variable in which to return the completion status of the subroutine.

Once the Help Resource file has been loaded, there are two ways in which the application

programmer can make help available to the user:

• By associating contacts with sections of the Help file. The user can then press the

Help key to display context-sensitive help – that is, the section of the Help file

which is appropriate to the command they are using.

• By providing the user with some other means of access to the Help system – the

most usual is a Help menu, though some applications also provide Help buttons

which display context-sensitive help.

8.3.1 Context-sensitive help

Context-sensitive help using the Help key is provided as follows:

• The Help Project file must include an entry in its [Map] section, assigning a Help

Index (context number) to the appropriate section of the Help file.

• The contact concerned must be associated with this section of the Help file by

calling the SetHelpIndex subroutine. This has the following syntax:

SetHelpIndex(Context, Contact, Section, vErr)

where,

o Context is the handle of the application's context.

o Contact is the handle of the contact for which help is being provided.

o Section is the help index (context number) of the section of the help file that is

to be associated with this contact.

o vErr is a variable in which to return the completion status of the subroutine.

The Help key is normally function key F1 but can be changed if required by calling

the SetHelpKey subroutine.

8.3.2 Creating a help menu

A help menu is created in the same way as any other menu: that is either by separately

creating a menu and its menu items using CreatePullDownMenu and

CreateMenuItem, or by using MakePullDownMenu to create the complete menu in

one operation.

Within the application's message loop, UIMS.MSG.MENUITEM messages which originate

in the help menu must initiate a call to the AppHelp subroutine. This has the following

syntax:

Section 8: The help system

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 265 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

AppHelp(Context, Section, vErr)

where,

• Context: The handle of the AppContext.

• Section: The help index of the required section of the help file. If this parameter is

0, the index will be displayed.

• vErr: This is a variable in which to return the completion status of the subroutine.

For example, if the Help file for your application contains a topic that describes how the

keyboard is used, you could place a 'Keyboard' item on your Help menu. When the user

selects that item, your application would call AppHelp, requesting the keyboard topic as

shown below:

CASE CONTACT = HELP.KEYBOARD

CALL AppHelp(CONTEXT, HELP.KEYBD.ID, ERR)

The AppHelp subroutine must also be used if you provide help buttons for the user.

8.3.3 Help subroutines

The following lists all the help subroutines that are available:

Subroutine Definition

SetHelpFile Attaches a help file to the application.

GetHelpFile Returns the name of the application's help file.

AppHelp Displays a specified section of the help file.

SetHelpIndex Associates a contact with a section of the help file.

GetHelpIndex
Returns the name of the help file section which is

associated with a specified contact.

SetHelpKey Assigns a key as the help accelerator.

GetHelpKey
Returns the key currently assigned as the help

accelerator.

These are described in detail in Section 6.

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 266 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 9: Appendix A – Key aliases
This Appendix lists the symbolic constant names, decimal values and descriptive

information for the UIMS key aliases. The codes are listed in numeric order.

Table A-1: Key aliases

UIMS key aliases Value Keycap Description

UIK.0 48 0

UIK.1 49 1

UIK.2 50 2

UIK.3 51 3

UIK.4 52 4

UIK.5 53 5

UIK.6 54 6

UIK.7 55 7

UIK.8 56 8

UIK.9 57 9

UIK.A 65 A

UIK.AMPERSAND 38 & Ampersand key

UIK.APOSTROPHE 39 ‘ Apostrophe (single quote) key

UIK.ASTERISK 42 * Asterisk key

UIK.AT 64 @ At key

UIK.B 66 B

UIK.BACKSLASH 92 \ Backslash key

UIK.BACKSPACE 8 Backspace key

UIK.BAR 124 | Vertical bar key

UIK.BRACELEFT 123 { Open curly bracket key

UIK.BRACERIGHT 125 } Close curly bracket key

UIK.BRACKETLEFT 91 [Open square bracket key

UIK.BRACKETRIG

HT
93

] Close square bracket key

UIK.C 67 C

UIK.CANCEL 272

UIK.CIRCUMFLEX 94 ^ Circumflex (caret) key

UIK.CLEAR 12

UIK.COLON 58 : Colon key

UIK.COMMA 44 , Comma key

UIK.D 68 D

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 267 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS key aliases Value Keycap Description

UIK.DELETE 127 DELETE

UIK.DOLLAR 36 $ Dollar key

UIK.DOWN 257

Down cursor key

UIK.E 69 E

UIK.END 264 END

UIK.EQUAL 61 = Equals key

UIK.ESCAPE 27 ESC

UIK.EXCLAM 33 ! Exclamation mark keys

UIK.F 70 F Function key

UIK.F1 512 1 Function key

UIK.F2 513 2 Function key

UIK.F3 514 3 Function key

UIK.F4 515 4 Function key

UIK.F5 516 5 Function key

UIK.F6 517 6 Function key

UIK.F7 518 7 Function key

UIK.F8 519 8 Function key

UIK.F9 520 9 Function key

UIK.F10 521 10 Function key

UIK.F11 522 11 Function key

UIK.F12 523 12 Function key

UIK.F13 524 13 Function key

UIK.F14 525 14 Function key

UIK.F15 526 15 Function key

UIK.G 71 G

UIK.GRAVE 96 ‘ Open single quote key

UIK.GREATER 62 > Greater than key

UIK.H 72 H

UIK.HELP 265

UIK.HOME 263 HOME

UIK.I 73 I

UIK.INSERT 262 INSERT

UIK.J 74 J

UIK.K 75 K

UIK.L 76 L

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 268 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS key aliases Value Keycap Description

UIK.LEFT 258 Left cursor key

UIK.LESS 60 < Less than key

UIK.M 77 M

UIK.MINUS 45 - Minus key

UIK.MULTI00 128

UIK.MULTI01 129

UIK.MULTI02 130

UIK.MULTI03 131

UIK.MULTI04 132

UIK.MULTI05 133

UIK.MULTI06 134

UIK.MULTI07 135

UIK.MULTI08 136

UIK.MULTI09 137

UIK.MULTI0A 138

UIK.MULTI0B 139

UIK.MULTI0C 140

UIK.MULTI0D 141

UIK.MULTI0E 142

UIK.MULTI0F 143

UIK.MULTI10 144

UIK.MULTI10 144

UIK.MULTI11 145 ‘ open single quote

UIK.MULTI12 146 ‘ close single quote

UIK.MULTI13 147

UIK.MULTI14 148

UIK.MULTI15 149

UIK.MULTI16 150

UIK.MULTI17 151

UIK.MULTI18 152

UIK.MULTI19 153

UIK.MULTI1A 154

UIK.MULTI1B 155

UIK.MULTI1C 156

UIK.MULTI1D 157

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 269 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS key aliases Value Keycap Description

UIK.MULTI1E 158

UIK.MULTI1F 159

UIK.MULTI20 160 space

UIK.MULTI21 161 ¡

UIK.MULTI22 162 ¢

UIK.MULTI23 163 £

UIK.MULTI24 164 ¤

UIK.MULTI25 165 ¥

UIK.MULTI26 166 ¦

UIK.MULTI27 167 §

UIK.MULTI28 168 ¨

UIK.MULTI29 169 ©

UIK.MULTI2A 170 ª

UIK.MULTI2B 171 «

UIK.MULTI2C 172 ¬

UIK.MULTI2D 173 -

UIK.MULTI2E 174 ®

UIK.MULTI2F 175 ¯

UIK.MULTI30 176 °

UIK.MULTI31 177 ±

UIK.MULTI32 178 ²

UIK.MULTI33 179 ³

UIK.MULTI34 180 ´

UIK.MULTI35 181 μ

UIK.MULTI36 182 ¶

UIK.MULTI37 183 ·

UIK.MULTI38 184 ¸

UIK.MULTI39 185 ¹

UIK.MULTI3A 186 º

UIK.MULTI3B 187 »

UIK.MULTI3C 188 ¼

UIK.MULTI3D 189 ½

UIK.MULTI3E 190 ¾

UIK.MULTI3F 191 ¿

UIK.MULTI40 192 À

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 270 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS key aliases Value Keycap Description

UIK.MULTI41 193 Á

UIK.MULTI42 194 Â

UIK.MULTI43 195 Ã

UIK.MULTI44 196 Ä

UIK.MULTI45 197 Å

UIK.MULTI46 198 Æ

UIK.MULTI47 199 Ç

UIK.MULTI48 200 È

UIK.MULTI49 201 É

UIK.MULTI4A 202 Ê

UIK.MULTI4B 203 Ë

UIK.MULTI4C 204 Ì

UIK.MULTI4D 205 Í

UIK.MULTI4E 206 Î

UIK.MULTI4F 207 Ï

UIK.MULTI50 208 Ð

UIK.MULTI51 209 Ñ

UIK.MULTI52 210 Ò

UIK.MULTI53 211 Ó

UIK.MULTI54 212 Ô

UIK.MULTI55 213 Õ

UIK.MULTI56 214 Ö

UIK.MULTI57 215 ×

UIK.MULTI58 216 Ø

UIK.MULTI59 217 Ù

UIK.MULTI5A 218 Ú

UIK.MULTI5B 219 Û

UIK.MULTI5C 220 Ü

UIK.MULTI5D 221 Ý

UIK.MULTI5E 222 Þ

UIK.MULTI5F 223 ß

UIK.MULTI60 224 à

UIK.MULTI61 225 á

UIK.MULTI62 226 â

UIK.MULTI63 227 ã

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 271 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS key aliases Value Keycap Description

UIK.MULTI64 228 ä

UIK.MULTI65 229 å

UIK.MULTI66 230 æ

UIK.MULTI67 231 ç

UIK.MULTI68 232 è

UIK.MULTI69 233 é

UIK.MULTI6A 234 ê

UIK.MULTI6B 235 ë

UIK.MULTI6C 236 ì

UIK.MULTI6D 237 í

UIK.MULTI6E 238 î

UIK.MULTI6F 239 ï

UIK.MULTI70 240 ð

UIK.MULTI71 241 ñ

UIK.MULTI72 242 ò

UIK.MULTI73 243 ó

UIK.MULTI74 244 ô

UIK.MULTI75 245 õ

UIK.MULTI76 246 ö

UIK.MULTI77 247 ÷

UIK.MULTI78 248 ø

UIK.MULTI79 249 ù

UIK.MULTI7A 250 ú

UIK.MULTI7B 251 û

UIK.MULTI7C 252 ü

UIK.MULTI7D 253 ý

UIK.MULTI7E 254 þ

UIK.MULTI7F 255 ÿ

UIK.N 78 N

UIK.NEXT 261 PAGE DOWN

UIK.NUMBERSIGN 35 # Number-sign key

UIK.O 79 O

UIK.P 80 P

UIK.PARENLEFT 40 (Open parenthesis key

UIK.PARENRIGHT) Close parenthesis key

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 272 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

UIMS key aliases Value Keycap Description

UIK.PERCENT 37 % Percent key

UIK.PERIOD 46 . Period key

UIK.PLUS 43 + Plus key

UIK.PRIOR 260 PAGE UP

UIK.Q 81 Q

UIK.QUESTION 63 ? Question mark key

UIK.QUOTEDBL 34 “ Double quote key

UIK.R 82 R

UIK.RETURN 13 ↵ Return key

UIK.RIGHT 259 → Right cursor key

UIK.S 83 S

UIK.SCRLOCK 266 SCROLL LOCK

UIK.SEMICOLON 59 ; Semicolon key

UIK.SLASH 47 / Slash key

UIK.SPACE 32 SPACEBAR

UIK.T 84 T

UIK.TAB 9 TAB

UIK.TILDE 126 ~ Tilde key

UIK.U 85 U

UIK.UNDERSCORE 95 _ Underscore key

UIK.UNKNOWN 65535 Un-recognised key

UIK.UP 256 ↑ Up cursor key

UIK.V 86 V

UIK.W 87 W

UIK.X 88 X

UIK.Y 89 Y

UIK.Z 90 Z

Note

The codes UIK.MULTI00 to UIK.MULTI7F are for keys specific to national keyboards. The keycap

given for each is the standard ANSI code for the character concerned. On keyboards that do not
include these keys, the codes can be generated by holding down the ALT key while entering a

zero followed by the ANSI code on the numeric keypad. The code will be generated when the ALT

key is released. Note, however, that with the NUMLOCK off, keypress messages will be generated

as each key is operated.

Section 9: Appendix A – Key aliases

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 273 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table A-2: Key modifiers

UIMS key modifier Value Keycap Description

UIK.CAPSLOCK 65536 CAPS LOCK

UIK.NUMLOCK 131072 NUM LOCK

UIK.SHIFT 262144
SHIFT

UIK.CTRL 524288 CTRL

UIK.ALT 1048576 ALT

UIK.NUMPAD 2097152 The key operated is on the

numeric keypad.

Table A-3: Pointer modifiers

UIMS pointer

modifier

Value Description

UIK.P.DRAG 2147483648 The pointer is being dragged (drag

start).

UIK.P.BUTTON1 1073741824 Pointer button 1 is pressed.

UIK.P.BUTTON2 536870912 Pointer button 2 is pressed.

UIK.P.BUTTON3 268435456 Pointer button 3 is pressed.

UIK.P.BUTTON4 134217728 Pointer button 4 is pressed.

UIK.P.BUTTON5 67108864 Pointer button 5 is pressed.

Note

The pointer button combinations which produce these values are hardware dependent.

Section 10: Appendix B – Screen colours

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 274 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 10: Appendix B – Screen colours

This appendix describes how screen colours are specified in a UIMS application and lists

the pre-defined logical colours. It also explains the effects of the different graphics

drawing modes.

10.1 Specifying colours

In a UIMS application, screen colours can be specified in two ways:

• The absolute colour can be specified as a particular combination of red, green and

blue elements. The intensity of each of these elements is in turn specified as an

integer between 0 and 255, where 0 is zero intensity and 255 full brightness. The

required combination is then created as follows:

65536*red + 256*green + blue

The intensities of the red, green and blue elements of a colour can be obtained as

follows:

blue = MOD(colour, 256)

green = MOD(INT(colour/256), 256)

red = MOD(INT(colour/65536), 256)

• Any one of the sixteen pre-defined logical colours listed in Table B-1 can be used.

 Table B-1: Logical colour bindings

Logical colour Red Green Blue

UIMS.BLACK 0 0 0

UIMS.BLUE 0 0 255

UIMS.BROWN 128 128 0

UIMS.CYAN 0 255 255

UIMS.DARKBLUE 0 0 128

UIMS.DARKCYAN 0 128 128

UIMS.DARKGREEN 0 128 0

UIMS.DARKGREY 85 85 85

UIMS.DARKMAGENTA 128 0 128

UIMS.DARKRED 128 0 0

UIMS.GREEN 0 255 0

UIMS.GREY 170 170 170

UIMS.MAGENTA 255 0 255

UIMS.RED 255 0 0

UIMS.WHITE 255 255 255

UIMS.YELLOW 255 255 0

Section 10: Appendix B – Screen colours

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 275 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

10.2 Graphics drawing modes

The appearance of lines drawn on the display is determined not only by the colour of the

Pen object, but also by the graphics drawing mode selected in the Drawrule. Eight

modes are available:

• UIMS.DRAW.CLEAR: For each pixel, a new colour is produced by inverting the

pen colour bitwise, and then performing a bit-wise AND between the result and

the current colour of the destination pixel.

• UIMS.DRAW.COPY: Lines are drawn in the pen colour, regardless of the colour

of the destination.

• UIMS.DRAW.NOTCLEAR: For each pixel, a new colour is produced by performing

a bit-wise AND between the pen colour and the current colour of the destination

pixel.

• UIMS.DRAW.NOTCOPY: Lines are drawn in the bit-wise inverse of the pen

colour, regardless of the colour of the destination.

• UIMS.DRAW.NOTOR: For each pixel, a new colour is produced by inverting the

pen colour, and then performing a bit-wise OR between the result and the current

colour of the destination pixel.

• UIMS.DRAW.NOTXOR: For each pixel, a new colour is produced by performing a

bit-wise exclusive-OR between the pen colour and the current colour of the

destination pixel, and then inverting the result.

• UIMS.DRAW.OR: For each pixel, a new colour is produced by performing a bit-

wise OR between the pen colour and the current colour of the destination pixel.

• UIMS.DRAW.XOR: For each pixel, a new colour is produced by performing a bit-

wise exclusive-OR between the pen colour and the current colour of the

destination pixel.

The different drawing modes are best understood by considering what happens when two

lines, one black and one white, are drawn across a screen which is part white and part

black.

The results are summarised in the following table:

Screen Pen CLEAR COPY NOTCLEAR NOTCOPY NOTOR NOTXOR OR XOR

White White White White White Black Black Black White White

White Black White Black White White White White Black Black

Black White Black White White Black Black White Black Black

Black Black White Black Black White Black Black Black White

This is, of course, the simplest case. Even on a monochrome display UIMS can

produce various shades of grey by dithering black and white pixels. Since the logical

operations are carried out on a pixel-by-pixel basis, the result of drawing a pure white or

black line on a grey background will in most cases be a different shade of grey.

The situation becomes even more complex on a colour display, since each of the three

primary colours (red, green and blue) is affected separately by the logical operation. This

can be illustrated by considering the UIMS.DRAW.NOTCOPY drawing mode, which

simply inverts the pen colour and replaces the screen colour with the result.

Section 10: Appendix B – Screen colours

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 276 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Pen colour Result

Black White

Blue Yellow

Green Magenta

Cyan Red

Red Cyan

Magenta Green

Yellow Blue

White Black

The following tables show the resulting colours for all combinations of red, green and blue

in the Pen colour and destination pixel, for the remaining drawing modes.

Table B-2: UIMS.DRAW.CLEAR colour combinations

 Pen colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black White Yellow Magenta Red Cyan Green Blue Black

Blue White White Magenta Magenta Cyan Cyan Blue Blue

Green White Yellow White Yellow Cyan Green Cyan Green

Cyan White White White White Cyan Cyan Cyan Cyan

Red White Yellow Magenta Red White Yellow Magenta Red

Magenta White White Magenta Magenta White White Magenta Magenta

Yellow White Yellow White Yellow White Yellow White Yellow

White White White White White White White White White

Table B-3: UIMS.DRAW.NOTCLEAR colour combinations

 Pen colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Blue Green Cyan Red Magenta Yellow White

Blue Blue Blue Cyan Cyan Magenta Magenta White White

Green Green Cyan Green Cyan Yellow White Yellow White

Cyan Cyan Cyan Cyan Cyan White White White White

Red Red Magenta Yellow White Red Magenta Yellow White

Magenta Magenta Magenta White White Magenta Magenta White White

Yellow Yellow White Yellow White Yellow White Yellow White

White White White White White White White White White

Section 10: Appendix B – Screen colours

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 277 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table B-4: UIMS.DRAW.NOTOR colour combinations

 Pen colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Black Black Black Black Black Black Black

Blue Blue Black Blue Black Blue Black Blue Black

Green Green Green Black Black Green Green Black Black

Cyan Cyan Green Blue Black Cyan Green Blue Black

Red Red Red Red Red Black Black Black Black

Magenta Magenta Red Magenta Red Blue Black Blue Black

Yellow Yellow Yellow Red Red Green Green Black Black

White White Yellow Magenta Red Cyan Green Blue Black

Table B-5: UIMS.DRAW.NOTXOR colour combinations

 Pen colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Blue Green Cyan Red Magenta Yellow White

Blue Blue Black Cyan Green Magenta Red White Yellow

Green Green Cyan Black Blue Yellow White Red Magenta

Cyan Cyan Green Blue Black White Yellow Magenta Red

Red Red Magenta Yellow White Black Blue Green Cyan

Magenta Magenta Red White Yellow Blue Black Cyan Green

Yellow Yellow White Red Magenta Green Cyan Black Blue

White White Yellow Magenta Red Cyan Green Blue Black

Table B-6: UIMS.DRAW.OR colour combinations

 Pen colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Black Black Black Black Black Black Black

Blue Black Blue Black Blue Black Blue Black Blue

Green Black Black Green Green Black Black Green Green

Cyan Black Blue Green Cyan Black Blue Green Cyan

Red Black Black Black Black Red Red Red Red

Magenta Black Blue Black Blue Red Magenta Red Magenta

Yellow Black Black Green Green Red Red Yellow Yellow

White Black Blue Green Cyan Red Magenta Yellow White

Section 10: Appendix B – Screen colours

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 278 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table B-7: UIMS.DRAW.XOR colour combinations

 Pen colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black White Yellow Magenta Red Cyan Green Blue Black

Blue Yellow White Red Magenta Green Cyan Black Blue

Green Magenta Red White Yellow Blue Black Cyan Green

Cyan Red Magenta Yellow White Black Blue Green Cyan

Red Cyan Green Blue Black White Yellow Magenta Red

Magenta Green Cyan Black Blue Yellow White Red Magenta

Yellow Blue Black Cyan Green Magenta Red White Yellow

White Black Blue Green Cyan Red Magenta Yellow White

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 279 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 11: Appendix C – Resource compiler keywords
This appendix lists the object type and attribute keywords recognised by the resource

compiler and gives details of mandatory attributes and valid attribute settings. It also

lists the error messages that might be displayed by the resource compiler and suggests

probable causes for these.

11.1 Object types

APPWINDOW BRUSH CHECKBUTTON

CHILDWINDOW DIALOGBOX DRAWRULE

EDITBOX EXCLUSIVEGRP INCLUSIVEGRP

LINE LISTBOX MENU

MENUBAR MENUITEM OPTIONBUTTON

PEN POINTER RECTANGLE

SCROLLBAR TEXT TEXTEDITOR

TITLEDBUTTON

11.2 Object attributes

This section lists the attributes which are valid for each type of object.

Note

Attributes in bold are mandatory; they must be included every time an object of the specified

type is defined.

11.2.1 APPWINDOW

• BDRSTYLE: Border style.

• CHILDREN: List of Object IDs. See Appendix C for valid settings.

• CLIPREGION: List of four coordinate values (top, left, bottom, right).

• CURSORPOS: Cursor position - list of two coordinate values (horizontal, vertical).

• CURSORSTATE: List of two settings (Visible, Type).

o Visible - one of the following:

▪ TRUE

▪ FALSE

o Type - one of the following:

▪ OUTLINE

▪ BLOCK

▪ UNDERLINE

▪ BAR

• DRAWRULE: Object ID.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• MENUBAR: Object ID.

• POINTER: Object ID.

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 280 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• SIZING: One of the following:

o MAX

o MIN

o NORMAL

• STYLE: List of settings, each one of the following:

o CLOSABLE

o DIALOG

o HSCROLL

o ICONISABLE

o MOVABLE

o NONE

o SIZABLE

o TEXT

o VSCROLL

• TITLE: String.

• UPDATE: See Appendix C for valid settings.

11.2.2 BRUSH

• FOREGROUND: See Appendix C for valid settings.

• STYLE: One of the following:

o HOLLOW

o SOLID

11.2.3 CHECKBUTTON

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• SELECTED: One of the following:

o TRUE

o FALSE

• SIZE: List of two coordinate values (width, height).

• TITLE: String.

• TOGGLE One of the following:

o TRUE

o FALSE

• UPDATE: See Appendix C for valid settings.

11.2.4 CHILDWINDOW

• BDRSTYLE: Border style. See Appendix C for valid settings.

• CHILDREN: List of Object IDs.

• CLIPREGION: List of four coordinate values (top, left, bottom, right).

• CURSORPOS: Cursor position - list of two coordinate values (horizontal, vertical).

• CURSORSTATE: List of two settings (Visible, Type).

o Visible - one of the following:

▪ TRUE

▪ FALSE

o Type - one of the following:

▪ OUTLINE

▪ BLOCK

▪ UNDERLINE

▪ BAR

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 281 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• DRAWRULE: Object ID.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POINTER: Object ID.

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

• STYLE: List of settings, each one of the following:

o DIALOG

o HSCROLL

o NONE

o TEXT

o VSCROLL

• UPDATE: See Appendix C for valid settings.

11.2.5 DIALOGBOX

• CHILDREN: List of Object IDs.

• DEFBUTTON: Object ID.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• MODE: One of the following:

o APP

o LESS

o SYS

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

• STYLE: List of settings, each one of:

o CLOSABLE

o MOVABLE

o NONE

• TITLE: String.

• UPDATE: See Appendix C for valid settings.

11.2.6 DRAWRULE

• BACKGROUND: See Appendix C for valid settings.

• BRUSH: Object ID.

• DRAWMODE: One of the following:

o CLEAR

o COPY

o NOTCLEAR

o NOTCOPY

o NOTOR

o NOTXOR

o OR

o XOR

• FOREGROUND: See Appendix C for valid settings.

• PEN: Object ID.

• TEXTMODE: One of the following:

o OPAQUE

o HOLLOW

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 282 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

11.2.6 DRAWRULE

• BACKGROUND: See Appendix C for valid settings.

• BRUSH: Object ID.

• DRAWMODE: One of the following:

o CLEAR

o COPY

o NOTCLEAR

o NOTCOPY

o NOTOR

o NOTXOR

o OR

o XOR

• FOREGROUND: See Appendix C for valid settings.

• PEN: Object ID.

• TEXTMODE: One of:

o OPAQUE

o HOLLOW

11.2.7 EDITBOX

• CONTENT: String.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• MASK: This parameter is for future use. It must be set to a null string when

defining an EditBox, but its value will be ignored when the object is created.

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

• STYLE: List of settings, each one of:

o BORDER

o NONE

• UPDATE: See Appendix C for valid settings.

11.2.8 EXCLUSIVEGRP

• BORDER: Border style. See Appendix C for valid settings.

• CHILDREN: List of Object IDs.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

• TITLE: String.

• UPDATE: See Appendix C for valid settings.

11.2.9 INCLUSIVEGRP

• BORDER: Border style. See Appendix C for valid settings.

• CHILDREN: List of Object IDs.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 283 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• SIZE: List of two coordinate values (width, height).

• TITLE: String.

• UPDATE: See Appendix C for valid settings.

11.2.10 LINE

• DRAWRULE: Object ID.

• ENABLED: See Appendix C for valid settings.

• ENDPOS: List of two coordinate values (horizontal, vertical). Note that the position

must be specified relative to STARTPOS.

• ENDSTYLE: This parameter is for future use. It must be set to DEFAULT when

defining a Line contact, but its value will be ignored when the object is created.

• MAPPED: See Appendix C for valid settings.

• STARTPOS: List of two coordinate values (horizontal, vertical).

• UPDATE: See Appendix C for valid settings.

11.2.11 LISTBOX

• CONTENT: List of strings.

• CONTROLS: One of:

o NONE

o MULTISELECT

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• LINK: Object ID.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• SELECTION: Value.

• SIZE: List of two coordinate values (width, height).

• UPDATE: See Appendix C for valid settings.

11.2.12 MENU

• CHILDREN: List of Object IDs.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• TITLE: String.

11.2.13 MENUBAR

• CHILDREN: List of Object IDs.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• MAPPED: See Appendix C for valid settings.

• UPDATE: See Appendix C for valid settings.

11.2.14 MENUITEM

• AUTOCHECK: One of:

o TRUE

o FALSE

• CHECKMARK: One of:

o TRUE

o FALSE

• ENABLED: See Appendix C for valid settings.

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 284 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• TITLE: String.

11.2.15 OPTIONBUTTON

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• SELECTED: One of:

o TRUE

o FALSE

• SIZE: List of two coordinate values (width, height).

• TITLE: String.

• TOGGLE: One of:

o TRUE

o FALSE

• UPDATE: See Appendix C for valid settings.

11.2.16 PEN

• FOREGROUND: See Appendix C for valid settings.

• STYLE: One of:

o HOLLOW

o SOLID

• WIDTH: Number of pixels.

11.2.17 POINTER

• TYPE One of:

o ARROW

o CROSS

o CUSTOM

o IBEAM

o PLUS

o WAIT

11.2.18 RECTANGLE

• DRAWRULE: Object ID.

• ENABLED: See Appendix C for valid settings.

• ENDPOS: List of two coordinate values (horizontal, vertical). Note that the position

must be specified relative to STARTPOS.

• MAPPED: See Appendix C for valid settings.

• STARTPOS: List of two coordinate values (horizontal, vertical).

• STYLE One of:

o NONE

o BORDER

• UPDATE: See Appendix C for valid settings.

11.2.19 SCROLLBAR

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 285 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• HELPINDEX: Help identifier value.

• INC: List of two increment values (page, line).

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• RANGE: List of two coordinate values (minimum, maximum).

• SIZE: List of two coordinate values (width, height).

• THUMBPOS: Value.

• TRACK: One of:

o TRUE

o FALSE

• TYPE: One of:

o HORZ

o VERT

• UPDATE: See Appendix C for valid settings.

11.2.20 TEXT

• CONTENT: String.

• DRAWRULE: Object ID.

• ENABLED: See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• JUSTIFICATION: One of:

o BOTH

o CENTRED

o LEFT

o RIGHT

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

• UPDATE: See Appendix C for valid settings.

11.2.21 TEXTEDITOR

• CONTENT: String.

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

• SIZE: List of two coordinate values (width, height).

• STYLE: List of settings, each one of:

o NONE

o AUTOSCROLL

o BORDER

o HSCROLLBAR

o READONLY

o VSCROLLBAR

• UPDATE: See Appendix C for valid settings.

11.2.22 TITLEDBUTTON

• ENABLED: See Appendix C for valid settings.

• EVENTMASK: List of settings. See Appendix C for valid settings.

• HELPINDEX: Help identifier value.

• MAPPED: See Appendix C for valid settings.

• POSITION: List of two coordinate values (horizontal, vertical).

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 286 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• SIZE: List of two coordinate values (width, height).

• STYLE: List of settings, each one of:

o BORDER

o NONE

o THICK

o TRANS

• TITLE: String.

• UPDATE: See Appendix C for valid settings.

11.3 Common object attributes

This section lists attributes which are common to a number of objects and contacts, or

which have a large number of possible settings.

11.3.1 Border styles

One of the following:

• NONE

• BORDER

11.3.2 ENABLED

One of the following:

• NONE

• BORDER

11.3.3 EVENTMASK

List of:

• BUTTONPRESS

• DBLCLICK

• EXIT

• KEYPRESS

• LBOXSELECT

• MOTION

• NOTIFY

• SCROLL

• TIMER

• CLICK

• DRAG

• HSCROLL

• KILL

• LEAVE

• MOVE

• PRESS

• SELECT

• UPDATE

• CLOSE

• ENTER

• IDLE

• LBOXDESELECT

• MENUITEM

• NEWVIEW

• RELEASE

• SIZE

• VSCROLL

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 287 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

11.3.4 MAPPED

Whether or not the contact is to be visible on the screen. One of:

• NONE

• BORDER

11.3.5 UPDATE

Update mode. One of:

• NONE

• IMMEDIATE

11.3.6 Colours

One of:

• BLACK

• CYAN

• DARKGREEN

• DARKRED

• MAGENTA

• YELLOW

• BLUE

• DARKBLUE

• DARKGREY

• GREEN

• RED

• BROWN

• DARKCYAN

• DARKMAGENTA

• GREY

• WHITE

Note

In a Resource Script you can only specify logical colours - you cannot define colours as

combinations of red, green and blue.

11.3.7 Virtual keys

One of:

• 0

• 3

• 1

• 4

• 2

• 5

• 6

• 7

• 8

• 9

• A

• AMPERSAND

• APOSTROPHE

• ASTERISK

• AT

• B

• BACKSLASH

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 288 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• BACKSPACE

• BAR

• BRACELEFT

• BRACERIGHT

• BRACKETLEFT

• BRACKETRIGHT

• C

• CIRCUMFLEX

• CLEAR

• COLON

• COMMA

• D

• DELETE

• DOLLAR

• DOWN

• E

• END

• EQUAL

• ESCAPE

• EXCLAM

• F

• F1

• F10

• F11

• F12

• F13

• F14

• F15

• F2

• F3

• F4

• F5

• F6

• F7

• F8

• F9

• G

• GREATER

• H

• HELP

• HOME

• I

• INSERT

• J

• K

• L

• LEFT

• LESS

• M

• MINUS

• MULTI00

• MULTI01

• MULTI02

• MULTI03

• MULTI04

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 289 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• MULTI05

• MULTI06

• MULTI07

• MULTI08

• MULTI09

• MULTI0A

• MULTI0B

• MULTI0C

• MULTI0D

• MULTI0E

• MULTI0F

• MULTI10

• MULTI11

• MULTI12

• MULTI13

• MULTI14

• MULTI15

• MULTI16

• MULTI17

• MULTI18

• MULTI19

• MULTI1A

• MULTI1B

• MULTI1C

• MULTI1D

• MULTI1E

• MULTI1F

• MULTI20

• MULTI21

• MULTI22

• MULTI23

• MULTI24

• MULTI25

• MULTI26

• MULTI27

• MULTI28

• MULTI29

• MULTI2A

• MULTI2B

• MULTI2C

• MULTI2D

• MULTI2E

• MULTI2F

• MULTI30

• MULTI31

• MULTI32

• MULTI33

• MULTI34

• MULTI35

• MULTI36

• MULTI37

• MULTI38

• MULTI39

• MULTI3A

• MULTI3B

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 290 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• MULTI3C

• MULTI3D

• MULTI3E

• MULTI3F

• MULTI40

• MULTI41

• MULTI42

• MULTI43

• MULTI44

• MULTI45

• MULTI46

• MULTI47

• MULTI48

• MULTI49

• MULTI4A

• MULTI4B

• MULTI4C

• MULTI4D

• MULTI4E

• MULTI4F

• MULTI50

• MULTI51

• MULTI52

• MULTI53

• MULTI54

• MULTI55

• MULTI56

• MULTI57

• MULTI58

• MULTI59

• MULTI5A

• MULTI5B

• MULTI5C

• MULTI5D

• MULTI5E

• MULTI5F

• MULTI60

• MULTI61

• MULTI62

• MULTI63

• MULTI64

• MULTI65

• MULTI66

• MULTI67

• MULTI68

• MULTI69

• MULTI6A

• MULTI6B

• MULTI6C

• MULTI6D

• MULTI6E

• MULTI6F

• MULTI70

• MULTI71

• MULTI72

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 291 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• MULTI73

• MULTI74

• MULTI75

• MULTI76

• MULTI77

• MULTI78

• MULTI79

• MULTI7A

• MULTI7B

• MULTI7C

• MULTI7D

• MULTI7E

• MULTI7F

• N

• NEXT

• NUMBERSIGN

• O

• P

• PARENLEFT

• PARENRIGHT

• PERCENT

• PERIOD

• PLUS

• PRIOR

• Q

• QUOTERIGHT

• QUESTION

• QUOTEDBL

• QUOTELEFT

• R

• RETURN

• RIGHT

• S

• SEMICOLON

• SLASH

• SPACE

• T

• TAB

• TILDE

• U

• UNDERSCORE

• UP

• V

• W

• X

• Y

• Z

11.3.8 Key modifiers

Any of the above virtual key codes can be combined with one or more of the following

key modifiers. The keys must be separated by plus (+) signs; for example: CTRL+F,

CTRL+SHIFT+F4.

• CAPSLOCK

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 292 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• NUMLOCK

• SHIFT

• CTRL

• ALT

11.4 Errors

This section lists the error messages which might be displayed during pre-processing and

compilation. In each case, the meaning is explained and appropriate action suggested.

11.4.1 Command errors

These errors can occur when you type in the RLRC command, but before pre-processing

or compiling starts.

Can't open file filename

RLRC cannot find the resource file you have specified. Enter the correct file name.

Can't open message file - rc.msg

The resource compiler's message file cannot be found. Possible causes are:

• The resource compiler has been copied to a different directory. Copy the files

RC.MSG and RC.DAT as well as RLRC.EXE.

• A disk error has occurred. Use a disk maintenance tool to find and correct the

error and then re-install the resource compiler from your RealLink for Windows

disks.

Can't open temporary file - 'rctemp'

The resource compiler is unable to create the temporary, pre-processed file.

Possible causes are:

• The disk you are using is write protected. Enable writing to the disk or use a

different disk.

• The disk you are using is full. Use a different disk, or delete unwanted files to

create more space.

• The directory in which you are compiling contains too many files; this can

normally only occur in the root (\) directory. Change to a different directory.

Resource compiler needs '.ucl' or '.UCL' suffix

Your resource file has the wrong file extension. Rename your file.

Resource script filename (.ucl) :

You have omitted the name of the file containing the resource script in your RLRC

command line. Enter the name of the required file.

11.4.2 Pre-processor errors

If an error occurs during pre-processing, an error message is displayed and the line

containing the error is ignored.

Can't open data file - rc.dat

The resource compiler's data file cannot be found. Possible causes are:

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 293 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• The resource compiler has been copied to a different directory. Copy the files

RC.MSG and RC.DAT as well as RLRC.EXE.

• A disk error has occurred. Use a disk maintenance tool to find and correct the

error and then re-install the resource compiler from your RealLink for Windows

disks.

- #ELSE without corresponding #IFDEF

The #ELSE pre-processor command is only legal if preceded by an #IFDEF

command. Check the structure of your source file.

- #ENDIF without corresponding #IFDEF

The #ENDIF pre-processor command is only legal if preceded by an #IFDEF

command. Check the structure of your source file.

- EQUATE or EQU without corresponding TO

The TO keyword and/or the value has been omitted from an EQUATE or EQU

preprocessor statement. Check your resource script and any included files.

filename is not valid

The file specified in an #INCLUDE statement cannot be found. Check that the file

name is spelled correctly and that the file concerned is accessible to the resource

compiler.

- Include file must have '.ucl', '.UCL', '.h' or '.H' suffix

You have specified a file to be included which has an illegal suffix. Check your

resource script and any included files.

Line number - More than 5 levels of #INCLUDE, ignored

Included files have been nested too deeply. Reorganise your source files.

- More than 9 levels of #IFDEF, ignored

An #IFDEF structure has been nested too deeply. Reorganise the structure of your

source file.

11.4.3 Compilation errors

If an error occurs during compilation, the number of the line in which the error occurred

is displayed, together with an error message. All subsequent source lines are ignored, up

to the closing brace of the current outer nested level. Compilation then continues from

this point.

Note that the line numbers reported are not those in the original source file, but in a

temporary file, RCTEMP, created in the current directory.

Line number - All the parameters required for create have not been set up

You have omitted one or more mandatory parameters in an object definition.

Check the RCTEMP temporary file and correct your resource script.

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 294 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Line number - compiling continued

After an error, compiling has continued from the specified line. The lines between

that containing the error and this line have not been compiled.

Line number - Id given is within forbidden limits – ident

An identifier value you have chosen is one of those reserved for internal use by

UIMS. Use a value outside the range 8000 – 9999.

Line number - Invalid UIMS type parameter – value

An object attribute has been set to an invalid keyword value. Check the RCTEMP

temporary file and correct your resource script.

Line number - Object does not have property – attribute

An attribute set in an object definition is not valid for the object concerned. Check

the RCTEMP temporary file and correct your resource script.

Note

This error can also occur if you have used a token as the identifier for a nested object

but have not defined a value for the token.

Line number - Object not defined – name

An invalid object type has been specified. Check the RCTEMP temporary file and

correct your resource script.

Line number - Parameter should be a number – value

You have used a string or keyword value instead of a number when setting an

attribute. Check the RCTEMP temporary file and correct your resource script.

Line number - Parameter should be a string – value

You have used a number or keyword value instead of a string when setting an

attribute. Check the RCTEMP temporary file and correct your resource script.

Line number - Syntax error

Several conditions can cause this error. The most common cause is a mis-typed

resource compiler keyword. Check the RCTEMP temporary file and correct your

resource script.

Line number - Text string invalid in CHILDREN other than for MENU,MENUBAR

An automatic MenuItem definition has been used in the CHILDREN attribute of an

object other than a Menu or MenuBar. Check the RCTEMP temporary file and

correct your resource script.

Line number - Too few parameters

You have supplied too few parameters when setting the value of an attribute.

Check the RCTEMP temporary file and correct your resource script.

Section 11: Appendix C – Resource compiler
keywords

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 295 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Line number - Too many parameters

You have supplied too many parameters when setting the value of an attribute.

Check the RCTEMP temporary file and correct your resource script.

Line number - Unpaired quote

In defining a string value, you have omitted the closing single quote. Check the

RCTEMP temporary file and correct your resource script.

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 296 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 12: Appendix D – Error codes
This appendix lists the completion/error codes which may be returned by UIMS

subroutines in the vErr parameter. The numeric value of each is given, together with the

message that is returned for that code by the GetErrorText subroutine. Possible causes

of each error are also suggested.

The codes listed are defined in items in the file UIMS-TOOLS; the appropriate items

should be included in your application, depending on the subroutines used – see Section

2 for details.

12.1 UIMS error codes

These codes are defined in the item UIMSDEFS in the file UIMS-TOOLS.

Code Error Definition Value

0 ERR.SUCCESS Subroutine

completed

successfully.

No Error

1 ERR.FAIL

A subroutine has

failed, but the

reason is

unknown. This is

usually caused by

insufficient

memory or

Windows

resources on the

PC. Close as many

applications as

possible and try

again. If this fails,

try restarting

Windows.

General

failure

2
ERR.UNSUPPO

RTED

You have

attempted to set

a common contact

attribute that

does not apply to

the specified

contact. Refer to

the contact

description in

Section 3.

Unsupported

facility

3
ERR.INVHAND

LE

The handle you

have specified

does not identify

an object that

currently exists.

This might be

caused by the

following:

Invalid

handle

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 297 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition Value

• You have

used an

incorrect

application

context

handle or

have failed

to sign on

before

calling a

subroutine

that

requires

the handle

of the

application

context.

• You have

used an

incorrect

object

handle, or

that of an

object that

has not yet

been

created or

has been

destroyed.

5 ERR.MALLOC

UIMS was unable

to allocate the

memory required

for an operation.

This is usually

caused

by insufficient

memory or

Windows

resources on the

PC. Close as many

applications as

possible and try

again. If this fails,

try restarting

Windows.

No memory

allocated

8
ERR.INVCLAS

S

You have called a

subroutine that

attaches one

object to another

(for example:

Invalid class

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 298 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition Value

AppWinSetMenu

Bar,

DrawruleSetFon

t or SetPointer)

and have

specified the

wrong type of

object. For

example, passing

the handle of a

Brush object to

DrawruleSetPen

instead of that of

a Pen will

produce this

error.

10 ERR.NOITEM

• You have

called

ListBoxRe

moveConte

nt or

ListBoxRe

moveConte

nts and

have

specified

an item

that does

not exist.

• You have

called

ListBoxGet

Selections,

but none

of the

items in

the list box

are

selected.

Couldn't find

the item to

delete

11
ERR.INVPARA

M

You have passed

an invalid

parameter to a

subroutine.

Invalid

parameter

12
ERR.ITEMEXIS

TS

When calling

AddChild (or

AddChildren),

the child contact

is already a child

of the specified

parent.

Item already

exists

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 299 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition Value

15
ERR.INVPARE

NT

Some objects can

only be made

children of certain

types of object.

For example, a

ListBox cannot

be made the child

of an

ExclusiveGroup.

Refer to Chapter 3

for details of

which objects can

have which types

of parent.

Parent is not

of

appropriate

type

16
ERR.DRAW.OR

PHAN

When calling the

Draw subroutine,

you have specified

an object that

does not have a

parent.

Check that you

have specified the

correct object.

Cannot Draw

an orphan

21
ERR.COORDM

ODE

You have used an

invalid value when

setting the co-

ordinate mode.

Refer to the

description of the

SetCoordMode

subroutine.

Invalid

coordinate

mode

24
ERR.NOSCREE

N

You have

attempted to

obtain the size of

the screen by

calling GetSize

and specifying the

application

context. This has

failed, probably

because of

insufficient

memory or

Windows

resources on the

PC. Close as many

applications as

possible and try

again. If this fails,

try restarting

Windows.

Couldn't get

the default

screen

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 300 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition Value

27
ERR.NOTREAL

ISED

You have

attempted to

draw text or

graphics, or set

the cursor

position, in a

contact that does

not have a parent.

Contact has

not yet been

realised

35
ERR.FILEOPE

N

The resource file

you have specified

when calling

LoadAppRes

cannot be found.

This might be

caused by the

following:

• The file

name you

have

specified is

incorrect.

• The

directory

you have

specified is

incorrect.

• The

directory

specified in

the

RFW.INI

file does

not contain

the

resource

file you

have

specified.

Refer to the

description of the

LoadAppRes

subroutine for

details of how to

load resources

Error opening

file

38
ERR.INVFILEN

AME

The file you have

specified when

calling the

LoadAppRes

subroutine has

the wrong

extension.

Resource files

Invalid file

name

specified

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 301 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition Value

must have the

extension '.RES'.

501
ERR.CLIP.FOR

MAT

You have

attempted to use

a clipboard format

that is not

supported by this

version of UIMS.

Refer to the

desciptions of the

ClipboardGetCo

ntent and

ClipboardSetCon

tent

subroutines for

details of

supported

formats.

Format is not

available

502
ERR.CLIP.OPE

N

Another Windows

application has

the clipboard

open. Only one

application can

use the clipboard

at a time.

Failed to open

clipboard

603
ERR.EBOX.NO

TEXTSEL

You have

attempted to cut

or copy selected

text from an

EditBox or

TextEditor (Cut

or

Copy subroutine

called with start

and end

parameters all set

to -1), but there

is no text

selected in the

specified contact.

No text

selected

800
ERR.DLGBOX.I

NVMODE

You have used an

invalid value when

setting the mode

of a dialog box.

Refer to the

description of the

DlgBoxSetMode

subroutine.

Invalid dialog

box mode

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 302 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

12.2 DDE error codes

These codes are defined in the item UIMS-DDE in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these

errors.

Any code other than those listed below indicates an internal error.

Code Error Definition

0 ERR.RFW.SUCCESS Subroutine completed successfully.

2003 ADV.CONFAIL

A permanent DDE link was not

established or has been terminated

by the server.

2010 ERR.DDE.CONFAIL

An attempt to initiate a

conversation failed. This might be

for any of the following reasons:

• The server application could

not be found.

• The server application does

not support DDE.

• The specified topic was not

recognised by the server.

2101 ERR.DDE.BUSY

The server was unable to respond

because it was carrying out another

task.

2107 ERR.DDE.LOW.MEMORY

There is insufficient memory

available because of an internal

error condition.

2108 ERR.DDE.MEMORY.ERR

UIMS was unable to allocate the

memory needed for the current

task.

2114 ERR.DDE.SERVER.DIED

The server has attempted to

continue a conversation that has

been terminated by the client., or

the server terminated before

completing a transaction.

2115 ERR.DDE.SYS.ERR An internal error has occurred.

12.3 Execute error codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these

errors.

Code Error Definition

0 ERR.RFW.SUCCESS Subroutine completed successfully.

8100 ERR.EXECUTE.MEMALLOC Out of memory.

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 303 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition

8102 ERR.EXECUTE.NOFILE File not found.

8104 ERR.EXECUTE.NOPATH Path not found.

8105 ERR.EXECUTE.LINK
Attempt to dynamically link to a

task.

8106 ERR.EXECUTE.DATASEG
Each task requires a separate data

segment.

8110 ERR.EXECUTE.WINVERSION Incorrect Windows version.

8111 ERR.EXECUTE.INVEXE

Invalid Windows executable file

(non-Windows application or error

in .EXE image).

8112 ERR.EXECUTE.OS2 OS/2 application.

8113 ERR.EXECUTE.DOS DOS 4.0 application.

8114 ERR.EXECUTE.INVEXE2 Unknown executable type.

8115 ERR.EXECUTE.OLDEXE
Windows program not supported in

current mode.

8116 ERR.EXECUTE.RUNNING

Attempt to run a second instance of

a program containing multiple,

writeable data segments.

8117 ERR.EXECUTE.RUNNING2

Attempt to run a second instance of

a program that links to non-

shareable dlls.

8118 ERR.EXECUTE.PROTECTED
Attempt to run a protected mode

application in real mode.

8132 ERR.EXECUTE.INUSE

Application already in use (only

applies if the Control parameter

includes the EXECUTE.SINGLE

option).

8133 ERR.EXECUTE.MEMLOCK Internal error.

12.4 SendKeys error codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these

errors.

Code Error Definition

0 ERR.RFW.SUCCESS Subroutine completed successfully.

8135 ERR.SENDKEYS.FAIL Internal error.

8136 ERR.SENDKEYS.INUSE
SendKeys is in use by another

instance of RealLink.

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 304 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

12.5 SystemCommand error codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these

errors.

Code Error Definition

0 ERR.SYS.SUCCESS Subroutine completed successfully.

8140 ERR.SYS.INVCOMMAND Illegal command.

8141 ERR.SYS.FAIL Command failed.

8142 ERR.SYS.DIRECTORY
A directory with the specified name

exists.

8143 ERR.SYS.NOFILE The file or directory does not exist.

8144 ERR.SYS.NOTUIMS

You have attempted to call the

SystemCommand subroutine

while using a character-based

terminal or a terminal emulator

other than RealLink for Windows.

12.6 NewView error codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these

errors.

Code Error Definition

0 ERR.RFW.SUCCESS Subroutine completed successfully.

8201 ERR.NV.NOMEM

NewView was unable to allocate the

memory required for an operation.

This is usually caused by

insufficient memory or Windows

resources on the PC. Close as many

applications as possible and try

again. If this fails, try restarting

Windows.

8202 ERR.NV.EXISTS

You have attempted to create a

NewView group with an identifier

that is already in use by another

group. Refer to the descriptions of

the CreateNVContactGroup and

CreateNVHotspotGroup

subroutines.

8203 ERR.NV.INVALIDID

You have used an invalid NewView

identifier – no group exists with the

identifier you have specified. The

group might not yet have been

Section 12: Appendix D – Error codes

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 305 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Code Error Definition

created or might have been

destroyed.

8204 ERR.NV.INVALIDINST

You have used an incorrect

application context handle or have

failed to sign on before calling a

NewView subroutine that requires

the handle of the application

context.

Section 13: Glossary

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 306 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 13: Glossary

Terms Definition

Active Window The window which the user can currently

manipulate or work with. This is like having the

focus.

API Application Programming Interface.

App Window

An App window is the main type of window in a

UIMS application. It is free to appear anywhere on

the screen and to overlap any other window

(compare child window). A UIMS application must

have at least one App window (the root window).

Attribute

1. A unique characteristic of an object that

can be modified.

2. A section of a REALITY file item, delimited

by attribute marks – CHAR (254).

Brush

1. The way the interior of a graphical object

looks; it can be coloured, hatched, or

patterned.

2. A UIMS object that controls these

characteristics.

Check Button

A check button is a control that can be turned on

or off and saves its state. It looks like a square box

to the left of some text. If it has been selected, an

'X' appears in the box.

Check Mark

A mark shown beside a menu item to indicate a

selected option. The mark displayed is normally a

tick but on some hardware platforms other

marks may be used.

Child Window A child window is like an App window but cannot

overlap windows other than its parent.

Client Area

The client area is the part of a window where an

application can draw. It is usually the central area

of the window and excludes the title area, menu

bar, scroll bars, and so on…

Client Coordinates
Coordinates relative to the top left-hand corner of

the window's client area.

Clip Region

Defines in which part of a window drawing can take

place. An application may draw outside the clip

region, but only the part inside the clip region will

be displayed.

Clipboard

The clipboard can be thought of as a resting place

in memory for data that has been copied or cut

from one application to be pasted into the same or

a different application.

Contact

An object that provides an interface with the user.

Window, menu, and dialogue box objects are all

contacts.

Section 13: Glossary

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 307 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Terms Definition

Context

An object that defines certain application-wide

parameters, such as the coordinate mode, the

default drawing objects, and the event mask.

Control

A control is a contact that carries out a specific

kind of input or output. Edit boxes, titled buttons

and scroll bars are examples of controls.

Copy
To Copy means to get data from an application and

put it in the clipboard.

Cursor
A blinking graphic entity that shows where the next

text input will appear on the screen.

Cut

To Cut means to get some data from an application

and put it in the clipboard and then to remove the

data from the application.

DDE

Dynamic Data Exchange – a message exchange

protocol used in the Microsoft Windows

environment.

Default Titled Button

A default titled button is a control that represents

the usual response to a request. It has text

surrounded by an emboldened rectangle. If the

user types the RETURN key it is the default titled

button that takes effect.

Dialog Box

A dialog box is a window that an application

displays to request information from the user. It

contains controls that the user can manipulate.

Disabled

If an application does not want to allow the user to

select a particular option at a certain time, it can

disable the option. Disabling a contact causes any

text in the contact to be greyed.

Edit Control A control that lets the user type in his own text.

Enabled Selectable by the user.

Event

Actions carried out by the user result in UIMS

events, the details of which are sent to the

application by means of messages. For example,

when the user presses a key, the resulting event

generates a keypress message, which tells the

application which key was pressed.

Focus
If a window has the focus, all keyboard events will

be sent to that window.

Font The typeface used to display text.

GUI Graphical User Interface.

Instance An occurrence of an application.

List Box

A list box is a control that presents the user with a

list of options which may be clicked on to

accomplish some action. Often there is a scroll bar

attached to the list box to scroll through the

options, which may be numerous. A common use of

a list box is to present the user with a list of files to

select from.

Section 13: Glossary

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 308 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Terms Definition

Menu

A menu is a list of action choices listed at the top of

a window that can be selected with a pointing

device or from the keyboard.

Message

UIMS communicates with applications by passing

pre-defined formatted messages. Examples are

messages which tell the application to paint its

window, and messages which tell the application

that the user has selected a command on the

menu.

Object

A software packet containing a collection of related

data (in the form of attributes) and procedures for

operating on that data.

Option Button

An option button is a control that usually appears

in a group of other option buttons. Each choice is

mutually exclusive of the others in the group, so

that once the user selects one

button, any other button in the group turns off.

Selecting a option button is analogous to selecting

a radio station on a car radio; for this reason,

option buttons are often called radio buttons.

Parent

An object or contact to which other objects or

contacts are attached. For example, a dialog box is

the parent of the controls it contains.

Paste
A command to insert the current contents of the

clipboard into an application's window.

Pen
The way the outline of a graphical object looks. It

can be wide, coloured, or patterned.

Pointer

A graphic entity that is controlled by a pointing

device to make selections in an application's

window.

Pointing Device

A pointing device is an input device used to control

the pointer on the screen. It can be a mouse, a

light pen, a joystick or a graphic tablet.

Resource Compiler

The resource compiler converts a text file that

describes the resources (menus, dialog boxes, and

so on…) used by an application into the format

required by the application.

Screen Coordinates
Coordinates relative to the top left corner of the

display.

Scroll Bar

A scroll bar is a control that allows the user to set

analogue values. Its main use is to let the user

change the current view of the application when

there is more data than can be displayed in one

window.

System Menu

The system menu is a special menu that is pulled

down from the top left corner of a window. It

contains actions that are usually common to all

applications such as moving or changing the size of

the window.

Section 13: Glossary

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 309 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Terms Definition

Thumb

A part of a scroll bar that can be dragged with the

mouse to change the scroll bar setting. Its position

on the scroll bar indicates the current setting.

Title Bar

The title bar is the uppermost part of a window that

provides two pieces of information; the name of the

application and whether the window is currently

active. Another name for the title bar is the caption

bar.

Titled Button

A titled button is a control that has text

surrounded by a rectangle. Clicking on it causes an

immediate reaction. For example, in dialog boxes

there are OK and Cancel buttons. Titled buttons are

also known as Push Buttons.

Section 13: Glossary

UIMS v2.0 DATA/BASIC API, Reference Manual v0.1 Page 310 of 310

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

