

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RealityX FailSafe v3.1
Reference Manual

Copyright © NEC Software Solutions UK Limited (Company No.00968498) ("NEC") [2006]. All rights reserved.

RealityX FailSafe v3.1 Reference Manual v0.1 Page 2 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Document control

Software Version Document

Status

Document

Revision

Issue Date Reason for

Change

3.1 Published 0.1 2006 Final draft

Prepared by

Name Contact details

Pubali Pramanik pubali.pramanik@necsws.com

Vijita Patel vijita.patel@necsws.com

mailto:pubali.pramanik@necsws.com
mailto:vijita.patel@necsws.com

Table of Contents

RealityX FailSafe v3.1 Reference Manual v0.1 Page 3 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Table of Contents

Section 1: About this manual .. 6

1.1 Purpose .. 6

1.2 Introducing FailSafe operation ... 7

1.3 Contents ... 7

1.4 Conventions .. 8

Section 2: Outline of operation .. 10

2.1 Overview ... 10

2.2 Transaction handling ... 10

2.3 Transaction logging ... 13

2.4 FailSafe operation ... 15

2.5 Database recovery .. 17

Section 3: Guidelines for managing logs ... 20

3.1 Locating of the raw log and clean logs ... 20

3.2 Estimating raw log size .. 21

3.3 Managing clean logs .. 22

3.4 Viewing clean logs... 25

3.5 Log archiving policy ... 25

Section 4: Setting up procedures .. 26

4.1 Commands and utilities used for setting up FailSafe operation 26

4.2 Setting up a FailSafe database.. 26

Section 5: Operating procedures ... 32

5.1 Commands and utilities referenced in this chapter .. 32

5.2 Initial startup procedure .. 32

5.3 Switching to a new clean log .. 33

5.4 Reversing roles in FailSafe pair ... 35

5.5 Shut-down procedures ... 35

5.6 Archiving clean logs .. 37

5.7 Retrieving clean logs ... 38

5.8 Facilities to monitor transaction logging ... 39

Section 6: Recovery procedures .. 40

6.1 Commands and utilities referenced in this chapter .. 40

6.2 Introducing recovery methods .. 40

6.3 First steps to recovery ... 41

6.4 Option 1 - Using TL-REDUAL to restore a chain of clean logs in one sequence 44

6.5 Option 2 - Using TL-REDUAL to restore clean logs one at a time 46

Table of Contents

RealityX FailSafe v3.1 Reference Manual v0.1 Page 4 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.6 Option 3 - Using TL-RESTORE to restore chained clean logs in one sequence, then

TL-REDUAL .. 48

6.7 Option 4 - Using TL-RESTORE to restore clean logs one at a time, then TL-REDUAL

 .. 49

6.8 Copying clean logs between databases .. 51

Section 7: UNIX tools .. 55

7.1 fsadm .. 55

7.2 killreal ... 57

7.3 lockdbase .. 58

7.4 mklog - Making a raw log ... 58

7.5 mklog - Making a clean log sub-directory ... 59

7.6 runrealcd ... 61

7.7 unlockdbase ... 61

Section 8: TCL commands ... 62

8.1 TCL commands described in this chapter .. 62

8.2 ACCOUNT-RESTORE .. 62

8.3 CREATE-FILE .. 62

8.4 CREATE-ACCOUNT .. 63

8.5 FSADM .. 63

8.6 FSADM-PRIMARY .. 64

8.7 FSADM-STATUS .. 65

8.8 FSADM-UNPAIR .. 65

8.9 SEL-RESTORE ... 66

8.10 TL-CONTINUE ... 66

8.11 TL-CREATE-FILE .. 66

8.11 TL-DUMP .. 67

8.12 TL-LISTFILES .. 68

8.13 TL-LOAD .. 68

8.14 TL-REDUAL ... 69

8.15 TL-RESTORE ... 70

8.16 TL--SET-LOG-STATUS .. 73

8.17 TL--START .. 79

8.18 TL--STATUS .. 80

8.19 TL--STOP .. 82

8.19 TL--SWITCH ... 83

8.20 TL--TRANSACTIONS ... 84

Section 9: Log files .. 85

9.1 Overview ... 85

Table of Contents

RealityX FailSafe v3.1 Reference Manual v0.1 Page 5 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

9.2 Log files ... 85

9.3 History file – TL-LIST ... 87

9.4 Using ENGLISH to examine a log .. 87

9.5 Using TL-LIST ... 89

Section 10: Applications interface ... 90

10.1 Introduction ... 90

10.2 TCL/PROC interface to transactions ... 91

10.3 TRANSTART verb .. 91

10.4 TRANSEND verb .. 92

10.4 TRANSABORT verb .. 92

10.5 TRANSQUERY verb .. 93

10.6 DATA/BASIC interface to transactions .. 93

10.7 Example of transaction boundaries in a DATA/BASIC program 96

10.8 ALL interface to transactions ... 99

10.9 Identifying transactions ... 102

10.10 Notes on defining transactions in ALL ... 102

Section 11: Appendix A: Error messages ... 104

Section 12: Appendix B: Installation of transaction handling/logging 107

12.1 Introduction ... 107

12.2 Procedure for UMAX V systems ... 107

12.3 Procedure for M88 systems .. 111

12.4 Removing file systems from log disk .. 113

12.5 Defining the raw log and clean log partitions .. 114

Section 13: Glossary .. 116

Section 1: About this manual

RealityX FailSafe v3.1 Reference Manual v0.1 Page 6 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 1: About this manual
This chapter describes the purpose and use of this manual, including:

• The intended readership and the knowledge they are assumed to have to use the

manual

• A list of associated manuals

• A brief introduction to FailSafe operation

• A summary of chapter contents

• A list of conventions used in the manual

1.1 Purpose

This manual contains the information necessary to administer and operate FailSafe for a

Reality X database.

1.1.1 Intended readership

The manual is aimed at the following:

• The System Administrator responsible for setting up and maintaining the FailSafe

pair.

• Operators responsible for the day-to-day operation of the FailSafe database.

• Programmers responsible for creating or modifying applications to include

transactions.

1.1.2 Assumed knowledge

It is assumed that the reader understands the basics of UNIX and Reality X

administration and has appropriate knowledge of TCL, ENGLISH, DATA/BASIC and PROC.

Detailed information on these subjects can be obtained from the manuals listed later in

this chapter.

1.1.3 References

The following manuals provide reference information for the commands and procedures

described in this manual.

Administrator's Guide to Reality X

Reality X Differences Supplement

You also need a set of REALITY Release 7.0 manuals which are used in conjunction with

the Reality X Differences Supplement to provide information on the RealityX applications

environment. A list of Release 7.0 manuals is given in the supplement.

For information on the UNIX environment, refer to the set of reference manuals supplied

with your UNIX system.

1.1.4 Comment sheet

A Comment Sheet is included at the front of this manual. If you find any errors or have

any suggestions for improvements in the manual please complete and return the form. If

it has already been used then send your comments to the Technical Publications

Manager at the address on the title page.

Section 1: About this manual

RealityX FailSafe v3.1 Reference Manual v0.1 Page 7 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1.2 Introducing FailSafe operation

FailSafe operation is an optional facility supported by RealityX which maintains two

identical databases for one set of users. One database is the live one to which users can

log on and carry out update operations. The other database is maintained as a standby

to which users can switch if the live database fails. The live database is designated the

'primary' and the standby duplicate database is designated the 'secondary'.

On a machine containing multiple databases it is not necessary for all live databases to

operate in FailSafe mode, nor is it necessary to maintain all primary or all secondary

databases on the same machine. RealityX FailSafe software supports complete flexibility

in the setting up and location of FailSafe databases pairs across two or more machines.

FailSafe operation is an extension of the RealityX Transaction Logging software.

The consistency and integrity of a FailSafe database can be maintained by the

transaction Handling facility; a standard feature of RealityX.

1.2.1 Transaction handling

Transaction Handling maintains a sequence of updates to a database as a single

'transaction'. Handling The contents of the transaction are application-defined using two

commands, 'transaction start' and 'transaction end'. If the transaction is not completed,

all updates since its start are deleted and the original data items restored (rolled back)

to maintain the consistency of the database.

1.2.2 Transaction logging

Transaction Logging saves updates to the primary database and logs them on disk.

Initially all updates are logged in raw partitions, called 'raw logs', one locally on the

machine containing the primary database and the other, remotely via a communications

link to the machine containing the secondary database. Normally there is one raw log

per system independent updates and completed transactions logged in the local and

remote raw logs are then written to a log file called a clean log where they are stored for

back-up purposes. One clean log must be provided for each database, primary and

secondary.

The FailSafe logging mechanism maintains the secondary as a real-time duplicate of the

primary by applying all updates logged in the secondary clean log to the secondary

database.

1.3 Contents

This comprises of the following:

• Chapter 1 (this chapter)

• Chapter 2, Introduction, contains an overview of FailSafe and a description of

Transaction Logging and how it is used to implement FailSafe operation. It also

describes the Transaction Handling mechanisms, used to maintain a consistent

database.

• Chapter 3, Guidelines for Managing Logs, contains recommendations to the

System Administrator on estimating the size of the raw log and clean log

partitions, and administering their use to facilitate maximum operating efficiency

of Transaction Logging.

• Chapter 4, Setting Up Procedures, describes the procedures used by the System

Administrator to configure the systems and databases for FailSafe operation.

• Chapter 5, Operating Procedures, describes procedures and facilities used by the

System Operator to enable efficient day-to-day operation of a FailSafe database.

Section 1: About this manual

RealityX FailSafe v3.1 Reference Manual v0.1 Page 8 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Chapter 6, Recovery Procedures, describes the facilities available to the System

Administrator and/or Operator for recovering a FailSafe database and restoring it

to its most current, consistent and predictable state after a system failure.

• Chapter 7, UNIX Tools, describes the utilities available to administer a FailSafe

pair.

• Chapter 8, TCL Commands, details in alphabetical order the TCL commands

available to run a FailSafe configuration.

• Chapter 9, Examining Log Files, describes the purpose and contents of various log

and history files supported by Reality X and explains how ENGLISH can be used

to examine them.

• Chapter 10, Applications Interface, is directed at programmers and describes the

use of transactions within DATA/BASIC, PROC, TCL and ALL applications.

• Appendix A, Error Messages, lists of error messages that may be generated in a

FailSafe configuration and suggests actions that should be taken in response.

• Appendix B, Installation of Transaction Handling and Logging, details the

procedure to follow to install transaction processing on a system.

• Glossary is included at the end of the manual.

1.4 Conventions

This manual uses the following conventions:

Conventions Definition

Text Bold text shown in this typeface is used to

indicate input which must be typed at the

terminal.

Text
Text shown in this typeface is used to show

text that is output to the screen.

Bold text

Bold text in syntax descriptions represents

characters typed exactly as shown in the

following example:

WHO

text

Characters or words in italics indicate

parameters which must be supplied by the

user. For example, in LIST file-name, the

parameter file-name is italicized to indicate

that you must supply the name of the

actual file defined on your system.

Italic text is also used for titles of

documents referred to by this document.

{Braces}

Braces enclose options and optional

parameters as the following example:
BLIST {DICT} file-name item-id

{(options}

• The word DICT can optionally be

typed to specify the dictionary of the

file.

• file-name and item-id must be

supplied

• One or more single-letter options

can be included, as defined for the

command; these must be preceded

by an open parenthesis, can be

Section 1: About this manual

RealityX FailSafe v3.1 Reference Manual v0.1 Page 9 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Conventions Definition

given in any order, and are not

separated by spaces. Any number of

options can be used except where

specified in text.

[param | param]

Parameters shown separated by vertical

lines within square brackets in syntax

descriptions indicate that at least one of

these parameters must be selected. For

instance, [THEN statements | ELSE

statements] indicates that either a THEN

clause or an ELSE clause must be included

(or both).

...

In syntax descriptions, indicates that the

parameters preceding can be repeated as

many times as necessary.

SMALL

CAPITALS

Small capitals are used for the names of

keys such as RETURN.

CTRL+X

Two (or more) key names joined by a plus

sign (+) indicate a combination of keys,

where the first key(s) must be held down

while the second (or last) is pressed. For

example, CTRL+X indicates that the CTRL

key must be held down while the X key is

pressed.

Enter

To enter means to type text then press

RETURN. For instance, 'Enter the WHO

command' means type WHO, then press

return.

In general, the RETURN key (shown as

ENTER or ¿ on some keyboards) must be

used to complete all terminal input unless

otherwise specified.

Press
Press single key or key combination but do

not press RETURN afterwards.

X'nn' This denotes a hexadecimal value.

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 10 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 2: Outline of operation
This chapter provides an elementary introduction to the operation of Reality X FailSafe

and the associated Transaction Logging and Handling facilities. The description is given

in the following order:

• Transaction Handling. The concept of a transaction is explained with a simple

example, and the facilities available to applications programmers are described.

• Transaction Logging. The basic elements of logging to the raw log and logging to

clean logs are discussed.

• FailSafe operation. The purpose and operation of logging in a FailSafe pair is

described. The description is extended to multiple databases.

• Database Recovery. Only a brief overview of recovery methods and procedures is

provided here. For detailed procedures you must refer to the intended readership

and the knowledge they are assumed to have to use the manual.

2.1 Overview

Reality X FailSafe software maintains two identical databases; one as the live database

to which users log on and one as a duplicate of the live database which is used as a

standby. Users can then switch to the standby if the live database fails. The two

databases are normally located on different machines so that one remains functional if a

machine crashes. The live database is designated the 'primary' and the standby is

designated the 'secondary'.

The Reality X FailSafe software logs updates on the primary database to two log files.

One is associated with the primary database and one is associated with the secondary.

The logging mechanism which saves the updates in the secondary's log, also applies

them to the secondary database to maintain it as a real-time duplicate of the primary.

The FailSafe logging software is an extension of the Transaction Logging software

available for a stand-alone database.

The consistency and integrity of the primary and secondary databases when performing

a set of interdependent updates (a transaction) are maintained by Transaction Handling,

if transactions have been incorporated into the application being run. Transaction

Handling is a standard facility of Reality X.

2.2 Transaction handling

Transaction Handling is a standard software facility on Reality X by which a database is

maintained in a consistent and predictable state when performing transactions. This

section contains a description of what it is and how it works.

2.1.1 What is transaction

A transaction is a set of related updates made to a database which can be logically

grouped Transaction together by Transaction Handling 'start' and 'end' commands. Each

update is a single change made to the database, from DATA/BASIC, PROC, TCL or ALL,

by creating, altering or deleting an item. Individual updates not grouped into a

transaction are defined as being 'independent'.

The relationship between updates belonging to a transaction and logically grouped by

transaction start and end commands may be defined as follows:

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 11 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• If one update within the transaction is applied to the database, then all of the

remaining updates within the transaction must be applied in order to maintain a

consistent database.

The following example may make the concept clearer:

Consider a stock control program which generates a set of updates from a single input;

first to Transaction an Orders file, then to a customer file, and then finally to a Stock file.

The program can be considered in the following four stages:

1. Details of an order are entered.

2. The Orders file is updated with the name and address of the customer, the goods

ordered, the price and the date of order.

3. The customer file is updated with the date of order, the goods ordered and the

price, so that an invoice can be produced.

4. The company stock file is updated, subtracting the quantity of goods ordered

from the current stock.

If the program were aborted after stage 2, this would mean an order would be sent out,

but the customer would not receive the invoice produced by stage 3 (customer file) and

the Stock file would not be amended, causing 'out of stock' problems in the future.

To maintain a consistent database, Stages 1 to 4 must all be completed, that is, they

must be maintained as a single transaction. Transaction Handling facilities are provided

to do this.

The creation of transactions by applications programmers is discussed in Chapter 10.

2.1.2 What is transaction handling

Transaction Handling ensures that the updates defined as belonging within a transaction

are Transaction maintained together as a set, so that, if a transaction is not completed,

the updates made since Handling? the start of the transaction are deleted from the

database and the pre-updated items are restored. This maintains the database in a

predictable and consistent state.

Transaction Handling also suspends the release of item locks set within transactions.

These remain locked until the end of a transaction. This prevents inconsistencies in data

due to attempted simultaneous update of one or more items by processes which are not

involved in the transaction.

Transaction Handling supports three transaction boundary commands.

• TRANSTART marks the start of a transaction.

• TRANSEND marks the end of a successful transaction, that is the transaction is

committed.

• TRANSABORT marks the end of an unsuccessful transaction, that is the

transaction is rolled back.

These boundary markers are implemented as TCL commands, DATA/BASIC statements

and ALL functions. Refer to Chapter 10 for a more detailed description.

A fourth transaction command, TRANSQUERY, can be used to find out the transaction

status of the current port. This can be executed, either by a TCL command or a

DATA/BASIC function.

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 12 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The transaction boundary markers, TRANSTART, TRANSEND and TRANSABORT, can be

used to update existing application code to incorporate transactions. This may (in some

cases) require some restructuring of the application to collect related updates together,

so that they are performed in sequence and can therefore be defined as a transaction.

When designing applications to incorporate transactions, the definition of transactions

should be an integral part of the design.

It is important that transactions are made as short as possible to minimise the effect of

the Transaction Handling mechanism on the overall efficiency of the system.

2.1.3 Executing a transaction

A transaction is started by executing a TRANSTART operation from ALL, DATA/BASIC,

TCL, or PROC and completed by executing a TRANSEND.

During each transaction the following events occur:

• Whenever a database update occurs within the transaction, a 'Before' image is

copied into a central log on disk called the 'raw log' (See Figure 2-1). Each

'Before' image contains enough information to reverse the effect of the change to

the database brought about by the update. For example, if you update an existing

item, the 'Before' image that is logged contains a copy of the item before it was

changed. If you create an item, the 'Before' image that is logged is 'delete item'.

'Before' images are only held for the duration of the transaction.

• Items locked in a transaction are kept locked until a TRANSEND or TRANSABORT

is issued. This prevents other transactions or processes reading updated items

while the current transaction is still in progress, thus preventing dirty and

unrepeatable reads (see Glossary). All item locks set during a transaction remain

locked until the 'transaction commit' or 'transaction abort', after which they are

released.

Note

It is important that all processes use item locking to prevent dirty reads. Items that

are updated without having been locked previously are not guaranteed to be recovered

correctly by a TRANSABORT.

• TRANSEND generates a 'transaction precommit', followed by a 'transaction

commit'. Transaction commit indicates that the transaction is completed. 'Before'

images are only held in the raw log for the duration of the transaction. Once a

transaction is committed, that is the 'transaction commit' is logged in the raw log,

the 'Before' images are discarded and all the item locks held by the transaction

are released.

2.1.4 Aborting a transaction

If a transaction is aborted, either deliberately by TRANSABORT or by a forced log off

occurring mid-transaction, the transaction is 'rolled back' by applying the 'Before' images

to the database in reverse order. The 'Before images are then discarded.

2.1.5 Forced Abort and Logoff of a Transaction

Two conditions will force a transaction to abort automatically and logoff.

1. If the raw log becomes excessively full (>85%), then the oldest transaction, and

therefore, the longest, is forcibly aborted and logged off.

2. A transaction longer than a pre-defined timeout period will be forcibly aborted.

The timeout period is specified in minutes in the environmental variable

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 13 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

REALTXNTIMEOUT which should be set up by the system administrator in

/etc/Realityrc. The default is 8 hours (480 minutes). If REALTXNTIMEOUT is

changed, the new value becomes effective the next time the central daemon is

started.

 Figure 2-1 Transaction Handling/Logging Paths

2.3 Transaction logging

 2.3.1 What is transaction logging

Transaction Logging is a software facility which permanently saves completed

transactions Transaction and independent updates to disk, so that, in the event of a

database failure, the logged updates Logging? can be restored to recover the most

recent version of the database.

With transactions defined, Transaction Handling and operate together to ensure the

consistency of the database in the event of a failure. Only committed transactions are

logged. Aborted transactions, initiated by a TRANSABORT or program failure, are rolled-

back to restore the database to the state it was in before the current transaction was

started.

If a database failure, the database can be recovered by restoring the most recent back-

up tape, then restoring all committed transactions and independent updates logged since

the back-up was made.

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 14 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

2.3.2 How transaction logging works

Figure 2-1 illustrates the logging paths for Transaction Handling/Logging on a system

containing multiple databases. Note that not all databases on a system have support

Transaction Logging or Logging. In the example, only Databases 'A' and 'B' support

Transaction Handling and Transaction Logging. Database 'C' does not support either, and

Database 'D' supports Transaction Handling only, so that only 'Before' images are written

to the raw log.

2.3.3 Images written to the raw log

Transaction Handling/Logging writes two images to the raw log for each logged update, a

'Before' image and an 'After' image. These are defined, as follows:

• 'Before' image This defines how the updated item is restored to its original value.

This is supported by the Transaction Handling mechanism to roll-back the

updated item to its original value if the system or process fails in mid-transaction

or in the event of a 'transaction abort'.

• 'After' image This defines the item update. This is saved to enable recovery of the

updated item in the event of a system/program failure.

For a committed transaction three transaction boundary images are written to the raw

log, Start, Precommit and Commit. TRANSEND generates a Precommit, then a Commit.

For an aborted transaction two transaction boundary images are written to the raw log,

Start and Abort.

2.3.4 The raw log

The raw log is a central log located on disk (normally one per system) to which is written

'Before' and 'After' images for all recently logged updates for all databases on a system.

It is in a raw partition, normally on a disk dedicated to logging (the log disk) and

operates as a cyclic buffer. The raw partition is created by the administrator when

setting up Transaction Logging. Chapter 3 discusses the sizing of the raw partition.

The raw log is the key component of the Reality X Transaction Handling and Logging

system. The complex cyclic queue structure ensures efficient and secure storage of

'Before' and 'After' images for all active and recently committed transactions and

independent updates. It supports the following facilities:

• Roll-back of transactions in the event of an abort or program failure.

• Buffering for 'After' Images before they are written to a clean log.

2.3.5 Writing to the raw log

'Before' and 'After' images are written to the raw log via a cyclic buffer in shared

memory. This buffer is common to all databases. The shared memory buffer is

maintained as an image of the current write point on the raw log. Each user copies

images to the shared memory buffer and the buffer is 'flushed' to raw disk, either

periodically or by a transaction being completed. The transfer to disk from the shared

memory buffer to the raw log is carried out by a synchronised write.

The two operations of copying a committed transaction to the shared memory buffer and

logging it to disk can be synchronised or unsynchronised. Synchronised logging is

referred to a FULL logging mode and unsynchronised logging is referred to as BRISK

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 15 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

logging. The mode is set as part of the Transaction Logging setting up procedure using

the mklog utility. See Chapter 7 for details.

In FULL logging mode, the shared memory buffer is flushed each time a 'transaction

commit' image is copied to it. This ensures that all committed transactions are written

safely to disk immediately so that they cannot be lost in a system crash. However, this

has a performance overhead, in that the user process waits until the synchronised write

to disk is completed before continuing. Note that, on receiving the 'commit' image all

previous images in the shared memory buffer are flushed to disk. If transactions are not

in use, that is no 'transaction commits' copied to shared memory, the buffer is flushed

periodically only, or when full.

In BRISK logging mode, the shared memory is not flushed by a 'transaction commit' but

is flushed periodically or when full. This improves up the performance of the database

but does mean there is a potential for losing committed transactions from the memory

buffer during the period between flushes.

2.3.6 Writing to clean log

When a transaction is committed, that is, the 'transaction commit' image is written to

the raw log, all 'After' images and 'transaction boundary' images for that transaction are

written to a clean log file which is assigned to database on which the transaction is

performed. All images relating to that transaction are then cleared from the raw log, i.e.

'Before' images are discarded.

'Before' and 'After' images are maintained in the raw log, after being written to a clean

log, for just under 5 minutes. This is because the writing to the clean log is via memory

buffers and is unsynchronised. It is, therefore, necessary to allow 5 minutes to ensure

that the images have reached the safety of the clean log disk and will not be lost if the

system crashes. If the system does crash, the images can then be recovered from the

raw log and written to the clean log. After 5 minutes all committed transactions and

independent updates in the raw log are cleared.

2.3.7 Clean log

A clean log is a serial file (one per database) which is created to hold committed

transactions and independent updates for one associated database. Transactions are

written to it in the order in which they are committed. Each transaction on a clean log

file consists of a copy of the sequence of logged 'After' images and 'transaction

boundary' images for that transaction. The contents of an inactive clean log can be used

to restore updates to its associated database in the event of a system/program failure.

Refer to the section on recovery at the end of this chapter. Operations on logs are not

logged as this might leads to obvious conflict (for example, CLEAR-FILE on a clean log).

2.4 FailSafe operation

FailSafe operation maintains two identical databases for one set of users; the live

database that is, the one to which users log on and a duplicate of the live database

which is used as a standby and is not normally accessed by users. The standby is

normally on a different machine from the live database to guard against machine failure.

If the live database fails, then users can switch to the standby and continue operating

with only a short break in service and minimal loss of data. The live database is referred

to as the 'primary' and the standby database is referred to as the 'secondary '.

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 16 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

FailSafe is an extension of Transaction Logging on a stand-alone machine. Figure 2-2

illustrates the logging path in a FailSafe configuration.

 Figure 2-2 Logging Path of a FailSafe Pair

'Before' and 'After' images for all primary database updates are written to two raw logs,

one on the local machine containing the primary database and one on the remote

machine containing the secondary database, via a machine-to-machine communications

link.

Committed transactions and independent updates in the local and remote raw logs,

respectively, are then written to clean logs for the primary and secondary databases,

respectively. Transactions and independent updates logged to the secondary's clean log

are also applied to the secondary database to shadow the primary.

Reality X supports multiple databases on one system. It is not necessary for all

databases on a system to operate in FailSafe mode. Some may operate in FailSafe mode

while others may be stand-alone unresilient databases, with or without Transaction

Logging. There are also no technical limitations on where the primary and secondary

databases in a FailSafe pair are located. However, it is necessary that each half of a pair

should be on a different system, so that in the event of a system failure, one database

remains in service, otherwise the purpose of FailSafe operation is negated. Unrelated

primary and secondary databases may be located on the same system.

Figure 2-3 illustrates FailSafe operation in a multiple database configuration, showing

two FailSafe pairs (Databases A and B) and an unresilient database not using transaction

boundaries (Database C). Note that FailSafe operation can take place in both directions

across the machine-to-machine link. Updates from local and remote primaries are stored

in the same raw log.

While operating in FailSafe mode, the secondary database is closed to all users except

the system super-user (root). Even the super-user should exercise extreme caution as

update operations on the secondary may lead to loss of synchronisation between the two

databases.

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 17 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If a primary database becomes unavailable, for example, due to a system crash, the

secondary database can be converted to be the primary, without loss of transaction

integrity and with minimum loss of data and service. The transfer of users to the

secondary is a manual operation. If a secondary database becomes unavailable, the

primary continues unaffected as a stand-alone database.

The failed database, whether primary or secondary, can be recovered by restoring the

most recent file-save and clean log(s). The restored database can then be re-introduced

as a secondary and synchronised with the primary without affecting the users. FailSafe

operation is then resumed. In the case of primary failure, primary/secondary roles will

be reversed after recovery. Refer to Chapter 6 for details.

Figure 2-3 FailSafe Operation with Multiple Databases

2.5 Database recovery

2.5.1 Recovery methods

Currently, transaction logging supports three methods to recover the most recent,

consistent and predictable version of a database. They are:

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 18 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Hit Process Recovery

• Full Recovery

• Selective Recovery

2.5.1.1 Hit process recovery

Hit process recovery is an automatic recovery mode which restores a database to a

consistent state, after a process has crashed or been killed.

This recovery method is supported by Transaction Handling with or without Transaction

Logging. When a failure occurs, it rolls back all updates in incomplete transactions,

restoring their 'Before' images, so that the database(s) on the failed machine are

restored to the consistent state that they were in before the incomplete transactions

started. This uses Transaction Handling facilities only.

2.5.1.2 Full recovery

Full recovery is initiated manually when a system crashes and a database is corrupted.

Either a TL-RESTORE or a TL-REDUAL command is used to initiate the restore all updates

from clean logs to a database. The appropriate command is executed after the most

recent version of the database has been restored from a FILE-SAVE. All After images

held in the clean log(s) are applied to the partially restored database. TL-REDUAL not

only restores the database, but re-establishes FailSafe operation, re-synchronising the

primary and secondary databases.

2.5.1.3 Selective recovery

Selective recovery is a special case of the full recovery method, used when only certain

areas of a database need to be recovered. Like full recovery, it is initiated using the

TLRESTORE command, but instead of restoring updates to the whole database, it

restores selected accounts and files only. A selection list is generated using the ENGLISH

query language to operate on the clean log file. All selected 'After' images from the clean

log(s) are then TL-RESTORE'd on the database.

2.5.1.4 Procedure to recover a database after a system failure

In the event of a system/database failure causing data loss or corruption, the steps to

recovery for a primary database/system failure are as follows:

1. Reverse the primary and secondary roles of the FailSafe pair using fsadm with the

-R option on both machines.

2. Unlock the new primary using unlock dbase and tell users to switch to it.

3. If necessary, repair and restart the failed primary.

4. Restore the damaged database from the last back-up tape(s).

5. Restore updates logged in clean logs since the last back-up and up to, but not

including the currently active clean log on the live database.

6. Several different procedures are available to do this. These involve the use of

TLRESTORE and/or TL-REDUAL. The method used depends partly on system

limitations and partly personal preference.

7. Use TL-REDUAL to re-establish FailSafe operation, and re-synchronise the

primary and secondary databases.

For a secondary database/system failure, the steps to recovery are like the primary,

except that the failure does not affect users directly and therefore it is not necessary to

Section 2: Outline of operation

RealityX FailSafe v3.1 Reference Manual v0.1 Page 19 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

carry out step 1. Also, there is no reversal of roles. After the secondary is repaired, it is

restarted and resynchronised with the primary to restore FailSafe operation.

Refer to Chapter 6 for a detailed description of recovery procedures.

Section 3: Guidelines for managing logs

RealityX FailSafe v3.1 Reference Manual v0.1 Page 20 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 3: Guidelines for managing logs
This chapter contains recommendations on the sizing and managing of the raw log and

clean logs to ensure optimum operating efficiency of Transaction Logging on a system.

Recommendations are given on the following:

• Where the raw log and clean log directory should be located

• What size the raw log should be

• How to estimate the rate of clean log growth

• How the clean log growth rate affects clean log switching and archiving

• How many times to change clean logs each day

• When to archive clean logs and why

• What to name the clean log files

Refer to Appendix B for details on setting up the raw log and clean log partitions.

3.1 Locating of the raw log and clean logs

This section provides recommendations on where the raw log and clean logs should be

located on the system disks.

3.1.1 Raw log

The raw log, as its name implies, is created in a raw partition.

3.1.2 Clean logs

Clean logs are maintained within a mountable file system which is created in a disk

partition dedicated to clean logs.

Caution

It is mandatory that the raw log partition and the clean log file system partition are

located on a disk which is separate from all standard UNIX partitions, swap partitions

and logged databases.

3.1.3 Clean log file system

The clean log file system consists of a three-level hierarchy, as follows:

• A 'clean log directory' which is the mount point for the file system.

• Clean log sub-directories; one for each logging database. Sub-directories are

contained in the clean log directory.

• Clean log files, logs for a particular database are contained in the clean log sub-

directory for that database.

Typically, the clean log file system is mounted below root, but this is not mandatory. If

the partition contains other file structures, the clean log directory may be mounted

further down the disk file system.

3.1.4 Use of a log disk

Normally a disk, designated the Log Disk, is dedicated to the raw and clean logs.

However, in small systems other user partitions with low utilisation may also be located

on the Log Disk. Remember, though, that the accessing of non-logging related

data/partitions on the Log Disk will impair the performance of Transaction Logging,

particularly when using transaction boundaries.

Section 3: Guidelines for managing logs

RealityX FailSafe v3.1 Reference Manual v0.1 Page 21 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.2 Estimating raw log size

The raw log must be large enough to retain all roll-forward information ('After' and

transaction boundary images) and all roll-back information ('Before' images) until a

transaction is ended or aborted and any associated 'After' images and transaction

boundary images are securely in the clean log.

Note also that only about 85% of available raw log space may be used. If the raw log

becomes excessively full (>85%), then the longest, and therefore the oldest, transaction

is forcibly aborted and the process logged off from the database. This should be

considered in the final specification of minimum raw log size.

3.2.1 The 5-minute factor

'After' images and transaction boundary images transferred to a clean log are

maintained in the raw log for 5 minutes after being written, to ensure that they have

been flushed from the UNIX system buffer and have reached the clean log. Writing to a

clean log is not synchronised.

To meet this requirement the raw log should be made large enough to hold all roll-

forward and roll-back images generated during the run period of the longest transaction

expected to be on the system, plus 5 minutes.

3.2.2 Allowing for the longest transaction

The minimum partition size required to operate as the raw log is determined by the

longest expected to be input to the raw log. This is because the raw log operates as a

Transaction circular buffer and all buffer space between the transaction start and current

update of an open transaction remains locked until the transaction is committed. Hence,

although shorter transactions and updates within the time span of a longer transaction

may be successfully written to a clean log, the buffer space used by them is locked until

the longest transaction is committed.

3.2.3 How update data is stored

To calculate raw log size, you need to appreciate how the update data is stored. For each

item update within a transaction, Transaction Logging generates two images; a 'Before'

image containing the update item before the update was made plus a header, and an

'After' image containing the update item after the update was made plus a header. An

update outside a transaction only generates an 'After' image.

3.2.4 Size of image header

The image header contains information about the update, for example, user, account,

file, time of update, port, and so on…. On average there are about 100 bytes of

information in the header.

3.2.5 Transaction boundary images

For each completed transaction, Transaction Logging generates transaction boundary

images TRANSTART, PRE-COMMIT and COMMIT. Each of these contains a header of

approximately 50 bytes and a text string which is application determined. A total image

size of 100 bytes is assumed in the calculations in this chapter.

3.2.6 Parameters affecting raw log size

To work out the minimum size of raw log, you need to estimate the following parameters

during the peak work period of your databases:

Section 3: Guidelines for managing logs

RealityX FailSafe v3.1 Reference Manual v0.1 Page 22 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• U: The maximum number of item updates per hour performed on your system.

• I: The average size of an updated item in bytes.

• T: The maximum number of transactions per hour.

• T: The estimated duration in minutes of the longest transaction.

These parameters are used to calculate the amount of disk space required for the raw

log.

3.2.7 Maximum number of updates (A)

Maximum number of updates (A) to be held on the raw log is A = (5 + t) · U/60

U is divided by 60 to calculate the number of updates per minute. Five minutes is added

to the estimated duration of the longest transaction, as the transaction is maintained in

the raw log for an additional 5 minutes after it is written to the clean log to ensure that

the write is successful.

3.2.8 Bytes for transaction boundaries (C)

Growth in bytes (C) due to transaction boundary images generated during the longest

transaction anticipated is C = (5 + t) · (T · 3 · 100)/60. The number of transactions (T)

is multiplied by three, as there are three images per transaction (start, precommit and

commit), then by 100 as each image is assumed to consist of 100 bytes, maximum. This

total is divided by 60 to calculate the number of bytes generated per minute. This figure

is then multiplied by (5 + t) to allocate space for the longest transaction anticipated.

3.2.9 Calculation of raw log size (R)

Using the above calculations, the minimum number of bytes of disk space required for

the raw log partition is R = (A · B) + C.

3.2.10 Without transactions

Note that in this calculation we have assumed that all updates are made within

transactions. If Transaction Handling is not used at all, the minimum raw log size can be

half that of the above calculation, as only one image is logged for an independent

transaction and there will be no transaction boundary images.

3.2.11 Minimum size of raw log

The size of raw log (R) calculated here should be considered as the absolute minimum. It

is recommended that where possible, the raw log should be double the calculated value

to allow for worst case conditions. On systems where disk space is at a premium, a

margin of at least 25% is strongly advised. Remember that automatic aborting and log

off transactions occurs when the raw log is >85% full.

Caution

A "raw log full" condition can lead to serious system performance problems and

potential lock-up conditions. It is most important that the raw log be configured large

enough in the first place as any resizing will require the Reality X system to be shut

down and the log disk re-partitioned.

3.3 Managing clean logs

A policy for managing clean logs on your system will depend on several factors. These

include:

• Size of the clean log partition

Section 3: Guidelines for managing logs

RealityX FailSafe v3.1 Reference Manual v0.1 Page 23 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Growth rate of each clean log

• Number of databases on the system

• Requirements for keeping old clean logs

The following sections deals with each of these factors. By considering these factors

together, you can establish a clean log cycling policy.

3.3.1 Clean log partition size

The size of the clean log partition on the log disk is the primary factor in limiting the

maximum size and number of clean logs which can be maintained on your system. This

may be equal to the total storage space on the log disk minus the raw log partition. It is

recommended that the log disk is dedicated to logging and there are only two partitions

on it, raw log and clean log.

3.3.2 Estimating clean log growth rate (G)

The rate of growth of data in the clean log for a single database in bytes per hour is G =

((I+130) · u/d) + (3 · t · 100) where,

• u is the estimated number of updates on the database per working day. This is

divided by the number of hours in the working day to calculate the hourly rate.

• d is the length of the working day for the database in hours.

• I is the average size of an updated item in bytes. The figure of 130 is the

overhead allowed for the header of a clean log image.

• t is an estimate of the average number of transactions per hour on the database.

The expression 3.t calculates the number of transaction boundary images (3 per

transaction, start, pre-commit and commit) stored in the clean log per hour. This is

multiplied by the average size of a transaction boundary image (100 bytes) to calculate

the total amount of transaction boundary information held in the clean log. The average

size (100 bytes) of a transaction boundary includes a 50 byte overhead for the header.

3.3.3 Avoiding a clean log full condition

When the clean log partition becomes 70% full, warning messages are displayed at the

system console and the raw log is locked. Clean log disk space must be released

immediately otherwise logging will grind to a halt. The procedure to be carried out when

a 'clean log 70% full condition' is received, is described in Chapter 5.

Caution

A "clean log partition full" condition will lead to serious performance problems and

potential lock-up conditions on your system. It is very important that large clean logs

are cleared from disk long before this condition becomes a possibility.

3.3.4 Multiple databases

Where there are several databases on your system the growth of each clean log will

contribute to the total 'rate of filling' of the clean log partition. The clean log cycling

policy for all databases on the systems should be defined to avoid filling up the clean log

partition to 70% full. It may be necessary to switch the clean logs more often on the

database(s) with the largest growth rate to ensure that the total amount of clean log

data on the system does not approach 70% of the partition size. Clean logs will also

have to be cleared from the log partition more often.

3.3.5 Naming clean logs

Section 3: Guidelines for managing logs

RealityX FailSafe v3.1 Reference Manual v0.1 Page 24 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

To make it easy to identify a clean log and the date it was used; it is recommended that

you establish a naming convention for clean log files used on your system.

Note

Clean log file names are limited to 13 characters and have the usual UNIX constraints.

The slash '/' is a reserved character.

For example, the first part of a clean log file name might be a standard string such as

CLOG, short for clean log. The latter part might be some form of alphanumeric identifier.

What this will be depends on the clean log cycling policy for your system and whether

you wish to archive files for security or audit purposes.

It is up to the Database Administrator to choose the naming convention most suited to

the way Transaction Logging is used on the database.

3.3.5.1 No archiving

If archiving of clean logs is not required, it is recommended you use one of two naming

conventions. This depends on whether it is necessary to change logs more than once

each working day.

The following naming conventions are recommended:

• CLOG-MON, CLOG-TUES, CLOG-WED and so on, one for each working day of the

week.

• CLOG-MON-A, CLOG-MON-B, CLOG-TUES-A, CLOG-TUES-B, CLOG-WED-A CLOG-

WED-B and so on, two, or more, for each working day of the week.

3.3.5.2 Archived logs from multiple databases

If you want to archive clean logs from more than one database on a system or from a

FailSafe pair, it is recommended that you include an identifier in the clean log file names

which associates each clean log with a database. It is recommended that you a clean log

naming convention that does not require them to change the name of the file when it is

archived.

As a filename in UNIX is restricted to 13 characters, it is improbable that a full database

name can be included. Filenames of the following type are suggested.

LA11.02.91D1, LB11.02.91D1, LA11.02.91D2, LB11.02.91D2, where the following is

explained:

L: This prefix identifies that it’s a clean log (CLOG) file

A and B: Specifies clean log A and clean log B, respectively.

11.02.91: This is the date when the clean log was filled.

D1, D2: Specifies the associated database. This suffix identifier can be cross-referred to

a database name.

Alternatively, it may be easier to manage clean logs if you archive all clean logs for

different databases on different tapes.

Section 3: Guidelines for managing logs

RealityX FailSafe v3.1 Reference Manual v0.1 Page 25 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3.4 Viewing clean logs

The contents of a clean log can be viewed from the Reality X environment and can be

accessed using standard ENGLISH verbs such as LIST. Details are later in this manual in

the 'Log Files' chapter.

3.5 Log archiving policy

Database back-up and data security procedures will vary according to user

requirements. Once a database has been backed up, the earlier clean log(s) are

effectively redundant, however, some users may wish to keep clean logs for an extended

time to provide additional security or for auditing purposes. Larger systems may require

logs to be archived during each working day to make space on the clean log partition.

The policy is user determined.

The procedures to archive and retrieve clean logs are discussed further in the 'Operating

Procedures' chapter.

Section 4: Setting up procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 26 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 4: Setting up procedures
This chapter outlines the procedures used to set up Transaction Logging on two separate

systems/databases and then configure them to operate as a FailSafe pair. These are as

follows:

• Setting up Transaction Handling/Logging initially on each system

• Defining the files to be logged

• Saving the live database to tape

• Creating an identical database

• Configuring the secondary

• Configuring the primary

Appendix B is referenced. This details the procedure for installing Transaction

Handling/Logging on your system.

4.1 Commands and utilities used for setting up FailSafe operation

4.1.1 TCL commands

The following TCL commands are used in this chapter as part of the setting up

procedures:

• TL-CREATE-FILE

• TL-SET-LOG-STATUS

Full descriptions of these commands, including syntax and restrictions are given in

Chapter 8.

4.1.2 UNIX tools

Also, the following special UNIX tools are used:

• fsadm

• mklog

• mkdbase

• killreal

Full descriptions of these utilities, including syntax are given in Chapter 7.

4.2 Setting up a FailSafe database

This section describes the procedures carried out to set up a pair of identical databases

to operate as a FailSafe pair. For this description, the two databases are identified as

pdbase on the system phost, and sdbase on the system shost. Refer to Figure 4-1.

Section 4: Setting up procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 27 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Figure 4-1 FailSafe Setup

It is assumed that pdbase is the live database which is to be configured as the primary.

The other database, sdbase, is created as a duplicate of pdbase and will be configured as

the secondary database. In this example, it is assumed that pdbase and sdbase are in a

directory /usr/dbases on their respective systems.

Note

Ensure that shost and phost are defined in the /etc/hosts file.

For the sake of clarity, these procedures identify the primary and secondary databases

by different names (pdbase and sdbase). However, for optimum FailSafe configuration, it

is recommended that you give them the same name. Differences in setting up databases

with the same name and different names are highlighted in the following procedures.

The procedures consists of the following:

1. Set up Transaction Logging on each system.

2. Define the files to be logged on the unresilient database.

3. Save the unresilient database to tape.

4. Create an identical database.

5. Configure the secondary database.

6. Configure the primary database.

These are detailed in the following sub-sections.

4.2.1 Setting up transaction handling/logging

First ensure that both systems (phost and shost) are configured for Transaction Logging,

with a raw log, a clean log partition and clean log file system. Systems will normally be

configured by McDonnell Douglas support personnel when they are installed. However, in

case re-configuration is necessary, the procedure is detailed in Appendix B.

Section 4: Setting up procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 28 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

If necessary, configure the live database (pdbase) with a clean log sub-directory using

mklog. Refer to Chapter 7.

4.2.2 Defining the files to be logged

Before creating a duplicate of the live database (pdbase) on the second system (shost),

define the log status of the files on pdbase. This is done using the TL-SET-LOG-STATUS

command (See Chapter 8). Then when the database (pdbase) is copied to the shost, the

log status is also duplicated.

4.2.3 Saving the database to tape

Having configured both systems to support Transaction Logging, you must now save the

current live database (pdbase) to tape, as follows:

1. Log in to the local system (phost).

2. Run Reality to enter pdbase and logon to SYSMAN.

3. Enter INHIBIT-LOGONS * to prevent any more users from logging on to the

database.

4. Send a message asking users to log off. You can check who is logged on using

LISTU.

5. After a reasonable period, log off any remaining users using the LOGOFF

command.

6. Enter TL-STOP to disable logging.

7. Run the FILE-SAVE PROC to save pdbase onto tape and VERIFY-SAVE.

4.2.4 Creating an identical database

Having saved pdbase to tape, now create a second database (sdbase) on another system

(shost) and restore the FILE-SAVE of pdbase onto sdbase, so that the two databases

have identical user data. The procedure is as follows:

1. Log in to the second system (shost).

2. Change to the directory in which you wish to create the database.

3. Make a new Reality X database by entering mkdbase sdbase.

4. Lock the database using lockdbase. This prevents others from logging on,

allowing only the database owner or super-user to access it.

5. Run Reality to enter sdbase and logon to SYSMAN.

6. Mount the tape containing the FILE-SAVE of pdbase onto a tape unit and ensure

that the unit is on-line.

7. Attach the tape unit to the system using T-ATT or ASSIGN.

8. Position the tape at the beginning of the files section by entering T-FWD, followed

by TRDLBL, then T-FWD again.

9. Restore the FILE-SAVE onto the newly created sdbase by entering ACCOUNT-
RESTORE * (O.

10. Return to the UNIX shell and use mklog to create the clean log subdirectory for

sdbase. See Chapter 7 for a description of mklog.

Note

Ignore the next step if the two databases have been given the same name.

11. If the two databases have different names, then you must now ensure that file

items referencing sdbase are changed after the FILE-SAVE of pdbase has

overwritten them. These include, the Reality X ROUTE-FILE items, the

Section 4: Setting up procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 29 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

CUSTOMER-SYSTEM-IDENT item in the SYSMAN MD and the LOGON item in

SYSTEM.

Caution

Any attempt to unlock and operate on the secondary database may lead to loss of

synchronisation with the primary.

4.2.5 Configuring the secondary

The next step is to mark sdbase as the secondary database and link it with the live

database (pdbase). This is done using the UNIX utility fsadm.

Note

This sample procedure assumes that the databases are in the directory /usr/dbases.

Carry out the following steps to configure the secondary database:

1. Log in to the system (shost) containing the secondary database.

2. Enter fsadm -s -h phost -d /usr/dbases/pdbase sdbase. See Chapter 7 for

details.

The -h (host) option identifies the remote host as phost.

The -s option marks sdbase as the secondary, inserting an entry in the raw log header.

The -d (database) option identifies the remote database as pdbase. The absolute path

name must be specified. This must be the same for the primary and secondary. You can

omit the -d option if the primary (pdbase) and secondary (sdbase) are to have the same

name.

If the primary and secondary database names are the same, for example, pdbase =

sdbase = dbase then you can omit the -d option and enter the following:

fsadm -s -h phost dbase

If $REALDBASE is defined dbase can be omitted as well, that is,

fsadm -s -h phost

After configuring the secondary, config file parameters are displayed, like the following:

 Failsafe Pair1:

 Database'/usr/dbases/sdbase'

 TCP Host'shost' (Local)

Failsafe Pair2:

 Database'/usr/dbases/pdbase'

 TCP Host'phost' (Remote)

Mode:

 Logging inactive

 Failsafe enabled,secondary,inactive

Note

The numbering of the FailSafe Pair variables is not significant. The config file entries on

the two hosts may or may not be identical.

Section 4: Setting up procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 30 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

4.2.6 Configuring the primary

Now to complete the FailSafe configuration you must configure the live database pdbase

as the primary and link it with the secondary (sdbase). Again, this is done using fsadm,

as follows:

Note

This sample procedure assumes that the databases are in the directory /usr/dbases.

Carry out the following steps to configure the secondary database:

1. Log on to the system containing the primary.

2. Enter fsadm -p -h shost -d /usr/dbases/sdbase pdbase. See Chapter 7 for

details.

The -h (host) option identifies the remote host as shost.

The -p option marks pdbase as the primary, inserting an entry in the raw log header.

The -d (database) option identifies the remote database as sdbase. The absolute

path name must be specified. This must be the same for the primary and secondary.

You can omit the -d option if the primary (pdbase) and secondary (sdbase) are to

have the same name.

If the names of the primary and secondary databases are the same, for example,

pdbase = sdbase = dbase then you can omit the -d option with fsadm and enter the

following:

fsadm -p -h shost dbase

If $REALDBASE is defined dbase can be omitted as well, that is,

fsadm -p -h shost

On entering the above fsadm command, config file parameters are displayed like the

following:

 Failsafe Pair1:

 Database'/usr/dbases/pdbase'

 TCP Host'phost' (Local)

Failsafe Pair2:

 Database'/usr/dbases/sdbase'

TCP Host'shost' (Remote)

Mode:

Logging inactive

Failsafe enabled,primary,inactive

Note

The numbering of the FailSafe Pair variables is not significant. The config file entries on

the two hosts may or may not be identical.

The two databases pdbase and sdbase are now configured together as a FailSafe

pair. Only the primary (pdbase) can be logged to and used as a live database. The

secondary (sdbase), is locked at TL-START time.

Section 4: Setting up procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 31 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3. Log on to the primary and create a clean log with a suitable name using TL-

CREATEFILE. See Chapter 3 for naming conventions.

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 32 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 5: Operating procedures
This chapter describes operations and facilities which are used during the routine

operation of a FailSafe database. The following procedures are described:

• Initial startup of FailSafe operation

• Switching to a new clean log

• Synchronising primary and secondary databases

• Reversing the roles of a FailSafe pair

• Shutdown procedures

• Archiving clean logs to tape

• Retrieving clean logs from tape

• Monitoring logging

5.1 Commands and utilities referenced in this chapter

• TCL commands: The following TCL commands are used in the operating

procedures described in this chapter:

o CLEAR-FILE

o ENABLE-LOGONS

o INHIBIT-LOGONS

o TL-CONTINUE

o TL-CREATE-FILE

o TL-DUMP

o TL-LISTFILES

o TL-LOAD

o TL-REDUAL

o TL-START

o TL-STOP

o TL-SWITCH

o TL-STATUS

o TL-TRANSACTIONS

Detailed descriptions of TL-commands are given in Chapter 8. The other TCL

commands are described in the RealityX reference manuals.

• UNIX tools: The following UNIX tools are used:

o killreal. Refer to Chapter 7 for details.

o cpio. Refer to the user reference manuals supplied with your system for

details.

5.2 Initial startup procedure

The procedure to start logging is as follows:

1. Check that a FILE-SAVE p tape exists which reflects the current state of the

primary and which can be used as a base for restoring future logged updates onto

the primary or secondary. If not, make one, or you can use a UNIX back-up

utility, such as cpio.

2. Run Reality to enter the primary database and log on to SYSMAN.

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 33 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

3. If necessary, create the clean log(s) on the primary database, with appropriate

names which adhere to the naming conventions recommended in Chapter 3. For

example:
TL-CREATE-FILE CLOGA-MON

TL-CREATE-FILE CLOGB-MON

4. If the required files already exist, ensure that they are empty. Use CLEAR-FILE, if

necessary, to clear them.

5. Now start FailSafe logging using the TL-START command. For example:
TL-START CLOGA-MON

This starts logging to the primary clean log CLOG-MON, creates a clean log of the

same name on the secondary and starts logging to it. It also starts restoring the

logged updates to the secondary database.

6. Finally, enter ENABLE-LOGONS * at TCL to permit user access to the primary

database.

FailSafe operation is now active and the primary database is fully operational with the

secondary database operating as the standby.

Note

1. It is assumed that the FailSafe software is fully installed and configured. If not,

see Chapter 4.

2. It is the responsibility of the system administrator to ensure that the primary

database is locked so that no other users can log on until logging is enabled.

Failure to do this may result in loss of synchronisation between primary and

secondary databases.

Caution

The secondary database is locked to all users, except the super-user and database

owner. Unlocking and accessing of the secondary database may result in loss of

synchronisation with the primary.

5.3 Switching to a new clean log

TL-SWITCH, described in Chapter 8, is used to switch from one clean log to another

while Transaction Logging is enabled. It can be entered on the primary only, but

switches both primary and secondary clean logs at the same time. When and how often

you switch the clean log depends on the clean log cycling policy appropriate to your

system and database.

Refer to Chapter 3 for detailed advice on establishing a clean log cycling policy, clean log

naming conventions, archiving clean logs and so on…

Caution

A "clean log partition full" condition can lead to serious system performance problems

and potential lock-up conditions. A clean log cycling procedure must be chosen to avoid

this happening. See Chapter 3 for advice.

The procedure is as follows:

1. Ensure that appropriate empty clean logs exist on the primary database, as

determined by the clean log cycling policy. For example:

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 34 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

a) To switch the clean log once a day with no archiving, you need clean logs such

as, CLOG-MON, CLOG-TUES, CLOG-WED etc., one for each day of the working

week.

b) To switch the clean log once a day, then archive it to tape, you need clean

logs, such as, CLOG-09.03.92, CLOG-10.03.92, CLOG-11.03.92 etc, one for

each day and dated appropriately.

c) To switch the clean log more than once a day and archive to tape, you need

clean logs, such as, CLOGA09.03.92, CLOGB09.03.92, CLOGA10.03.92,

CLOGB10.03.92 etc. or CLOGA-MON, CLOGB-MON, and so on…, two or more

for each day, and dated appropriately.

If necessary, create the required clean log(s) on the primary using TL-CREATE-FILE

or clear them using CLEAR-FILE.

Associated clean logs on the secondary database are created and cleared

automatically by TL-START or TL-SWITCH.

2. Switch to the new clean log using TL-SWITCH. It is recommended that you use

TLSWITCH with the H option to switch logs just before the FILE-SAVE. This switches

logs, but suspends the secondary database, allowing the FILE-SAVE to be performed

on the secondary while maintaining a fully operational primary. Refer to the section

in this chapter, 'Shutting Down the Secondary Temporarily'.

For example, enter one of the following:

• TL-SWITCH CLOG-TUES (H) at the end of Monday's working day.

• TL-SWITCH CLOGB-MON during Monday, followed by TL-SWITCH CLOGA-TUES

(H) at the end of Monday's working day. Where archiving is not required,

CLOGAMON should it be kept at least until after the FILE-SAVE.

• TL-SWITCH CLOG-10.03.92 (H) at the end of the working day dated 9th March

1992.

• TL-SWITCH CLOGB09.03.92 during the day, followed by TL-SWITCH

CLOGA09.03.92 (H) at the end of Monday's working day. The full clean log

CLOGA-09.03.92 can then be archived. This should be done before the clean log

partition becomes full.

After completing the TL-SWITCH with the H option, you can then execute FILESAVE

and VERIFY-SAVE on the secondary database, before resuming normal FailSafe

operation by entering the TL-CONTINUE command on the primary.

3. If archiving is required, wait until switching is completed before archiving the most

recent full clean log. You can check this using the TL-STATUS command. Logging

status should have changed from SWITCH IN PROGRESS to ACTIVE.

To archive the clean log(s), copy to tape using either TL-DUMP at TCL or a UNIX

utility, such as cpio. Refer to the section 'Archiving Clean Logs' for more details.

4. As necessary, clear or delete the old log(s) from disk to release space in the clean

log partition. Use CLEAR-FILE if you wish to clear old clean logs and re-use them.

Use DELETE-FILE if you have archived them and wish to remove the log names from

the system.

If you clear a primary log and re-use it, the secondary log is cleared automatically at

TL-START or TL-SWITCH. However, if you delete a primary log, then the secondary

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 35 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

log remains full and it is necessary to delete it, to release clean log partition space

on the secondary's system.

5.4 Reversing roles in FailSafe pair

To reverse the roles of the primary and secondary databases in a FailSafe pair, proceed

as follows:

1. Log in to the machine containing the primary database and log on to the primary

database for the sake of this procedure let’s call it 'dbase'.

2. On dbase, enter INHIBIT-LOGONS * then send a message to all users to log off.

3. Wait a reasonable period to allow users time to log off, then LOG OFF all

remaining users.

4. Now log off dbase and return to the UNIX shell by entering OFF

5. At the UNIX shell, enter fsadm -T dbase

This converts the dbase to be a secondary and locks it. If dbase is defined in the

environment variable £REALDBASE, then you can omit the database name from

fsadm.

6. If necessary, log in to the system containing the secondary. Let’s assume the

secondary database is also called dbase. Ensure no one is logged on to the

secondary database.

7. At the UNIX shell, enter fsadm -T dbase

This converts the secondary dbase to be a primary and unlocks it for users. If

dbase is defined in the environment variable £REALDBASE, then you can omit the

database name from fsadm.

Users can now log on to the new primary database and continue working.

5.5 Shut-down procedures

Several shut-down options are supported in a Reality X FailSafe configuration. They are:

• To shut down both primary and secondary databases together so that they

remain synchronised.

• To suspend the secondary only, maintaining synchronisation.

• To shut down the secondary only permanently, leaving the primary as a stand-

alone database.

• To shut down all databases on a complete system.

5.5.1 Shutting-down a FailSafe pair

To shut-down FailSafe on your database carry out the following steps.

1. Enter the primary database and log on to SYSMAN.

2. Enter INHIBIT-LOGONS * to prevent further user access.

3. Send a message to ask all users to log off the database. Use LISTU to check that

all users have logged off.

4. After a reasonable period, log off all remaining users from the database.

5. Stop logging using the TL-STOP command.

You can check that logging has completed using the TL-STATUS command. This

should show the logging status as INACTIVE. The FailSafe database is now in the

logging disabled state. It can be restarted using TL-START as described in the initial

start-up procedure.

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 36 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6. Maintain the clean log on disk according to your back-up policy.

The current clean log, together with any other clean logs filled since the last back-up,

can be used together with the last back-up tape to recover the most recent and

consistent database.

However, remember that if the system crashes, all updates made to the database after

shutdown of logging and before the next TL-START are not recoverable.

It is the system administrator's responsibility to ensure that users cannot log on to the

primary while FailSafe logging is disabled. Failure to do this may result in loss of

synchronisation between primary and secondary databases.

Note also that the execution of a TL-STOP followed by a TL-START will terminates one

chain of clean logs and start a new one. Therefore, in the event of a failure, two restore

operations will be required to complete the recovery of all clean logs. Recovery

procedures are described in Chapter 6.

5.5.2 Suspending the secondary database

TL-SWITCH with the H option suspends update operations on the secondary database,

until TL-CONTINUE is executed, while maintaining FailSafe logging to the secondary's

clean log. Primary updates continue to be logged to the secondary clean log. This allows

you to back-up the secondary without shutting the secondary down completely and

losing synchronisation.

The procedure is as follows:

1. Create an empty clean log on the primary, for example, CLOG-FRI.

2. On the primary database, enter TL-SWITCH CLOG-FRI (H.

This creates a CLOG-FRI clean log on the secondary. Logging is switched to

CLOGFRI on the primary and secondary, and the restore process which applies

the updates to the secondary database is disabled.

3. Use TL-STATUS on the secondary to ascertain when the restore process has

completed, indicated by a ACTIVE-SECONDARY PAUSED status.

4. You can now save the secondary database onto a back-up tape. Primary users

may continue operating on the database unaffected.

Note

A TL-STOP and TL-SWITCH cannot be performed until the databases have been

returned to FailSafe synchronised mode using the TL-CONTINUE verb.

5. Re-synchronise the secondary with the primary by entering TL-CONTINUE on the

primary.

TL-CONTINUE re-enables the updating of the secondary database. Firstly, all outstanding

updates, logged in the secondary clean log, are restored on the secondary database,

after which, all current primary updates are applied to it.

This process updates the secondary database with all outstanding updates from the

secondary log, made since the secondary was suspended. This continues until the

databases are synchronised and normal FailSafe operation is resumed.

5.5.3 Suspending down the secondary database only

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 37 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

TL-SWITCH with the K option is used to shut down the secondary database while

maintaining the primary as a stand-alone database. Primary users are unaffected by the

secondary shut-down. The procedure is as follows:

1. Create an empty clean log on the primary, for example, CLOG-FRI.

2. On the primary database, enter TL-SWITCH CLOG-FRI (K.

This switches logging to the new primary log CLOG-FRI and disconnects the FailSafe

link to the secondary causing the secondary to become idle. The databases are

marked as 'Failsafe failed'. Synchronisation between the primary and secondary

databases is therefore lost and you must execute a TL-REDUAL in order to restart

FailSafe operation.

5.5.4 Shutting down a system

The killreal command (without options) shuts down the RealityX central daemon and

all database daemons on a system. killreal with the -d option shuts down a specified

database. It is recommended that you shut-down Transaction Logging on each database

before shutting down the complete system. The procedure is as follows:

1. Log on to each primary database on the system to be shut down and enter TL-

STOP.

2. If there are any secondary databases on the system, log on to their associated

primaries and in each case enter TL-STOP.

3. Wait until the last TL-STOP is completed (This will just under 5 minutes.), then

enter killreal on the system to be shut down. This will terminate the Reality X

central daemon and all associated processes.

Note

Failure to execute a TL-STOP before executing killreal may result in loss of

synchronisation between the associated databases.

5.6 Archiving clean logs

To archive clean logs to tape the following commands are available:

• TL-DUMP. This is entered at TCL and archives clean logs one at a time onto tape.

• cpio. This is entered at the UNIX shell, either as part of the standard daily back-

up of the whole database or to copy multiple clean logs onto a separate clean log

tape.

5.6.1 Using TL-DUMP

For example, to archive the clean logs CLOGA21.03.91, CLOGB21.03.91 and

CLOGC21.03.91 using TL-DUMP, proceed as follows:

1. Enter the database and log on to SYSMAN.

2. Load and attach the first tape, then enter the following at TCL:
TL-DUMP CLOGA21.03.91

3. Load and attach another tape, then, enter the following at TCL:
TL-DUMP CLOGB21.03.91

4. Load and attach another tape, then enter the following at TCL:
TL-DUMP CLOGC21.03.91

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 38 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

Each clean log is copied onto a separately attached tape. It is necessary to archive one

clean log per tape, as TL-LOAD cannot read multiple logs from a single tape.

5.6.2 Using cpio

For example, using the UNIX copying utility cpio you can archive clean logs

CLOGA21.03.91, CLOGB21.03.91 and CLOGC21.03.91, as follows:

1. Change to the clean log sub-directory. For example, enter cd /clean-

logs/dbase1-clogs where 'clean-logs' is the main clean log directory and

'dbase1-clogs', the sub-directory for the database 'dbase1'.

2. Use the -o (output) option of cpio to archive the day's clean logs to tape. For

example, type

ls CLOG?21.03.91|cpio -ocvB > /dev/rmt/1bm

Using this statement, the clean logs, filled during the 21 March 1991, are listed

and piped to the standard input of the cpio utility which copies the listed logs to

the tape device /dev/rmt/1bm and archives them with relative path names.

Having archived the clean logs, they may be cleared and, if appropriate, deleted from

the database using DELETE-FILE to release clean log partition space. Typically, they

would be deleted if their file names were date specific.

Note

You should use DELETE-FILE and not the UNIX command rm, as rm will not delete the

D pointers.

5.7 Retrieving clean logs

To retrieve clean logs from tape the following commands are available:

• TL-LOAD. This is entered at TCL within the Reality X environment and loads clean

logs one at a time from tape.

• cpio. This is entered at the UNIX shell, either as part of a selective restore of

clean logs from a standard daily back-up tape or to copy multiple clean logs from

a separate clean log tape.

5.7.1 Using TL-LOAD

For example, to load clean logs back into your database from tape, you can use TL-

LOAD, as follows:

1. Enter the database and log on to SYSMAN.

2. Load and attach the first tape containing CLOGA21.03.91, then enter the

following:
TL-LOAD CLOGA21.03.91

3. Load and attach the tape containing CLOGB21.03.91, then enter the following at

TCL:
TL-LOAD CLOGB21.03.91

4. Load and attach the tape containing CLOGC21.03.91, then enter the following:
TL-LOAD CLOGC21.03.91

Section 5: Operating procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 39 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Each command takes the specified clean log and loads it back into the clean log sub-

directory for your database. This operation will fail if the file names already exist in the

sub-directory.

5.7.2 Using cpio

For example, to selectively restore the files archived on 21 March 1991, proceed as

follows:

1. Change to the clean log sub-directory in which you want to restore them. For

example, enter

cd /clean-logs/dbase1-clogs

where 'clean-logs' is the main clean log directory and 'dbase1-clogs', the sub-

directory for the database 'dbase1'.

2. Use the -i (input) option of cpio to retrieve all 21 March '91 clean logs to tape.

For example, type
cpio -icvB "*21.03.91"</dev/rmt/1bm

This statement copies all files with path names ending in 21.03.91 from tape device

/dev/rmt/1bm into the clean log sub-directory in which you are currently working.

Finally log on to the database and recreate the clean log D-pointers, previously deleted

from the database, using TL-CREATE-FILE with the E option. For example:

TL-CREATE-FILE CLOGA21.03.91 (E)

5.8 Facilities to monitor transaction logging

Three TCL commands are available to monitor Transaction Logging:

• TL-LISTFILES to list information about the log files on the database.

• TL-STATUS to monitor the status of logging on the database.

• TL-TRANSACTIONS to display information about transactions currently active on

the database.

For a description of these commands refer to Chapter 8.

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 40 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 6: Recovery procedures
This chapter introduces the data recovery methods supported by Transaction Logging in

a FailSafe configuration. It then describes the first steps in the procedure to recover a

database and four optional procedures to complete the restoration of clean logs and the

resynchronisation of FailSafe operation. These are as follows:

• A procedure using TL-REDUAL to restore a chain of clean logs in one sequence.

• A procedure using TL-REDUAL to restore clean logs one at a time.

• A procedure using TL-RESTORE to restore chained clean logs in one sequence,

followed using TL-REDUAL to resynchronise databases.

• A procedure using TL-RESTORE to restore clean logs one at a time, followed by

TL-REDUAL to resynchronise databases.

Finally, it describes the facilities available for copying clean logs from one database to

another.

6.1 Commands and utilities referenced in this chapter

6.1.1 TCL commands

The following TCL commands are used in the recovery procedures described in this

chapter:

• TL-RESTORE

• TL-REDUAL

• TL-DUMP

• TL-LOAD

• SET-FILE

Caution

TL-RESTORE and TL-REDUAL require all clean logs to have been TL-SWITCH'ed to

restore clean logs in one chained sequence. If a TL-STOP/TL-START operation has been

carried out, then the linkage between logs will be broken, in which case the restore will

terminate at the clean log which was active when the TL-STOP occurred. It is essential

that TL-SWITCH is used to change logs to maintain linkage between clean logs.

6.1.2 UNIX tools

Also, the following UNIX utilities are used:

• ftp

• cpio

• fsadm

6.2 Introducing recovery methods

6.2.1 Full recovery

Full Recovery means restoring a database from all logged updates. This is carried out by

first restoring the most recent back-up of the database, then restoring all clean logs

since that backup was taken, onto the now partially restored database. Facilities are also

supported to reestablish the FailSafe link and resynchronise the databases.

There are several ways in which you can recover and resynchronise a FailSafe database.

These use TL-RESTORE and/or TL-REDUAL, which one you choose will depend partly on

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 41 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

system limitations and partly on personal preference. Four ways are summarised below.

Guidance on which way to choose is given in a flowchart in Figure 6-

Each method is described step by step in subsequent sections of this chapter.

1. Execute a TL-REDUAL after copying all necessary clean logs to the corrupted

database. TL-REDUAL then initiates one automatic restore sequence which

restores all clean logs onto the corrupted database in a verified chronological

order, resynchronises the databases and resumes FailSafe operation. This is

probably the most efficient method, but to do this it is necessary for the clean log

disk partition to be large enough to hold all the necessary clean logs and the

machine-to-machine link to be up and reliable.

2. Execute a TL-REDUAL, copying clean logs to the partially restored database one

at a time. The restore process, initiated by TL-REDUAL, restores clean logs in

chronological order, if present on the database. If the next clean log in

chronological order is not present, the restore process prompts for it. Once

loaded onto the database the chained restore continues. If the next clean log is

detected as being missing then the prompt sequence is repeated. This interactive

method is useful if the disk partition is not large enough to hold all the clean logs.

It allows you to load and delete clean logs one at a time, but still verifies the

order in which they are restored. FailSafe operation is reestablished in parallel

with the restoring of clean logs and on completing the restore, the primary and

secondary databases are re-synchronised.

3. Execute TL-RESTORE with the AE option and with all clean logs to be restored

present on the database, then resynchronise using TL-REDUAL. TL-RESTORE with

the AE option restores all clean logs in a verified chronological order. Before

executing TLRESTORE, all necessary logs need to be loaded onto the database.

4. Execute TL-RESTORE with the AE option, but only load one clean log at a time

onto the database. This method is useful when disk space is limited. Having

loaded and restored a clean log you then delete or clear it to release space in the

clean log partition.

If a clean log is not present, TL-RESTORE prompts and wait for it to be copied to

the database. This method is particularly useful if you do not want to resume

FailSafe operation, but you want to commence restoring the database, for

example, if the machine-to-machine link is down.

6.2.2 Selective recovery

Selective Recovery is a procedure in which only selected items from a clean log are

restored.

Selection of the update items to be restored from the clean log is made using the

ENGLISH SELECT verb, then TL-RESTORE is applied to the SELECTed list.

Chapter 9 gives details on the use of ENGLISH to manipulate clean log items. Refer to

the ENGLISH Reference Manual for details on the use of the SELECT verb.

6.3 First steps to recovery

This section outlines first steps to recovering a FailSafe database after a system failure

causes a primary or secondary database to be corrupted.

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 42 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.3.1 Procedure after a primary failure

If the primary database fails, proceed as follows:

1. On the system containing the corrupted primary, enter the following:

fsadm -R pdbase

where pdbase is the corrupted primary. This re-configures the database as a

secondary and locks it.

2. Similarly, on the system containing the associated secondary database, enter the

following:

fsadm -R sdbase

where sdbase is the secondary database name. This re-configures the database

as a primary and unlocks it.

3. Now inform all users to access the new stand-alone primary (previously the

secondary).

4. Repair and re-boot the failed system

5. Restore the most recent FILE-SAVE or UNIX back-up onto the corrupted

database. Once the back-up is restored, the next stage is to restore clean logs

and resynchronise FailSafe operation. See below the sections on Recovering Clean

Logs.

6.3.2 Procedure after a secondary failure

When a secondary database system fails, primary users are unaffected and the primary

database continues to operate normally as the live database. They are also unaware

that the secondary has failed unless the FailSafe failed flag is set. If the secondary fails

while the primary is IDLE (no one is logged on), the FailSafe failed flag will not be set,

so that when the first primary user attempts to log on, the logon will fail. Hence the

following procedure ensures that the FailSafe failed flag for the primary is set:

1. Enter fsadm -f pdbase on the system containing the primary. This sets the

FailSafe failed flag for pdbase.

2. Repair and re-boot the failed system

3. Restore the most recent FILE-SAVE or UNIX back-up onto the corrupted

database. Once the back-up is restored, the next stage is to restore clean logs

and resynchronise FailSafe operation. See below the sections on Recovering

Clean Logs.

6.3.3 Recovering SWITCH'ed clean logs

If all the clean logs to be restored have been TL-SWITCH'ed so that they are linked in a

single chronological chain, then you can use one of four options to restore them

depending on system limitations as follows:

• Option 1: If the clean log disk space is large enough to hold all clean logs made

since the last back-up and the machine-to-machine link is up and reliable, carry

out Option 1 - Using TL-REDUAL to Restore a Chain of Clean Logs in One

Sequence.

• Option 2: If the clean log partition space is too small to hold all clean logs, but

the machine-to-machine link is up and you wish to restore and resynchronise

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 43 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

FailSafe operation, carry out Option 2- Using TLREDUAL to Restore Clean Logs

One at a Time.

• Option 3: If the clean log disk space is large enough to hold all clean logs made

since the last back-up, but the machine-to machine-link is down, or for some

other reason you wish to commence the restore, but not reestablish FailSafe

operation, carry out Option 3 - Using TL-RESTORE to Restore Chained Clean

Logs in One Sequence, then TL-REDUAL.

• Option 4: If the clean log disk space is too small to hold all clean logs made

since the last back-up, and the machine-to machine-link is down, or for some

other reason you wish to start to restore, but not re-establish FailSafe operation,

carry out Option 4 - Using TL-RESTORE to Restore Clean Logs One at a Time,

then TL-REDUAL.

A flowchart to help in this decision process is shown in Figure 6-1 below.

6.3.4 Recovering TL- STOP/TL-START'ed log sequences

If logging has been stopped and started again when changing to a new clean log, this

breaks the link between clean logs. Restore of clean logs cannot be executed as one

complete chain.

It is therefore necessary to use TL-RESTORE with the AE options, as in Options 3 and 4,

for each sub-chain of clean logs created by a TL-START/STOP sequence except for the

last sub chain of logs linked to the active log when you use TL-REDUAL.

Figure 6-1 Flowchart to Choose Clean Log Restore Procedure

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 44 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

1. Options 1 to 4 are detailed later in this chapter.

2. Options 1 to 4 are described with reference to a typical sequence of SWITCH'ed

clean logs logged on a FailSafe database since the last back-up. This sequence

is illustrated in Figure 6-2.

Figure 6-2 Example of Clean Log Restore Sequence

Note

1. The chain of clean logs illustrated below assumes that changing from one clean

log to the next has been achieved by a TL-SWITCH or TL-REDUAL.

2. The clean log restore and resynchronisation procedures described next in this

chapter use the scenario illustrated in this diagram as a basis for the

descriptions.

6.4 Option 1 - Using TL-REDUAL to restore a chain of clean logs in

one sequence

The procedure is as follows:

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the

system crashed.

Note

This is necessary as CLOG3 on the corrupted database may be out of synchronisation

with the corresponding clean log (CLOG3) on the now live database. Updates to the

live database may have been added to the CLOG3 while the failed system was down.

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 45 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

To do this, enter:
TL-CREATE-FILE CLOG3 (E)

then
DELETE-FILE CLOG3

This recreates the D-pointers, lost when the database was restored from the last

back-up tape, then deletes the clean log.

Alternatively, enter:
rm /clean/dbase/CLOG3

rm /clean/dbase/CLOG3v

to remove both visible and binary files.

2. Copy all necessary clean logs, CLOG1 to CLOG5, to the failed system. Facilities to

copy clean logs between databases or from tape are described at the end of this

chapter. The necessary clean logs may be,

a) already on the failed system, in which case, recreate their D-pointers

using TL-CREATE-FILE with the E option to make them available on the

partially restored database.

b) on the live database, in which case copy them over to the failed system.

c) archived, in which case retrieve them from tape and load onto the failed

system.

If you use a UNIX utility to copy a clean log across you will need to use the

TLCREATE-FILE verb with the E option to create a D-pointer for the clean log,

before it can be used on the database. Refer to the section on Copying Clean

Logs between Databases at the end of this chapter.

Note

CLOG6 cannot be copied over yet as it is still the active log.

3. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

4. Execute TL-REDUAL on the live database. For example, enter:

TL-REDUAL CLOG7 CLOG1

This switches logging to CLOG7 on both databases. If an empty clean log

(CLOG7) does not exist on the secondary, TL-REDUAL creates one.

TL-REDUAL also re-establishes the FailSafe link. Updates on the live database

(the primary) are once more logged to the secondary clean log but are not yet

applied to the secondary (partially restored database). Instead, the secondary is

restored from the clean logs starting with CLOG1 and carrying on in sequence

through to CLOG7 (the active log), assuming all appropriate clean logs were TL-

SWITCH'ed during logging run time.

TL-REDUAL informs you that CLOG6 does not exist by displaying a prompt at the

system console like the following:

Jul 09 16:32:03 #7309 tlrestore WARNING Log/cleanlog failsafe/LOG6

empty

Please load new log file

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 46 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The message is repeated every 5 minutes. You must wait approximately 5

minutes to allow switching of clean logs to be completed before you can load

CLOG6 onto the secondary database.

5. Execute TL-STATUS with the L option on the primary to monitor the state of

switching. You must wait until the Status field on the TL-STATUS screen changes

from SWITCH IN PROGRESS to ACTIVE before you copy CLOG6 across. This

should take just under 5 minutes.

6. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from

the primary. With CLOG6 copied across the restore process continues through to

the current active clean log (CLOG7), until the backlog of updates in CLOG7 are

restored and recovery is complete. The recovered secondary database is now

synchronised with the live primary database and normal FailSafe operation is re-

established.

6.5 Option 2 - Using TL-REDUAL to restore clean logs one at a time

If clean log partition space is a problem, then you can still use TL-REDUAL, but copy

clean logs onto the failed system one at a time and restore them singly. The procedure is

as follows:

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the

system crashed.

Note

This is necessary as CLOG3 on the corrupted database may be out of synchronisation

with the corresponding clean log (CLOG3) on the now live database. Updates to the live

database may have been added to the CLOG3 while the failed system was down.

To do this, enter
TL-CREATE-FILE CLOG3 (E)

then
DELETE-FILE CLOG3

This recreates the D-pointers, lost when the database was restored from the last

back-up tape, then deletes the clean log.

Alternatively, enter:
rm /clean/dbase/CLOG3

rm /clean/dbase/CLOG3v

to remove both visible and binary files.

2. Copy the first clean log CLOG1 to the failed system. Facilities to copy clean logs

between databases or from tape are described at the end of this chapter. The

required clean log may be,

a. already on the failed system, in which case, recreate their D-pointers

using TLCREATE-FILE with the E option to make them available on the

partially restored database.

b. on the live database, in which case, copy it over to the failed system.

c. archived, in which case, retrieve it from tape and load onto the failed

system.

If you use a UNIX utility to copy a clean log across you will need to use the

TLCREATE-FILE verb with the E option to create a D-pointer for the clean log,

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 47 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

before it can be used on the database. Refer to the section on Copying Clean

Logs between Databases at the end of this chapter.

3. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

4. Execute TL-REDUAL on the live database. For example, enter:

TL-REDUAL CLOG7 CLOG1

This switches logging to CLOG7 on both databases. If an empty clean log

(CLOG7) does not exist on the secondary, TL-REDUAL creates one.

TL-REDUAL also re-establishes the FailSafe link. Updates on the live database

(the primary) are once more logged to the secondary clean log but are not yet

applied to the secondary (partially restored database). Instead, the secondary is

restored from the clean logs starting with CLOG1 and carrying on to CLOG7 (the

active log).

After restoring CLOG1, TL-REDUAL looks for CLOG2 and if it does not find it, it

displays a prompt at the system console like the following:

Jul 09 16:32:03 #7309 btlrestore WARNING Log/cleanlog failsafe/LOG2

empty

Please load new log file

The message is repeated every 5 minutes.

5. Now delete the previously restored clean log from the failed system to recover

clean log partition space. You can use DELETE-FILE.

6. Copy the requested log (CLOG2) on the failed system. TL-RESTORE will then

continue restoring CLOG2.

7. Repeat steps 5. and 6. for CLOG2 through to CLOG5, deleting each clean log after

the restore is complete and copying across the next consecutive clean log, as

requested by the message prompt.

You must wait approximately 5 minutes to allow switching of clean logs to be

completed before you can load CLOG6 onto the secondary database.

8. Execute TL-STATUS with the L option on the primary to monitor the state of

switching. You must wait until the Status field on the TL-STATUS screen changes

from SWITCH IN PROGRESS to ACTIVE before you copy CLOG6 across. This

should take just under 5 minutes.

9. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from

the primary.

With CLOG6 copied across the restore process continues through to the current

active clean log (CLOG7), until the backlog of updates in CLOG7 are restored and

recovery is complete. The recovered secondary database is now synchronised

with the live primary database and normal FailSafe operation is re-established.

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 48 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.6 Option 3 - Using TL-RESTORE to restore chained clean logs in

one sequence, then TL-REDUAL

To restore all clean logs in one chain, proceed as follows:

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the

system crashed.

Note

This is necessary as CLOG3 on the corrupted database may be out of synchronisation

with the corresponding clean log (CLOG3) on the now live database. Updates to the live

database may have been added to the CLOG3 while the failed system was down.

To do this, enter:
TL-CREATE-FILE CLOG3 (E)

then
DELETE-FILE CLOG3

This recreates the D-pointers, lost when the database was restored from the last

back-up tape, then deletes the clean log.

Alternatively, enter:
rm /clean/dbase/CLOG3

rm /clean/dbase/CLOG3v

to remove both visible and binary files, where /clean/dbase is the clean log sub-

directory pathname.

2. Ensure that CLOG1 to CLOG5 are present on the failed system. These may be,

a. already on the failed system, in which case, recreate their D-pointers

using TLCREATE-FILE with the E option.

b. on the live database, in which case, copy them over to the failed system.

c. archived, in which case, retrieve them from tape and load onto the failed

system.

If you use a UNIX utility to copy a clean log across you will need to use the

TLCREATE-FILE verb with the E option to create a D-pointer for the clean log,

before it can be used on the database. Refer to the section on Copying Clean

Logs between Databases at the end of this chapter.

3. Execute TL-RESTORE with the AE option on the partially restored database. For

example,

TL-RESTORE CLOG1 (AE

The restore commences at CLOG1 and continues with CLOG2 through to CLOG5

in chronological order until all inactive clean logs are restored. The restore

process will then prompt for CLOG6, as follows:

Log CLOG6 empty. Please load new log file.

Hit A to Abort or C to continue.

4. Enter A to abort the restore.

5. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 49 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6. Ensure that the network connection is up, then execute TL-REDUAL on the live

database (now the primary). For example, enter:

TL-REDUAL CLOG7 CLOG6

This switches logging to CLOG7 on both databases. If an empty clean log

(CLOG7) does not exist on the secondary, TL-REDUAL creates one.

TL-REDUAL also re-establishes the FailSafe link. Updates on the live database

(the primary) are once more logged to the secondary clean log but are not yet

applied to the secondary (partially restored database). Instead, the secondary is

restored from the clean logs starting with CLOG6 and carrying on to CLOG7 (the

active log).

TL-REDUAL informs you that CLOG6 does not exist by displaying a prompt at the

system console like the following:

Jul 09 16:32:03 #7308tlrestore WARNING Log/cleanlog failsafe/LOG6

empty

Please load new log file

The message is repeated every 5 minutes. You must wait approximately 5

minutes to allow switching of clean logs to be completed. before you can load

CLOG6 onto the secondary database.

7. Execute TL-STATUS with the L option on the primary to monitor the state of

switching. You must wait until the Status field on the TL-STATUS screen changes

from SWITCH IN PROGRESS to ACTIVE before you copy CLOG6 across. This

should take just under 5 minutes.

8. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from

the primary.

With CLOG6 copied across the restore process continues through to the current

active clean log (CLOG7), until the backlog of updates in CLOG7 are restored and

recovery is complete. The recovered secondary database is now synchronised

with the live primary database and normal FailSafe operation is re-established.

6.7 Option 4 - Using TL-RESTORE to restore clean logs one at a

time, then TL-REDUAL

In this procedure clean logs are copied onto the failed system one at a time because of

restrictions in clean log partition space and restored separately.

This procedure uses TL-RESTORE with the AE option which restores a chain of clean logs

in chronological order and prompts for the correct log in the chain if it is not present on

the database.

Caution

It is important that you use TL-RESTORE with the AE options. Using TL-RESTORE

without the AE options does not verify the order in which logs are restored.

The procedure is as follows:

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 50 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the

system crashed.

Note: This is necessary as CLOG3 on the corrupted database may be out of

synchronisation with the corresponding clean log (CLOG3) on the now live

database. Updates to the live database may have been added to the CLOG3 while

the failed system was down.

To do this, enter:

TL-CREATE-FILE CLOG3 (E)

then

DELETE-FILE CLOG3

This recreates the D-pointers, lost when the database was restored from the last

back-up tape, then deletes the clean log.

Alternatively, enter:

rm /clean/dbase/CLOG3

rm /clean/dbase/CLOG3v

to remove both visible and binary files.

2. Copy the first clean log CLOG1 to the failed system. Facilities to copy clean logs

between databases or from tape are described at the end of this chapter.

The required clean log may be:

a. already on the failed system, in which case, recreate their D-pointers

using TLCREATE-FILE with the E option.

b. on the live database, in which case, copy them over to the failed system.

c. archived, in which case, retrieve them from tape and load onto the failed

system.

If you use a UNIX utility to copy a clean log across you will need to use the

TLCREATE-FILE verb with the E option to create a D-pointer for the clean log,

before it can be used on the database.

3. Enter:

TL-RESTORE CLOG1 (AE

After restoring CLOG1, TL-RESTORE looks for CLOG2 and if it does not find it, it

displays the following prompt at the system console and waits:

Log CLOG2 empty. Please load new log file.

Hit A to Abort or C to continue.

4. Now delete the previously restored clean log from the failed system to recover

clean log partition space. You can use DELETE-FILE.

5. Copy the requested log (CLOG2) on the failed system and type C to continue.

TLRESTORE will then continue restoring CLOG2.

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 51 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6. Repeat steps 4. and 5. for CLOG2 through to CLOG5, deleting each clean log after

the restore is complete and copying across the next consecutive clean log, as

requested by the message prompt.

7. When CLOG6 is prompted for type A to abort the restore.

8. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

9. Execute TL-REDUAL on the live database. For example, enter:

TL-REDUAL CLOG7 CLOG6

This switches logging to CLOG7 on both databases. If an empty clean log

(CLOG7) does not exist on the secondary, TL-REDUAL creates one.

TL-REDUAL also re-establishes the FailSafe link. Updates on the live database

(the primary) are once more logged to the secondary clean log but are not yet

applied to the secondary (partially restored database). Instead, the secondary is

restored from the clean logs starting with CLOG6 and carrying on to CLOG7 (the

active log).

TL-REDUAL informs you that CLOG6 does not exist by displaying prompt at the

system console like the following:

Jul 09 16:32:03 #7308 tlrestore WARNING Log/cleanlog failsafe/CLOG6

empty

Please load new log file

You must wait approximately 5 minutes to allow switching of clean logs to be

completed before you can load CLOG6 onto the secondary database.

10. Execute TL-STATUS with the L option on the primary to monitor the state of

switching. You must wait until the Status field on the TL-STATUS screen changes

from SWITCH IN PROGRESS to ACTIVE before you copy CLOG6 across. This

should take just under 5 minutes.

11. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from

the primary.

With CLOG6 copied across the restore process continues through to the current

active clean log (CLOG7), until the backlog of updates in CLOG7 are restored and

recovery is complete. The recovered secondary database is now synchronised

with the live primary database and normal FailSafe operation is re-established.

6.8 Copying clean logs between databases

Clean logs need to be copied from one database to another, as part of the recovery

procedure. This section discusses the methods available. Two main media for

transferring copies are available:

• Magnetic tape

• Communications network

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 52 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6.8.1 Copying clean logs via tape

Dumping a clean log onto tape and reloading it onto another database can be performed

in either the Reality X database or in UNIX. Reality X supports the TCL verbs TL-DUMP

and TL-LOAD, and UNIX supports the cpio command.

• TL-DUMP and TL-LOAD: TL-DUMP is used to copy a clean log to tape and TL-

LOAD to reload it from tape onto a database. Both commands are detailed in

Chapter 8. Archiving and retrieval procedures, which are very similar, are

described and illustrated in Chapter 5.

• cpio Utility: cpio is a UNIX utility that enables you to copy a set of files to tape

and recover them individually. The command is detailed in the UNIX user

manuals supplied with your system. Archiving and retrieval procedures using cpio

are described and illustrated in Chapter 5.

6.8.2 Copying clean logs via n network

Clean logs can be copied across a network using remote Q pointers or a UNIX file

transfer facility, such as ftp (ARPANET file transfer program). These options are

discussed below:

Using Remote Q Pointers: The following procedure is an example of how you can use a

remote Q pointer to copy a clean log between databases:

1. Create a remote Q pointer to a clean log on the remote database using SET-FILE.

Note: A clean log must already exist on the remote database. If not, it must be

created before using SET-FILE.

For example, SET-FILE failsafe-a.SYSMAN CLOG1

The screen displays:

QFILE and QF*port updated

2. If necessary, clear the binary data section of the remote clean log via the Q

pointer. For example, CLEAR-FILE QFILE,BINARY

3. Copy all clean log items from CLOG1 on the live database to the empty clean log

on the remote database. For example,
COPY CLOG1,BINARY *

TO:(QFILE,BINARY

Using ftp: Clean logs can also be copied across a network from UNIX using ftp. The

following is an example of a procedure for transferring from a remote active system to a

local corrupted system:

1. Change to the appropriate clean log sub-directory on the local database. For

example,

cd /clean-logs/dbase1

2. Enter ftp at the shell prompt. The ftp prompt is now displayed.

ftp>

3. Open a connection to the remote system. For example, enter:

open 192.67.50.36

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 53 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

where 192.67.50.36 is the network address of the remote system. The system

responds with the following:

Connected to 192.67.50.36

Host1 FTP server (Version ### ready)

Name:

4. Enter the UNIX user id for the remote system, for example,

Name:realman

The system responds with the following:

password required for realman

Password:

5. Enter the password. The system responds with

User realman logged in

6. Change to the appropriate clean log sub-directory. For example, enter:

cd /clean-logs/dbase1

The system responds with

CWD command successful

7. Set the file transfer type to support binary images. Enter:

type binary

The system responds with:

Type set to I

8. Turn off interactive prompting. Enter:

prompt

The system responds with:

Interactive mode off

Multiple files are now transferred by 'mget' in one sequence without user

intervention.

9. Transfer all CLOG files from the clean log sub-directory for the remote database.

For example, enter:

mget CLOG?

The system responds with

Using binary mode to transfer files

followed by a sequence of messages similar to the following.

Opening data connection for CLOG1

Transfer complete

Local: CLOG1 Remote: CLOG1

6293696 bytes received in 34.4 seconds

Opening data connection for CLOG2

Transfer complete

Local: CLOG2 Remote: CLOG2

141592 bytes received in 0.78 seconds

Opening data connection for CLOG3

Transfer complete

Section 6: Recovery procedures

RealityX FailSafe v3.1 Reference Manual v0.1 Page 54 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Local: CLOG3 Remote: CLOG3

82328 bytes received in 0.44 seconds

10. Run Reality and enter dbase1. If the files do not already exist on the database,

create the clean log D-pointers and link the visible and binary file names. To do

this, enter

TL-CREATE-FILE CLOG1 (E)

TL-CREATE-FILE CLOG2 (E)

TL-CREATE-FILE CLOG3 (E)

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 55 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 7: UNIX tools
This chapter details the special UNIX utilities available to administer a FailSafe system.

They include:

• fsadm

• lockdbase

• killreal

• mklog

• runrealcd

• unlockdbase

7.1 fsadm

Purpose Used to configure and administer databases in FailSafe mode

Syntax fsadm {options} {local-dbase}

Parameters options These are defined below. Enter

fsadm with no options to show

usage.

local-dbase The path name of the database on

the local host. If not specified, the

default

is the environment variable

£REALDBASE. How Reality processes

£REALDBASE to find the database is

described in the Administrator's

Guide to Reality X.

Options -c Clears failed flag.

-d remote-dbase Used when the database name on

the remote host is different from the

database name on the local host

with which it is paired. The database

name remote-dbase must be

specified as an absolute path name.

-f Sets failed flag.

-H Shows the local system name. No

changes made.

-h remote-host Edits config file entries to pair the

local host with the system called

remote host.

-L Switch the config file entry

FailsafeAllowLogons to off.

-l Switch the config file entry

FailsafeAllowLogons to on. With

FailSafeAllowLogons set, users can

log on to the database as a

standalone primary when the

secondary is unavailable.

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 56 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

-p Marks local-dbase on the local host

as a primary FailSafe database. This

is flagged in the local raw log

header.

-q Query option which shows the

current set up of the FailSafe

configuration.

No changes made.

-R This option is like the -T option but

is used to swap primary and

secondary roles in a FailSafe pair

when the primary database fails.

When applied to both the primary

and associated secondary it reverses

the roles, leaving an active stand-

alone primary and a failed secondary

database.

When applied to the failed primary,

it logs off current primary users,

locks the database and re-configured

it as a failed secondary, that is, the

FailSafe failed flag is maintained set.

Any active transactions are rolled

back.

When applied to the secondary, it

unlocks the database and re-

configures it as a primary, but with

the FailSafe failed flag still set and

hence, the database still operates in

stand-alone mode.

-r Removes all FailSafe entries from

config file.

-s Marks local-dbase on the local host

as a secondary FailSafe database.

This is flagged in the local raw log

header.

-T Used to swap primary and secondary

roles in an active FailSafe

configuration and maintain active

FailSafe operation with primary and

secondary roles reversed.

When applied to a primary database,

it logs off current users, locks the

database and re-configured it as a

secondary. Any active transactions

are rolled back.

When applied to a secondary

database, it unlocks the database

and reconfigures

it as a primary.

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 57 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

-t transport Specifies network transport protocol.

transport may be specified as 'TCP'

or

'X25'. Without the -t option, the

default is TCP.

-u Marks local-dbase on the local host

as unpaired, removing the FailSafe

flag from the local raw log header.

Restrictions Can be used by the super-user or the database owner only.

The central daemon must be running and the database must

be configured for logging using mklog.

Comments Some fsadm facilities can also be executed from Reality X TCL

using the FSADM command and associated menu commands

described in Chapter 8.

7.2 killreal

Purpose Used to terminate the Reality X daemon process(es).

Syntax killreal {options}

Options -y Suppresses the WARNING.

 -d {database} Kills daemon for the named

database only. The default is

£REALDBASE.

Restrictions Can be used by the super-user. The -d option can be executed

by the database owner as well.

Comments This command without the -d option affects all databases,

sending a termination message to the central daemon which

in turn sends messages to terminate the database daemons.

Each database daemon then broadcasts requests to all

associated active Reality processes to initiate a

controlled and orderly log off. If a Reality process fails to

respond after a period of approximately 30 seconds, the

database daemon initiates a forced termination. Reality X is

made unavailable on the system.

Using the -d option, killreal kills the database daemon for a

specified database only. The central daemon and other

database daemons and processes are maintained.

Reality X is terminated in an orderly and controlled manner so

that the affected database(s) are left in a consistent and

predictable state. Note, however, that use of killreal in a

FailSafe configuration may cause loss of synchronisation. It is

therefore recommended that Transaction Logging be shut

down using TL-STOP on the primary before killreal is

executed.

Example On entering killreal the following is displayed:

WARNING

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 58 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

This will cause all Reality X databases running on

message

queue-id to be killed, and the daemons to exit.

Type 'y' if you are sure you want this:

See runrealcd to start up the central daemon again.

7.3 lockdbase

Purpose Used to disable all connections to a database, preventing all

users, except the database owner and super-user, from

logging on. This exception is modified by the -a option.

Syntax lockdbase {database-name}

Options -a Prevents all users, except super-user

from logging on.

Parameters database-name The name of the database on the

local host which is to be locked. The

default is £REALDBASE.

Restrictions Can only be used by the super-user or owner of the database.

Comments lockdbase only prevents users logging on. it does not log off

users that are currently logged on.

A LOCK.FILE in the database directory with zero permissions

is used to maintain the lock on the database, hence, the lock

is maintained across a system re-boot or shutdown of the

Reality X daemons.

lockdbase provides an alternative to the INHIBIT-LOGONS

TCL command.

The -a option performs the same function as INHIBIT-

LOGONS with the A option at TCL.

See unlockdbase for unlocking a database.

7.4 mklog - Making a raw log

Purpose Used to create a raw log.

Syntax mklog -r {-o} {-e} {-s size} {-b size} {-t} partition bin-

path

Options -a Prevents all users, except super-user

from logging on.

Parameters -r Specifies that a raw log is to be

created.

 -o Enables any existing link to the raw

log in $REALROOT/bin to be

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 59 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

overwritten with a new raw partition

link.

 -e Empties the raw log

 -s size Enables a raw log smaller than the

specified raw log partition to be

created.

The default is the size of the

partition.

 -b size Specifies a central buffer cache.

Without this option the default is 128

Kbyte.

 partition Is the path name of the raw log.

 bin-path Is the path name of Reality X

binaries (normally £REALROOT/bin).

Examples For example,

mklog -r /dev/rdsk/0s4 £REALROOT/bin

initialises the raw log, where 0s4 is the allocated raw

partition. This will fail if the raw log already exists.

If a raw log already exists, but you are certain you want to

create a new one, for example allocated to a different raw

partition (0s3), use the -o option, as follows:

mklog -or /dev/rdsk/0s3 £REALROOT/bin

The -o option re-initialises the raw log with the new raw

partition path and overrides the current link.

7.5 mklog - Making a clean log sub-directory

Purpose Used to create a clean log sub-directory and set the logging mode for the

specified database.

Syntax mklog {-o} {-c sub-dir-name} {-m log-mode} {clog-dir} dbase-path

Options -o Overrides the current clean log sub-directory entry in the

database config file to enable the creation of a new clean

log sub-directory.

Parameter

s

-c sub-dir-name Enables you to give the clean log sub-directory a different

name from that of the database. The default is the

database name.

 -m log-mode Enables the logging mode to be set for a specified

databases. log-mode can be the following:

 F(ULL) Committed transactions are written

synchronously to the raw log. A Reality

process waits until the write to disk is

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 60 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

completed before continuing. This

ensures that all committed transactions

are guaranteed saved. This is at the

expense of a performance overhead

due to the synchronised write at each

transaction commit.

 B(RISK) Committed transactions are not

synchronised and are written to

the raw log periodically, or when the

raw log input buffer is full. This means

that committed transactions may be

lost if a system fails. However, the

performance of RealityX is faster. The

choice between FULL and BRISK modes

is made according to whether

transaction security or database

performance is most important.

 (N)ONE Transaction Handling only. Transaction

Logging is disabled.

Only before images are logged.

 (O)FF Disables Transaction Handling and

Logging.

 clog-dir It is the full UNIX pathname of the clean log directory on

the system. One directory is created per release of

RealityX.

 dbase-path It is the UNIX pathname of the database you wish to

configure.

Examples For example, if you enter:

% mklog /clean-logs /usr/jones/dbase1

a clean log sub-directory called dbase1 is created in the clean log directory

clean-logs for the database dbase1. This will fail if a sub-directory already

exists. The -o option must be used to overwrite an existing directory.

If you want, you can specify a different name from that of the database for the

clean log subdirectory by using the -c option, for example, you may call it

dbase1-clogs. To do this, enter:

% mklog -c dbase1-clogs /clean-logs /usr/jones/dbase1

This creates the clean log sub-directory dbase1-clogs in the directory clean-logs

for dbase1.

Note

It is recommended that the clean log sub-directory name is the same as the

database name.

If only Transaction Handling is required without logging, then enter,

% mklog -m N /usr/jones/dbase1

Section 7: UNIX tools

RealityX FailSafe v3.1 Reference Manual v0.1 Page 61 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

7.6 runrealcd

Purpose Used to start up the Reality X central daemon.

Syntax runrealcd

Restrictions Can be used by the super-user only.

Man pages Information on runrealcd is also available on your system. Enter,

man runrealcd

at the UNIX shell prompt to display this information.

Comments The central daemon exercises overall control of the Reality X applications

environment. Until the central daemon is started, Reality X is unavailable on

the system. This command is normally run automatically at boot time.

7.7 unlockdbase

Purpose Used to re-enable all connections to a database, previously locked by

lockdbase or INHIBITLOGGINGS (A).

Syntax unlockdbase database-name

Parameters database-name The name of the database on the local host

which is to be unlocked.

Restrictions Can only be used by the super-user or the owner of the database.

Caution

Unlocking a secondary database makes it available for users to log on. Updates performed by

users on a secondary database may lead to loss of synchronisation.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 62 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: TCL commands
This chapter details, in alphabetical order, the TCL commands supported by Reality X to

administer and operate a FailSafe configuration. This is a reference resource for the rest

of the manual, as many of the operational and administrative procedures, described in

the manual, require one of these commands. Refer to Chapter 10 for a description of the

Transaction Handling commands.

8.1 TCL commands described in this chapter

8.1.1 Special TL/FS commands

• FSADM TL-LOAD

• FSADM-PRIMARY TL-REDUAL

• FSADM-SECONDARY TL-RESTORE

• FSADM-STATUS TL-SET-LOG-STATUS

• FSADM-UNPAIR TL-START

• TL-CONTINUE TL-STOP

• TL-CREATE-FILE TL-STATUS

• TL-DUMP TL-SWITCH

• TL-LISTFILES TL-TRANSACTIONS

8.1.2 Modified standard commands

• ACCOUNT-RESTORE CREATE-FILE

• CREATE-ACCOUNT SEL-RESTORE

8.2 ACCOUNT-RESTORE

Purpose To restore one or more accounts from tape.

Syntax ACCOUNT-RESTORE [accounts-names|*] {(options

Special

option for

transaction

Logging

L Specifies that, if Transaction Logging is

running on the database, the restored

items are to be logged as updates to the

database, otherwise the restored items are

not logged.

Restrictions This command cannot be executed inside a transaction. Use is restricted to

SYSMAN or SYSPROG.

Comments For a complete description of this command, with examples, refer to the

standard RealityX reference manuals.

8.3 CREATE-FILE

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 63 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Purpose To create a new file and define its log status.

Syntax CREATE-FILE {DICT} file-name {,data-sect} m1{,s1} {m2{,s2}

{(options}

Special

option for

transaction

logging

L Indicates that the file should not be logged,

but that the CREATE-FILE operation itself

should be logged.

X Indicates that the file should not be logged

and that the CREATE-FILE operation should

not be logged.

Logged by

default

When a file is created by the CREATE-FILE command, it is logged by default.

'DL' is placed in attribute 1 of the file's definition item(s). If only a single level

file is created, then only that level is logged.

The special options described above enable the suppression of logging of the

file's items or the creation of the file itself.

Comments For a complete description of CREATE-FILE, with examples, refer to the

standard RealityX reference manuals.

8.4 CREATE-ACCOUNT

Purpose To create a new account and define the log status of its MD.

Syntax CREATE-ACCOUNT

Operation When the account is created, its MD is automatically set up as a file which

should be logged.

Files within the account can be individually set as logged or not logged.

Comments For a complete description of this command with examples, refer to the

standard RealityX reference manuals.

8.5 FSADM

Purpose To configure and administer databases in FailSafe mode. It provides some, but

not all, of the functionality of fsadm.

Command

class

Catalogued DATA/BASIC program.

Syntax FSADM

Restrictions Use is restricted to SYSMAN.

Menu

screen

The following screen is displayed when you enter FSADM.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 64 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Menu

options

You can select one of the four menu options by entering the appropriate

number at the screen prompt. The options and their equivalent TCL/UNIX

commands are:

Show current settings Used to display the status of the FailSafe

configuration. This is equivalent to entering

FSADM-STATUS at TCL or fsadm with the -q

option at the UNIX shell.

Mark as primary Used to mark the database currently logged to

as a primary in a FailSafe pair. This is

equivalent to entering FSADM-PRIMARY at TCL

or fsadm with the -p option at the UNIX shell.

Mark as secondary Used to mark the database currently logged to

as a secondary in a FailSafe pair. This is

equivalent to entering FSADM-SECONDARY at

TCL or fsadm with the -s option at the UNIX

shell.

Remove primary or secondary

mark

Used to mark the local database, primary or

secondary, as unpaired. This is equivalent to

entering FSADM-UNPAIR at TCL or fsadm with

the -u option at the UNIX shell.

Comments Only partially fsadm functionality is supported by FSADM. This is detailed in the

description of the menu options given above. Refer to Chapter 7 for a

description of full fsadm functionality, executed from the UNIX environment.

The equivalent FSADM TCL verbs for each menu option are described in this

chapter.

8.6 FSADM-PRIMARY

Purpose To mark a database as a primary in a FailSafe pair.

Command

class

Catalogued DATA/BASIC program.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 65 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Syntax FSADM-PRIMARY

Restrictions Use is restricted to SYSMAN.

Comments The primary mark is entered into the config file. Refer to the description of

FSADM-STATUS.

The primary can also be marked from the UNIX environment using fsadm with

the -p option. Refer to Chapter 7.

8.7 FSADM-STATUS

Purpose To display the status of the FailSafe configuration.

Command

class

Catalogued DATA/BASIC program.

Syntax FSADM-STATUS

Restrictions Use is restricted to SYSMAN.

Example The following report is an example of the status information displayed by

FSADM-STATUS:

FailSafe Pair1:

 Database'/usr/databases/dbase1'

 TCP Host'host1' (Local)

FailSafe Pair2:

 Database'/usr/databases/dbase1'

 TCP Host'host2' (Remote)

Mode:

 Logging inactive

 FailSafe enabled,primary,inactive

Explanation

of the

example

This example shows the following information.

• The name of the local system and database in the FailSafe pair.

• The name of the remote system and database in the FailSafe pair.

• The status of logging in the local database, that is, active or inactive.

• The status of FailSafe configuration in the local database, that is,

enabled (configured), disabled (not configured).

• The primary, or secondary, marker, if set.

• The status of FailSafe operation in the local database, that is, active,

inactive, and so on...

Comments This status information can also be queried in the UNIX environment using

fsadm with the -q option. Refer to Chapter 7.

8.8 FSADM-UNPAIR

Purpose To mark the local database as unpaired.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 66 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Command

class

Catalogued DATA/BASIC program.

Syntax FSADM-UNPAIR

Restrictions Use is restricted to SYSMAN.

Comments A Failsafe pair can also be unpaired from the UNIX environment using fsadm

with the -u option. Refer to Chapter 7.

8.9 SEL-RESTORE

Purpose To restore one or selected items from a file stored on tape using a FILE-SAVE,

ACCOUNT-SAVE, or equivalent.

Syntax SEL-RESTORE file{,data-sect} item-list (options

Special

option for

transaction

logging

L Specifies that, if Transaction Logging is

running on the database, the restored

items are to be logged as updates to the

database; otherwise, the restored items

are not logged.

Restrictions This command cannot be executed inside a transaction.

Comments For a complete description of this command with examples, refer to the

standard RealityX reference manuals.

8.10 TL-CONTINUE

Purpose To resume secondary FailSafe operation after the secondary has been

suspended by a TL-SWITCH with the H option.

Command

class

Catalogued DATA/BASIC program.

Syntax TL-CONTINUE

Restrictions Use is restricted to SYSMAN on the primary database.

TL-CONTINUE can be used only after secondary database operation has been

suspended by TL-SWITCH with the H option.

Comments All outstanding updates from the secondary's clean log are restored until the

databases are synchronised and full FailSafe operation resumed.

8.11 TL-CREATE-FILE

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 67 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Purpose To create a new log file, that is, clean log, reject log or error log. See Chapter

9.

Command

class

Catalogued DATA/BASIC program.

Syntax TL-CREATE-FILE log-file {E}

Syntax

elements

log-file The name assigned to the new log file.

Options E Allows the creation of a log file when the

UNIX file already exists in the clean log

sub-directory. This option re-creates the

log dictionary and the Dpointer to it in

the Master Dictionary. It also creates a

UNIX link to the visible file.

Restrictions Use is restricted to SYSMAN. The file name must be unique in the SYSMAN

Master Dictionary.

Comments Three types of log files are supported by Reality X Transaction Logging.

• Clean log

• Reject log (TL-REJECT)

• Error log (TL-ERRORS)

TL-CREATE-FILE can be used to create each of these, although TL-REJECT and

TLERRORS are normally created automatically. See Chapter 9. TL-CREATE-FILE

only needs to be executed on the primary database. An identical secondary

clean log is created automatically at TL-START.

With logging enabled, log files are created in the clean log sub-directory.

However, if Transaction Handling only is specified, then the TL-ERRORS log file

is created in the database directory.

TL-LISTFILES can be used to display a list of log files for the database and

DELETE-FILE can be used to remove a log from the database.

Example TL-CREATE-FILE DBASE-MON

[CTL] Logfile DBASE-MON created

8.11 TL-DUMP

Purpose To dump clean log files to a tape device or other system file.

Command

class

Catalogued DATA/BASIC program.

Syntax TL-DUMP log-file {device}

Syntax

elements

log-file It is the name of the clean log file to be

dumped.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 68 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

 device This is the name of the tape device or

system file to dump the clean log to.

The default is the device attached by

ASSIGN or T-ATT.

Restrictions Use is restricted to SYSMAN on the primary database.

Multiple clean logs should not be archived to one tape as it is not possible to

retrieve multiple files using the TL-LOAD verb.

An active clean log should not be dumped.

8.12 TL-LISTFILES

Purpose To list information on all clean logs and error logs on the database.

Command

class

Catalogued DATA/BASIC program.

Syntax TL-LISTFILES

Restrictions Can only be executed from SYSMAN.

Log file

information

displayed

The information provided in each column is defined as follows:

• File name: The name of the log.

• Bytes: The size in bytes of the log.

• Items: The number of update items held in the log.

• Created: The creation date and time of the log file.

8.13 TL-LOAD

Purpose To load a clean log file from tape.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 69 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Command

class

Catalogued DATA/BASIC program.

Syntax TL-LOAD log-file {device}

Syntax

elements

log-file It is the name of the clean log file to be

loaded.

device The name of the tape device or system

file from which the clean log is to be

loaded. The default is the device

attached by T-ATT.

Restrictions Use is restricted to SYSMAN on the primary database.

8.14 TL-REDUAL

Purpose To resynchronise databases for normal FailSafe operation.

Command

class

Catalogued DATA/BASIC program.

Syntax TL-REDUAL new_clog {first_clog}

Syntax

elements

new_clog It is the name of empty clean log to

which logging on the primary and

secondary databases is switched to.

first_clog The name of the first clean log to be

restored onto the secondary database to

bring it into line with the primary. The

default is the clean log which is active

on the primary database prior to

switching.

Restrictions Use is restricted to SYSMAN on the primary database. Logging must be

enabled. new_clog on the primary must be empty. On the secondary it will be

created or cleared, if necessary. first_clog and all chained clean logs, since the

last back-up, must be available on the secondary database. If a clean log is

unavailable, or empty, TL-REDUAL prompts for it and waits.

Caution

TL-REDUAL requires a continuous chain of clean logs between first_clog and new_clog.

Use of TL-STOP followed by a TL-START divides the clean logs into two separate

chains.

Operation TL-REDUAL is entered on the current live database (the primary). Its purpose

is to restart logging on the secondary database and to bring the partially

restored secondary database up to- date with the primary, until the state of

both databases is identical (synchronised) and normal FailSafe operation is

resumed. To do this:

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 70 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

1. It switches logging to a new empty clean log (new_clog) on both the

live database (primary) and the partially restored database

(secondary). new_clog need only be present on the primary. It is

created on the secondary automatically by TL-REDUAL.

Having switched to new_clog, updates on the primary database are

logged in both the primary and secondary clean logs. However, they

are not applied to the secondary database until it has been restored

with earlier updates, as described below.

Note that the clean log switching initiated by TL-REDUAL takes about 5

minutes, you cannot copy the previously active clean log across to the

secondary until switching is complete, that is, the TL-STATUS screen

displays logging ACTIVE.

2. It also initiates, in parallel with the clean log switching, a restore

process on the secondary which restores the updates from the clean

logs, required to recover the database, commencing with the first_clog

specified in the TL-REDUAL command. On completing the restore from

first-clog, it continue with one or more subsequent clean logs if a chain

of logs exists. See below.

Chaining of

clean logs

A chain of clean logs is created where TL-SWITCH or TL-REDUAL has been used

to switch from one clean log to the next. This creates a pointer to the next log.

Thus, having completed restoring the first clean log, the restore process

continues with the next log. Assuming the chain is continuous, the restore

process restores all clean logs in chronological order right through to the

current log (new_clog).

Having completed the restore and synchronised the databases, updates logged

in the new_clog are once again applied to the secondary database and normal

FailSafe operation is resumed.

If the next clean log is not available on the secondary, the restore process

displays a message prompt at the system console of the form:

Jul 09 16:32:03 #7308 tlrestore WARNING Log /cleanlog failsafe/LOG

empty

Please load new log file

This message is repeated every 5 minutes until the required clean log becomes

available.

If the clean logs are divided into two separate chains by a TL-STOP/START

operation, it will be necessary to restore the first chain using TL-RESTORE with

the A option, before continuing with a TL-REDUAL to restore the second chain

and resynchronise the FailSafe databases. The earliest log to TL-REDUAL will

be the first log used after the restart.

8.15 TL-RESTORE

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 71 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Purpose Initiates a restores all updates, or a selected list of updates, from a specified

clean log onto the database.

Command

class

Catalogued DATA/BASIC program.

Syntax TL-RESTORE first_clog {(options)}

Syntax

elements

first_clog The name of the first clean log to be

restored.

Options A Causes the restore process to sequence

through clean logs in chronological order

until no more logs exist. Using this

option all clean logs in the chain must

be present on the database.

AE Causes the restore process to sequence

though all existing logs in chronological

order, then wait at the EOF mark of the

last log until the next log is available. If

a log is missing or invalid it is prompted

for.

Note

The A and AE options require clean logs to be chained together during logging run

time for them to work. See the description in this in the section on the

chaining of clean logs.

C Displays a count of sets of 500 updates

applied to the database and information

about the images applied.

H{n} Specifies the maximum size (n) of the

history file item listing the last n image

ids applied to the database. The default

is 2000. The CLOG.PORTS item size is

always 20. n set to 0 inhibits the history

function.

L Prompts you for alternative file names

to TL-REJECT and TL-LIST, as follows:

ERROR LOG:

HISTORY FILE:

When you enter a name, the file is

created if it does not already exist.

Rejected images and history information

for the restore are then entered into the

named files.

If you enter RETURN, TL-RESTORE uses

files with the default file names, TL-

REJECT and TL-LIST, creating them if

necessary. This is equivalent to

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 72 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

executing TL-RESTORE without the L

option when TL-REJECT and TLLIST

are created automatically without

prompts.

R Prevents the error log (TL-REJECT) and

history file (TL-LIST) from being cleared

by a TL-RESTORE. Rejected images and

history information for the current

restore are then appended to the files.

If this option is not specified, TL-

RESTORE clears these files before using

them for the current restore.

S Generates an asterisk for each update

restored.

Restrictions Use is restricted to SYSMAN.

TL-RESTORE does not allow you to specify image selection criteria. To initiate

selective recovery, you must carry out a SELECT operation first; then use TL-

RESTORE on the select list.

TL-REJECT

and TL-

LIST

Initially when TL-RESTORE is executed, it creates two files:

TL-REJECT Used to log After images that fail to be

restored on the database by TL-

RESTORE.

TL-LIST Used to contain history information

about the last 2000 images successfully

restored and the last 20 images

successfully restored per port.

Subsequent execution of TL-RESTORE clears these files before they are used,

unless the R option is invoked, in which case the files are not cleared and data

is appended. This may be particularly useful during a multi-file restore, to

retain previous history information.

Chaining of

clean logs

TL-SWITCH and TL-REDUAL create a pointer from the current clean log to the

new clean Logs log to which logging is switched. Hence this creates a chain of

clean logs which can be restored by TL-RESTORE without manual intervention

using the A and E options.

TL-RESTORE with the A option commences by restoring the first_clog on the

database then continues with the next clean log in the chain Assuming the

chain is continuous, the restore process restores all clean logs in chronological

order right through to the clean log before the current active one.

TL-RESTORE with the AE option sequences through a chain of clean logs in the

same way as the A option, however, if the next clean log is not available, TL-

RESTORE prompts for the next log and waits, as follows:

Log CLOG2 empty. Please load new log file.

Hit A to Abort or C to continue.

The chain of clean logs will be interrupted by a TL-STOP/TL-START operation,

in which case the restore will terminate at the clean log active when the TL-

STOP occurred. If this is the case, it will be necessary to execute a TL-

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 73 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

RESTORE with the A option, before continuing a TL-REDUAL. The earliest log to

TL-REDUAL will be the first log used after the restart.

Selective

recovery

To carry out a selective recovery you must first execute the SELECT command

to compile a select list of the After images and transaction boundary images to

be recovered from the clean log, then execute TL-RESTORE. TL-RESTORE will

then only restore the images in the select list. For a list of attribute definitions

which can be used as selection criteria, refer to Chapter 9. For general

information on the use of the SELECT verb, refer to the ENGLISH Reference

Manual.

Caution

You must not use the SORT verb to manipulate items in a clean log as this will

cause incorrect sequencing of images during a TL-RESTORE.

8.16 TL--SET-LOG-STATUS

Purpose To define or modify the set of files to be logged by Transaction Logging.

Command class Catalogued DATA/BASIC program.

Syntax TL-SET-LOG-STATUS

Restrictions Use is restricted to SYSMAN.

Options 4 and 5 only can be executed when Transaction Logging is active.

Menu screen On entering TL-SET-LOG-STATUS (except for the first time after

installation, see note below), Reality X displays a menu screen, as follows:

To select an option, type the associated number, and press RETURN.

Note

When you first run TL-SET-LOG-STATUS after initial installation of Transaction

Logging, Option 1 is run automatically.

Explanation of

menu options

The purpose of the menu options is as follows:

• [0]: Exits from TL-SET-LOG-STATUS to the TCL prompt.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 74 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• [1]: Allows you to define the logging status of some or all data

sections in all accounts on your database (except those with

compulsory logging status). You can define whether they are to be

all 'Logged', all 'Not Logged' or selectively 'Logged'.

• [2]: Allows you to define the logging status of some or all system

files on your database (except those with compulsory logging

status). You can define whether they are to be all 'Logged', all 'Not

Logged' or selectively 'Logged'.

• [3]: Allows you to define the logging status of some or all data

sections in all user accounts on your database. You can define

whether they are to be all 'Logged', all 'Not Logged' or selectively

'Logged'.

• [4]: Allows you to select a specific account and define the logging

status of some or all data sections in it. You can define whether

they are to be all 'Logged', all 'Not Logged' or selectively 'Logged'.

• [5]: Allows you to select an individual data section/system file and

define its logging status as 'Logged' or 'Not Logged'.

Selecting the L,

N or S options

On selecting one of options [1] to [5], messages are displayed prompting

you to select the logging status of the accounts and/or files selected by

that option. The messages are unique to each option. but the responses

asked for are the same, that is, L, N or S. A typical message prompt is:

Globally Log all data sections

Enter option (L,N,S) :

The three options are:

• L: It sets all specified files/data sections, to be 'Logged', except for

those which have the compulsory status of 'Not Logged'.

• N: It omits all files/data sections from being logged, except for

those which have the compulsory status of 'Logged'.

• S: It allows you to specify the logging status of files/data sections

individually, except for those which are preset as 'Compulsory

Logged' or 'Compulsory Not Logged'. Entering S is followed by

further prompts. For example, for each account:

Log all data sections

Enter Option: (L,N,S):

If you enter S, the prompt (L, N): is returned for each data section.

This enables you to select the logging status of each system file or

data section individually.

Completion of

menu option

When you have finished defining the logging status of all files/data

sections allowed by a particular option, you are returned to the main

menu. You can then update the logging status of the database again or

exit to TCL by entering 0.

Comments

Selecting the

logging status

option

At initial installation, unless there are some special considerations for your

installation, it is recommended that you specify L at the (L, N, S):

prompt to log the whole database. It is normally easier to set all files/data

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 75 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

sections to be logged, and then, if necessary, de-select the files which you

do not wish to log.

Compulsory

logging status

For some files the logging status is preset to 'Compulsory Logged' or

'Compulsory Unlogged', as appropriate, and cannot be changed using TL-

SET-LOG-STATUS.

SYSTEM and

master

dictionaries

‘Compulsory

Logged’

The SYSTEM dictionary is 'Compulsory Logged', as are all account master

dictionaries. Making all master dictionaries 'Compulsory Logged' ensures

that the logging facility records each CREATE-FILE and MOVE-FILE

operation, where a D-pointer is placed in or removed from the MD.

‘Compulsory

Not Logged’

files

Also, certain files are defined as 'Compulsory Not Logged'. For these files,

restoration of updates is unnecessary or may even be undesirable.

The following files are 'Compulsory Not Logged'.

In DENAT account:

• BP

• ENGLISH

• UTILITY

• USER.LOG

• SESSION-LOG

• ROUTE-FILE

• PH-HISTORY

• SYSTEM-LOG

• LANG.PTRS

Scrolling

through

compulsory log

status

information

When you select menu options [1], [2] and [3] followed by the S option,

accounts and files with 'Compulsory Logged' or 'Compulsory Not Logged'

status are displayed but scrolled by automatically. The scrolling stops at

the next account or file for which the logging status must

be selected.

Example 1 The following is an example of the TL-SET-LOG-STATUS report when you

select menu option [1] followed by the L (log everything that can be

logged) option.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 76 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 77 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Example 2 The following is an example of the TL-SET-LOG-STATUS report when you

select menu option [1] followed by the S (Selected files) option.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 78 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 79 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

8.17 TL--START

Purpose Used to start logging and activate FailSafe operation initially.

Command class Catalogued DATA/BASIC program.

Syntax TL-START {log-file}

Syntax

elements

log-file The name of an empty clean log to log

to. This is omitted to enable

Transaction Handling without logging.

Restrictions Use is restricted to SYSMAN on the primary database. TL-START can be

used only when all other primary users are logged off. The clean logs used

for both primary and secondary must be empty.

Transaction

holding without

logging

If a database is configured for 'no logging', TL-START is used without a

clean log name to enable Transaction Handling.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 80 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Error messages If logging is configured (using mklog) and you do not specify a clean log,

TL-START displays:

[CTL2206] You must specify a clean log file name with this

command

If you specify the name of a clean log which already has data in it, TL-

START displays:

[2108] Logfile logfile is not empty, use CLEAR-FILE

The clean log used must be empty. You can either clear a current log using

CLEAR-FILE or create a new one using TL-CREATE-FILE.

If you attempt to start logging within 5 minutes of executing a TL-STOP,

TL-START responds with the error message.

You can't do this when logging is in a state of

switching/stopping

This is because all committed transactions and independent update images

sent to the 'old' clean log are retained in the raw log for 5 minutes after

being transferred, to ensure that they have reached the clean log.

Refer to Appendix A for a list of TL error messages.

8.18 TL--STATUS

Purpose Displays the status of logging on either the primary or secondary database

(S option).

Command class Catalogued DATA/BASIC program.

Syntax TL-STATUS {options}

Options L {n} Repeats (Loops) the TL-STATUS command every
n seconds, where n is decimal. Type CTRL+E or X

to terminate the loop and return to TCL. If you

do not specify the looping period (n seconds), the

default is 3 seconds.

S Shows the secondary status only.

T Displays the status of the primary and a list of

active transactions.

W Shows the staus of the database after waiting for

clean log switching to complete, at which point it

also rings a bell.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 81 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Status

information

displayed

The status information given on each report line is:

Status Current state of the logging. This may be one of the

following:

• ACTIVE: In progress, initiated by TL-START.

• INACTIVE: Supported, but not in progress.

• SWITCH REQUESTED: A switch to a new

clean log has been requested, but not yet

actioned.

• SWITCH IN PROGRESS: In the process of

changing to a new clean log. It will remain in

this state until the old clean log is no longer

required.

• STOP IN PROGRESS: Writing of updates to

raw log is stopped, but committed

transactions and independent updates are still

being flushed to the clean log.

• STOPPED: Inactive, but still maintaining

images in the raw log until all committed

transactions and independent updates have

been flushed from the UNIX buffers to the

clean log.

• PASSIVE-RESTORING (secondary only): The

secondary database is being restored with

primary updates.

• ACTIVE-SECONDARY PAUSED: Logging to the

primary and secondary logs is active, but

updating of the secondary database has been

suspended by TL-SWITCH with the H option.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 82 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Clean log file Name of the clean log to which transactions are

currently being logged.
Recovery file Name of the previous clean log retained while in a

state of switching or switched.
Raw log items

waiting
The number of 'After' images and transaction

boundary images still held in the raw log.
Clean log items

logged
The number of 'After' images saved in the clean log.

Clean log in use The number of bytes currently stored in the clean

log.
Transactions open The number of transactions which are still active and

open in the raw log.
Database recovery

mode
The mode of recovery supported by the logging. The

status options are, FULL RECOVERY or NONE.
Time of last

status change
The time in hours:minutes and the date when

logging status was last changed.
Size of raw log The size of the raw log in bytes.

Raw log usage The proportion of the raw log currently filled with

images.
Maximum raw log

usage
The maximum proportion of the clean log filled

during the period of its use.
Post processor

status
Indicates the presence or absence of the post

processor.
TL-RESTORE file

and status
Displays the status of a full restore in progress.

Failsafe

configured as
Indicates whether PRIMARY or SECONDARY status is

displayed.
Failsafe status Current state of the failsafe operation. This may be

one of the following:

• ACTIVE: FailSafe logging has been activated

by TL-START on primary.

• INACTIVE: FailSafe logging has been

deactivated by TL-STOP on primary.

• IDLE: FailSafe operation is disabled.

8.19 TL--STOP

Purpose Used to perform a controlled close-down of FailSafe and disable logging.

Caution

Use of TL-STOP ends the current chain of clean logs and TL-START starts a new

chain. Hence, to maintain a continuous chain of logs for TL-RESTORE or TL-

REDUAL purposes, it is recommended that you use TL-SWITCH and not TL-

STOP/TL-START.

Command class Catalogued DATA/BASIC program.

Syntax TL-STOP

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 83 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Restrictions Use is restricted to SYSMAN on the primary database. TL-STOP can be

used only when all other users are logged off.

Comments There may be a condition when the close-down cannot be completed

because there are one or more transactions still in progress. An open

transaction may be caused, for example, by an absent operator leaving a

transaction open. You can use the TL-TRANSACTIONS command to see

which users are within transactions, and when the transactions were

started. This information may help with the decision to contact a user who

can then terminate the transaction with TRANSEND, or you can log off the

process, which will force a TRANSABORT.

8.19 TL--SWITCH

Purpose Used to switch clean logs while logging is enabled. It can also be used to

suspend update operations to the secondary database or close the

secondary database permanently, while maintaining the primary as a

standalone database.

Command class Catalogued DATA/BASIC program.

Syntax TL-SWITCH log-file {(options}

Syntax

elements

log-file The name of the primary clean log to switch to.

Options H Suspends the restore process which applies

updates to the secondary database.

 K Kills the secondary database.

Restrictions Use is restricted to SYSMAN on the primary database. Logging must be

enabled and the clean log named must be empty. The associated

secondary log is created or cleared automatically.

Comments The H option causes logging to switch to an empty clean log on both the

primary and the secondary and suspends the restore process from

updating the secondary. This allows the secondary database to be

temporarily stopped for backup purposes, while maintaining an

active primary database with logging to both primary and secondary logs.

Although secondary database operations are stopped, synchronisation is

not lost, as updates are still logged to the secondary log. The TL-

CONTINUE can be used to restart the restore processes which re-

synchronises the secondary with the primary and resumes full FailSafe

operation.

The K option disconnects the FailSafe link so that the secondary database

becomes idle. In this case synchronisation is lost. It must then be

recovered using TL-REDUAL as described in Chapter 6.

Section 8: TCL commands

RealityX FailSafe v3.1 Reference Manual v0.1 Page 84 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

8.20 TL--TRANSACTIONS

Purpose To display information about active transactions currently open on the

database.

Command class Catalogued DATA/BASIC program.

Syntax TL-TRANSACTIONS {(options}

Syntax

elements

L {n} Repeats (Loops) the TL-TRANSACTIONS

command every n seconds, where n is a

decimal, so that the screen is continually

refreshed and the active transactions

information updated. Enter CTRL+E or X to

terminate the loop and return to TCL. If you do

not specify the looping period (n seconds) in the

command line, the default is 3 seconds.

Restrictions Use is restricted to SYSMAN on the primary database.

Transaction

information

displayed

The information contained in each column is as follows:

• PORT: The port from which the transaction was started.

• USER ID: Identity of the user that started the transaction.

• LOCATION: The location from which the transaction was started.

• TRANSACTION STARTED: The time and date that the transaction

was started.

Section 9: Log files

RealityX FailSafe v3.1 Reference Manual v0.1 Page 85 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 9: Log files
This chapter describes the purpose and structure of three types of log file and a standard

RealityX file. These are:

• Clean log

• Reject log, default name TL-REJECT

• Error log, default name TL-ERRORS

• History file, default name TL-LIST

It describes how you can use ENGLISH to examine these logs and carry out a selective

recovery of items.

9.1 Overview

Reality X supports three types of log file on a database, each with the same file structure

and created in the database's clean log sub-directory. They are:

• Clean Log: Used to log committed transactions and independent updates applied

to the database. It stores the 'After' images and transaction boundary images. A

clean log is created using TL-CREATE-FILE.

• Error Log (TL-ERRORS): Used to log images of uncommitted transactions, still in

the raw log, which fail to be applied to the database when a system is re-booted

after a crash. The TL-ERRORS log is created automatically by TLSTART. The file

name TL-ERRORS is mandatory.

• Reject log (TL-REJECT): Used to log 'After' images which cannot be applied to the

database by a TL-RESTORE. The TL-REJECT log is created automatically by a TL-

RESTORE. TL-RESTORE with the L option allows you to specify an alternative

name for the reject log, instead of TL-REJECT.

In addition, to these three log files, RealityX supports a normal RealityX file

called:

• History File (TL-LIST): This file, as its name implies, contains history information

about images successfully applied to a database by a TL-RESTORE. TLLIST is

created automatically by a TL-RESTORE. TL-RESTORE with the L option allows

you to specify an alternative name for the file, instead of TL-LIST. The contents of

TL-LIST are described in this chapter.

The ENGLISH retrieval language is used to display and analyse the contents of the log

files.

9.2 Log files

The clean log, reject log (TL-REJECT) and error log (TL-ERRORS) files all have the same

structure, consisting of a dictionary with two data sections, one containing binary data

and one containing ASCII data which can be viewed by the user.

For example, CLOG1, has a dictionary, DICT CLOG1, with two data sections, CLOG1 and

CLOG1,BINARY.

Section 9: Log files

RealityX FailSafe v3.1 Reference Manual v0.1 Page 86 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• CLOG1: This is the default data section containing items with 'visible' ASCII

formatted attributes, extracted from the binary disk images, giving information

about the logged update held in the log file. It is this data section which is

accessed and viewed by the user using the dictionary name CLOG1, to list the log

statistics, for example, LIST CLOG1. The user view is strictly read-only. Writing to

this data section is not permitted.

• BINARY: This is a non-default data section containing binary items which

represent the logged images exactly as stored on disk. Items from this data

section are not normally viewed by the user. When necessary it is referenced as

CLOG1,BINARY.

The log dictionary contains D-pointers to the data sections, a set of attribute definition

items, which are used by ENGLISH to generate a meaningful listing of the visible log and

several macros to help in the production of useful listings. The attributes defined in the

visible log item are described below.

9.2.1 Log item format

Log item Format and description

item-id OFFSET. This is an ASCII representation of the hex offset of the

image in the binary file.

001

TYPE. The type of log image. This may be one of the following:

Start, Switch, Before, After, Commit and Pre-commit. The

Commit image is logged at 'Transaction end'. Before and Pre-

commit images are logged in the TL-ERRORS log only.

002

SERVICE. The RealityX service which generated the image. This

may be either REALITY File Services (RFS) which generates

update images and REALITY Transaction Services (RXS) which

generates transaction boundary images.

003 Reserved for future use.

004
DATE. The date when the image was first logged, stored in

internal format.

005
TIME. The time when the image was first logged, stored in

internal format.

006

RLOGSEQ. The transaction id which is the sequence number of

the transaction COMMIT image. All images in the committed

transaction have the same RLOGSEQ id as the COMMIT image.

Independent updates each have different ids.

007 CLOGSEQ. The sequence number of the image in the clean log.

008
PORT. The number of the port being used when the image was

logged.

009

RESULT. This is a failure code which will appear in an error log

image. It indicates the reason for the failure to restore the

update.

Clean log items where recovery has not been attempted or

where recovery has been successful contains a '0'.

You can use the perror at the UNIX shell to interpret the code

and find out the reason for the failure. The use of perror is

explained in a man page.

010
USER. The RealityX user id being used when the image was

logged.

Section 9: Log files

RealityX FailSafe v3.1 Reference Manual v0.1 Page 87 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Log item Format and description

011
ACCOUNT. The RealityX account id being used when the image

was logged.

012 FILENAME. The RealityX file for which the image was logged.

013

This is defined as one of three attributes:

• INFO. Information field from

TRANSTART/TRANSEND/TRANSABORT image.

• ITEM. The item id of the associated item, except

transaction boundaries.

• ITEMINFO. This combines the previous two attribute

definitions and can be used instead of them to display

both an information field from a TRANSTART/TRANSEND

image and an item-id from update images, as

appropriate.

014
OPERATION. The type of operation for which the image was

logged.

9.3 History file – TL-LIST

TL-LIST contains two items for each log restored, log and log.PORTS, each containing a

list of images which have been successfully applied to the database during a TL-

RESTORE. For example, TL-LIST contains the following two items corresponding to

CLOG1.

• CLOG1: It lists the item-ids of the last 'n' images successfully applied to the

database. The value of 'n' is set by TL-RESTORE using the H option, the default

being 2000. Refer to Chapter 8.

• CLOG1.PORTS: It lists item-ids for the last 20 images successfully applied to the

database from each port on the database. Lists for each port are concatenated in

the same item.

TL-LIST is the default named file which is automatically created by TL-RESTORE.

However, if you enter TL-RESTORE with the L option, you are prompted for a name for

the History File. You can then specify a different name. Refer to the description of

TLRESTORE in Chapter 8.

The ENGLISH verb NEW-GET-LIST is used to retrieve a list of items from TL-LIST for

display. This facility is described next in the section on 'Using ENGLISH to Examine Logs'.

9.4 Using ENGLISH to examine a log

The ENGLISH retrieval language can be used to examine a log and analyse the

information in the logged image items. Most of the facilities supported by ENGLISH can

be used. An exception is the SORT verb which must not be used as it rearranges the

order of images in the clean log. This affects the sequence in which images are restored

on a database leading to data corruption.

Refer to the ENGLISH Reference Manual for details on the ENGLISH facilities referred to

in this section.

Caution

You must not use the SORT verb to manipulate items in a clean log as this will cause incorrect

sequencing of images during a TL-RESTORE.

Section 9: Log files

RealityX FailSafe v3.1 Reference Manual v0.1 Page 88 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

9.4.1 Log item attributes

Log file information can be retrieved under 16 attribute names. They are:

• TYPE

• SERVICE

• DATE

• TIME

• RLOGSEQ

• CLOGSEQ

• PORT

• RESULT

• FILENAME

• ACCOUNT

• OPERATION

• USER

• ITEM

• ITEMINFO

• INFO

The definitions of these attributes are given earlier in this chapter under the description

of the log item format.

You can retrieve each piece of data stored in the log items using the LIST verb and by

specifying the attribute(s) required.

9.4.2 Macros

To save time typing you can define an ENGLISH macro to execute a predefined ENGLISH

statement and retrieve a predefined set of log item attributes for display on your screen.

Examples of these are the VIS and VISF macros provided on your installed database. VIS

is used to list the default attributes. LIST CLOG1 displays the same as LIST CLOG1 VIS.

VISF displays the RealityX File details for each clean log image in sequential order. If you

enter an ENGLISH statement of the type:

LIST CLOG1 VISF

ENGLISH displays a report like the following:

Section 9: Log files

RealityX FailSafe v3.1 Reference Manual v0.1 Page 89 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

9.5 Using TL-LIST

You can select one of the two item lists in TL-LIST using the ENGLISH verb NEW-GET-

LIST, then examine the associated images in the clean log using the LIST verb.

For example, enter:

NEW-GET-LIST TL-LIST CLOG1.PORTS

This retrieves the CLOG1.PORTS list item from TL-LIST. The system responds with,

160 ITEMS SELECTED

>

You then use the LIST verb to display some or all the selected items in the clean log

CLOG1. For example, enter,

LIST CLOG1 WITH USER = "SYSMAN"

This will then display details of updates made by SYSMAN and applied in the last 20

images from each active port on the database.

9.5.1 Selective recovery

The SELECT verb is used to choose a subset of items in the clean log in order to carry

out a selective recovery of the database.

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 90 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 10: Applications interface
This chapter describes the methods used to create, or modify, TCL, PROC, DATA/BASIC

and ALL applications for transactions. Execution of a transaction start, end, abort and

query are detailed for each application. An example of a DATA/BASIC program

containing transactions is also provided.

10.1 Introduction

10.1.1 Selective recovery

A transaction is defined by issuing a command to start the transaction followed by a

command to end it. Updates between the start and end of the transaction belong within

that transaction.

Note

An elementary introduction to the nature of transactions is given in Chapter 2.

Two commands are supported to mark out a completed transaction: 'transaction start'

and 'transaction end'. These may be issued from TCL, PROC, DATA/BASIC or ALL. It is

recommended as good programming practice that both commands are issued by the

same language, that is, TCL, PROC, DATA/BASIC or ALL, although, technically, this is not

necessary.

A 'transaction abort' command may be issued which will undo all of the updates

performed since the transaction start: again, the abort may be issued from TCL, PROC,

DATA/BASIC or ALL.

10.1.2 Optimum size of transaction

Transactions in general should be made as small as possible, to give maximum resilience

to the system (minimise the work lost in the event of a system failure) and minimum

impact on performance. Performance may be affected by large transactions, since during

a transaction the release of item locks is suspended, this may prevent other transactions

proceeding. Very large transactions also increase the possibility of deadly embraces (see

Glossary).

Note

The possibility of deadly embraces can be reduced by always processing the same set of files

and/or items in the same order.

10.1.3 Aborting or ending a transaction

When you LOGOFF or LOGTO another account whilst you are in a transaction, a message

a will be displayed giving you the option to abort or end the transaction.

If a port is logged off remotely whilst inside a transaction, no message is displayed and

the transaction is forced to abort.

10.1.4 Aids to update analysis

Transaction starts, ends and aborts may be given identity labels. This enables the

administrator to identify the following:

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 91 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Updates and complete transactions which have been restored or saved in the

clean log.

• Transactions which were started but not finished due to failure before transaction

end.

• Complete transactions and updates which were rejected when an attempt was

made to restore them, and the reason for rejection.

The administrator may then use this information to determine where to restart

applications following a restore, when updates were done and so on. These labels are

shown in the ITEM IDENTITY column of the standard listings of clean logs and TL-REJECT

files.

10.1.5 Item locking

This is a mechanism to prevent multiple processes accessing the same item at the same

time. Transaction Handling suspends the release of item locks set within transactions to

prevent interaction between transactions and other processes causing inconsistencies in

the database. Item locks set before the start of a transaction are not released at

transaction end. Also, once inside a transaction, Transaction Handling suspends item

locks set outside the transaction.

10.1.6 Avoid file creation/ deletion within a transaction

It is strongly recommended that you do not create or delete a file inside transaction

boundaries. If you execute a CREATE-FILE command inside a transaction, the file is not

committed to the database until transaction end. However, Transaction Handling is

unable to keep a lock on the file, which means that other processes can use the file

before it is committed.

For example:

1. Process A opens a transaction and executes a CREATE-FILE command.

2. Process B opens the file and begins creating items in the file via a DATA/BASIC

application.

3. Process A executes a TRANSABORT; the CREATE-FILE operation is rolled back

and the file space is returned to the system.

4. Process B is unaware of the roll-back and continues to write items to the space

where the file once was, but when the file is closed, the UNIX file is deleted.

10.2 TCL/PROC interface to transactions

The Transaction Handling commands which can be executed from TCL or PROC are

detailed in the following pages. These include:

• TRANSTART: This marks the start of a transaction.

• TRANSEND: This marks the end of a transaction.

• TRANSABORT: This undoes all updates performed by the current transaction.

• TRANSQUERY: This determines the transaction status of a port.

These commands can also be executed as statements in DATA/BASIC. These are

discussed later in the chapter.

10.3 TRANSTART verb

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 92 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Purpose TRANSTART is executed to mark the start of a transaction.

Syntax TRANSTART {transaction-information}

Syntax

elements

transaction-information Optionally specifies the text to be saved in the

TRANSTART item information which is logged. This

information can be useful when examining the item

in the clean log, or during a TL-RESTORE. By

making this parameter describe what you are doing

(for example, PAYEMPLOYEE-28090) it can be used

to identify a particular transaction or iteration of a

repetitive transaction. A space is used as a

delimiter.

Operation Initially, TRANSTART checks that the current process is not within a

transaction (transactions may not be nested) and that Transaction Logging

is enabled. If this is not the case, it displays an appropriate error message

and exits. Otherwise, it writes a TRANSTART item to the raw log.

Error messages Refer to Appendix A for descriptions of error messages.

10.4 TRANSEND verb

Purpose TRANSEND is executed to mark the end of a transaction and to 'commit'

(see Glossary) the updates performed by the transaction.

Syntax TRANSEND {transaction-information}

Syntax

elements

transaction-information Optionally specifies the text to be saved in the

TRANSTART item which is logged. This information

can be useful when examining the item in the clean

log, or during a TL-RESTORE. By making this

parameter describe what you are doing (for

example, PAYEMPLOYEE-28090) it can be used to

identify a particular transaction or iteration of a

repetitive transaction. A space is used as a

delimiter.

Operation Initially, TRANSEND tests whether a transaction is open. It then sets up a

TRANSEND image in the raw log. All item locks that were set during the

transaction are released and the transaction is committed.

Error messages Refer to Appendix A for descriptions of error messages.

10.4 TRANSABORT verb

Purpose TRANSABORT is executed to undo the updates performed inside the

current transaction and release all item locks set during the transaction.

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 93 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The item locks are released only after the TRANSABORT image has been

logged to the raw log.

Syntax TRANSABORT {transaction-information}

Syntax

elements

transaction-information Optionally specifies the text to be saved in a

TRANSABORT item. This information may be useful

when examining the TL-ERRORS log. TRANSABORT

images are not logged to the clean log during

normal logging operations.

Operation The undoing of updates inside a transaction is called roll-back. This is

executed by restoring the 'Before' images of all updates inside the aborted

transaction onto the database. The database is therefore 'rolled back' to its

pre-transaction consistent state. All the other ports on the system remain

active whilst this restore procedure is being carried out.

Error messages Refer to Appendix A for descriptions of error messages.

10.5 TRANSQUERY verb

Purpose This command is used to determine the transaction status of the port

currently in use. (Use TL-STATUS for status of other ports.)

Operation The port's transaction status is indicated by one of the following

messages:

• [CTL1151] Transaction Logging is not enabled

Transaction Handling is installed on the system but not enabled.

• [CTL1155] There is a transaction already active for this

process.

Transaction Handling is installed and the port performing the

TRANSQUERY is inside a transaction.

• [CTL1156] There is no currently active transaction for

this process.

Transaction Handling is installed on the system but the port

performing the TRANSQUERY is not inside a transaction.

10.6 DATA/BASIC interface to transactions

Like TCL and PROC, DATA/BASIC supports four Transaction Handling statements. Three

to mark transaction boundaries and one to monitor transaction status. These commands

are detailed in the pages following:

• TRANSTART

• TRANSEND

• TRANSABORT

• TRANSQUERY

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 94 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

More than one transaction may occur within a single DATA/BASIC program, or a single

transaction may span several CHAINed programs. However, transactions may not be

nested, that is, a TRANSTART may not be followed by another TRANSTART without an

intervening TRANSEND or TRANSABORT. This would cause a run-time error whereby the

ELSE clause in the TRANSTART statement would be executed.

Note

If Transaction Logging has not been installed and enabled, then the ELSE clause is

used in every case.

The function of item READ/WRITE statements and RELEASE statements is altered so that

item locks set within a transaction are not released until transaction-end (or transaction-

abort).

An example of a DATA/BASIC program using transactions is given later.

10.6.1 TRANSTART statement

Purpose Marks the start of a transaction and precedes the first READ/WRITE

operation on the database included in the transaction.

Syntax TRANSTART {transaction-information} [THEN statements| ELSE

statements]

Syntax

elements

transaction-information Optionally specifies additional text to be saved in

the 'transaction start' record. This information can

be useful when examining a clean log.

If you do not supply this parameter, transaction-

information comprises the filename and the item-

name containing the program performing the

transaction.

THEN statements Is a clause which specifies the statement(s) to be

executed if transaction-start is successful.

ELSE statements Is a clause which specifies the statement(s) to be

executed should the transaction-start fail (for

example, transaction is already active or

Transaction Logging is not enabled).

Examples of a

transaction

information

If this parameter contains text describing the purpose of the transaction, it

can be used to easily identify that particular transaction. For example,

TRANSTART ORDER ENTRY TRANSACTION ELSE GOTO 500

Alternatively, you can use variables to identify a particular iteration of a

repetitive transaction.

For example,

TRANSACTION.INFORMATION=ORDER:"-":CUSTOMER

TRANSTART TRANSACTION.INFORMATION ELSE GOTO 500

or

TRANSACTION.INFORMATION = "PAY-EMPLOYEE": PAYROLLNUM

TRANSTART TRANSACTION.INFORMATION ELSE GOTO 500

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 95 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

10.6.2 TRANSEND statement

Purpose Marks the end of a transaction and follows the last READ/WRITE operation

on the database included in the transaction.

Syntax TRANSEND {transaction-information} [THEN statements| ELSE

statements]

Syntax

elements

transaction-information Optionally specifies text to be saved in the

TRANSEND item which is logged. This information

can be useful when examining a clean log.

You can use literals or variables to identify a

transaction or iteration of a repetitive transaction.

(See description of TRANSTART statement.)

If you do not supply this parameter, transaction-

information comprises the filename and the item-

name containing the program performing the

transaction.

THEN statements Is a clause which specifies the statement(s) to be

executed if the transaction-end is successful.

ELSE statements Is a clause which specifies the statement(s) to be

executed should the transaction-end fail (for

example, no transaction is active or Transaction

Logging not enabled.)

10.6.3 TRANSABORT statement

Purpose This statement aborts the current transaction and undoes any updates to

the database performed by it.

Syntax TRANSABORT {transaction-information} [THEN statements| ELSE

statements]

Syntax

elements

transaction-information Optionally specifies text to be saved in the

'transaction abort' record. This information may be

useful when examining a TL-ERRORS item.

TRANSABORT is not logged to the clean log during

normal logging.

If you do not supply this parameter transaction-

information comprises the filename and the item-

name containing the program performing the

transaction.

THEN statements Is a clause which specifies the statement(s) to be

executed if statements transaction-abort is

successful.

ELSE statements Is a clause which specifies the statement(s) to be

executed should transaction-abort fail (for

example, no transaction is active) or Transaction

Logging not be enabled. This clause is mandatory if

you have not included a THEN clause.

Operation The undoing of updates inside a transaction is called roll-back. This is

executed by restoring the 'Before' images of all updates inside the aborted

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 96 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

transaction onto the database. The database is therefore 'rolled back' to its

pre-transaction consistent state. All the other ports on the system remain

active whilst this restore procedure is being carried out.

10.6.4 TRANSQUERY function

Purpose This function is used to determine the transaction status of the current

port. Alternative, statements can then be executed, depending on the

transaction status.

Syntax IF TRANSQUERY() [THEN statements | ELSE statements]

Operation The function TRANSQUERY() will evaluate to true (1) if the process is

inside a transaction, or to false (0) if the process is not inside a

transaction.

10.7 Example of transaction boundaries in a DATA/BASIC program

The following program illustrates the use of Transaction Handling commands in

DATA/BASIC and illustrates use of item locks:

PAGE 1 DATA/BASIC 15:36:30 15 MAY 1990

PROGRAM1

001 *VERSION 0001

002 *---*

003 * This program demonstrates the use of the Transaction*

004 * Handling commands and also some of the @(-n) *

005 * commands. *

006 *---*

007 * Copyright:McDonnell Douglas Information Systems 1989*

008 *---*

010 * Open all relevant files and do any necessary

011 initialisation

012 *

013 OPEN 'DATA1' TO DATA1 ELSE STOP 201, 'DATA1'

014 OPEN 'DATA2' TO DATA2 ELSE STOP 201, 'DATA2'

015 OPEN 'DATA3' TO DATA3 ELSE STOP 201, 'DATA3'

016 *

017 KEY = ''

018 RECORD= ''

*

*---

019 10 * This is the start of the main transaction loop

020 * It simply requests an item id from the user and

021 * then locks that item in each of three files.

022 * The program then prompts the user to enter data

023 * for each of the three files and updates the files

024 * as the data is entered (instead of doing all the

025 * updates at the end of the transaction).

026 * The user is allowed to abort the transaction at

027 * any input field by entering '/' which calls a

028 * transaction abort, automatically rolling back

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 97 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

029 * all of the updates which have taken place and

030 * also releases all of the locks previously set.

031 *---

032 *

033 CRT @(-1): ; * Clear the screen

034 *

035 CRT @(10,5): "Enter record key ": ; INPUT KEY

036 *

037 CRT @(-13) ; * Clear line 25

038 *

039 IF KEY = '' OR KEY = '/' THEN CRT @(-1): ; STOP

040 *

041 TRANSTART THEN

042 . *

043 . * The transaction is now in progress and the log

044 . * will contain a start entry for this port plus

045 . * the name of the program which started it.

046 . *

047 . READU RECORD FROM DATA1,KEY THEN

048 . .CRT @(-13): "Item '":KEY:"' exists in file

049 'DATA1'":@(-14):

050 . . SLEEP 1

051 . . GOTO 100 ; * Abort the transaction, it exists

052 . END

053 . *

054 . READU RECORD FROM DATA2,KEY THEN

055 . .CRT @(-13):"Item'":KEY:"' exists in file

056 'DATA2'":@(-14):

057 . . SLEEP 1

058 . . GOTO 100 ; * Abort the transaction, it exists

059 . END

060 . *

061 . READU RECORD FROM DATA3,KEY THEN

062 . .CRT @(-13):"Item '":KEY:"' exists in file

063 'DATA3'":@(-14):

064 . . SLEEP 1

065 . . GOTO 100 ; * Abort the transaction, it exists

066 . END

067 . *

068 . * All records are now locked and don't exist

069 . * Now get the data for each record and update them

070 . *

071 . *---

072 . CRT @(10,8): "Enter data for record 1": ; INPUT

073 RECORD

074 . *

075 . IF RECORD = '/' THEN GOTO 100 ; * Transaction abort

076 request.

077 . *

078 . WRITE RECORD ON DATA1,KEY; *File updated but lock

079 not released

080 . *---

081 . CRT @(10,10): "Enter data for record 2": ; INPUT

082 RECORD

083 . *

084 . IF RECORD = '/' THEN GOTO 100 ; * Transaction abort

085 request.

086 . *

087 . WRITE RECORD ON DATA2,KEY; *File updated but lock

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 98 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

088 not released

089 . *---

090 . CRT @(10,12): "Enter data for record 3": ; INPUT

091 RECORD

092 . *

093 . IF RECORD = '/' THEN GOTO 100 ; * Transaction abort

094 request.

095 . *

096 . WRITE RECORD ON DATA3,KEY; *File updated but lock

097 not released

098 . *---

099 . *All inputs and updates are complete so 'commit'

. * the transaction

. TRANSEND "Transaction completed - ITEM ID =

'":KEY:"'" THEN

. . *

. .CRT @(-13):"Transaction accepted and logged -Item

Id =

'":KEY:"'":@(-14):

. . GOTO 10 ; * Start another transaction

. . *

. END ELSE

. . *

. . *The ELSE clause will be taken for the following

reasons:-

. . * 1.If no TRANSTART command has previously been

executed.

. . * 2.If Transaction Logging has not been enabled

on the

100 * machine

101 . . *

102 . . GOTO 100 ; * Unable to commit the transaction so

103 attempt an

104 abort

105 . END

106 . *

107 END ELSE

108 . *

109 . * Unable to start a transaction so quit the program

110 . *This ELSE clause will be taken for the following

111 reasons

112 . * 1.If a transaction is already in progress

113 . * 2.If transaction Logging has not been enabled on

114 this

115 machine

116 . *

117 . CRT @(-13):"Unable to start a new transaction -

118 program

cancelled":@(-14):

. STOP

END

*

119 100 * Transaction abort routine

120 *

121 * Abort the current transaction incorporating some

122 text

123 * and the item id into the transaction log

124 *

125 TRANSABORT "Abort transaction - ID = '":KEY:"'" THEN

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 99 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

126 . *

127 . * Display a message on line 25

128 . *

129 . CRT @(-13):"Your transaction has been aborted":@(-

130 14):

131 . *

132 . GOTO 10 ; * Prompt for a new transaction start

133 . *

134 END ELSE ;* Cannot abort the transaction for some

135 reason

136 . *

137 . * The ELSE clause will be taken for the following

138 reasons:-

139 . * 1.If no TRANSACTION command has previously been

140 executed.

141 . * 2.If Transaction Logging has not been enabled on

142 the

143 . * machine

. *

. CRT @(-13):"Unable to abort the transaction -contact

your

. supervisor":@(-14):

. ABORT ; * EXIT COMPLETELY FROM ALL PROCESSING

END

END

10.8 ALL interface to transactions

In ALL, transactions can be defined at two levels:

• Function level, where a transaction consists of one or more complete functions,

OR

• Block level, where a transaction comprises one logical update, screen or report.

10.8.1 Function level transaction boundaries

In this case a transaction consists of one or more complete functions. Transaction

boundaries are defined via the function definition screen. An ALL function may be

specified as one of the following:

• A transaction on its own, that is, both the start and the end of a transaction.

• The start of a transaction.

• The end of a transaction.

An intermediate function within a transaction consisting of a chain of three or more

functions, or a function not within any transaction.

10.8.2 Function definition screen

The prompt given in the function definition screen is Transaction?. The screen appears

as follows:

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 100 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The responses to the Transaction? prompt are shown in the table below:

Response to TRANSACTION?

prompt

Type of function

S Start of a chain of functions together comprising a

transaction.

E End of a chain of functions together comprising a

transaction.

SE Start and end of a transaction: function comprises a

single transaction. (If the function is not one-time-

only, all passes through the function are part of the

one transaction).

null Intermediate function within a chain of functions

comprising a transaction or function not within any

transaction.

Where a function is defined on the transaction boundary, the entire function is part of

one transaction. If the function is both the start and end of the transaction, all file

updates from the time the function is entered to the time the function is closed are part

of one transaction.

Where a function is defined as only the start of the transaction it must link to another

function in that transaction.

Note

Having defined a transaction boundary at function level, you cannot then define transactions at

block level within that function.

10.8.3 Block level transaction boundaries

In this case, a transaction comprises one logical update, screen or report. When defining

transaction boundaries at block level, you must not make any response to the

Transaction? prompt on the function definition screen. Instead, you should define the

transaction at the function characteristics screen.

10.8.4 Function characteristics screen

The prompt given in the function characteristics screen is 'Trans?'. An update

characteristics screen appears as follows:

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 101 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Note

If you have used the Transaction? prompt on the function definition screen to define a

transaction boundary at function level, then your response to the Trans? prompt on the function

characteristics screen must be N.

When transaction boundaries are defined at block level, each iteration through the block

is one transaction. If you are using function level boundaries, transactions can cross

functions, but block level transactions must start and end in the same logical block. If

the block is one-time only, then the block is equivalent to one transaction. Where a block

is not one-time-only, there is a transaction for each primary record read in the block.

10.8.5 Non-paging screens

The transaction is opened before the first field is processed and is closed after the files

are written. The default logic is executed outside the transaction, so any 'CHAIN' or

'LINK' statements in this logic are outside the transaction boundaries. All other logic and

all nested screens are executed inside the transaction.

10.8.6 Paging screens

As with other blocks, in a paging screen there is one transaction for each primary record

read. These correspond to one or more lines on a paging screen, not to the entire

screen.

In Add or Change mode, the transaction boundaries are the same as for non-paging

screens, but in Insert or Delete mode an extra transaction is included. During Insert

mode on paging files, all the file items after the insert must be read and rewritten with a

new sequence number. This re-sequencing is treated as a transaction. Similarly, in

Delete mode, each record deleted is a transaction, with the transaction opened before

the file reads and closed following the file writes. Once a block of records is deleted, all

following records must be re-sequenced and this re-sequencing is treated as a separate

transaction.

10.8.7 Random paging updates

If a paging file is accessed randomly in any type of block, the file is re-sequenced when

records are deleted. In this case, the re-sequencing is included as part of the delete

transaction, it is not a transaction.

10.8.8 Subfiles

Transaction boundaries on a subfile are meaningless because the subfile is not actually

written until the master file is written. If a subfile is part of a transaction, the master file

must be part of the same transaction.

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 102 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

10.9 Identifying transactions

The name of the transaction can be supplied via the system variable @$TRVAR which

can be specified by a string of up to 50 characters placed in logic thus:

@$TRVAR = "Invoice No. 552"

The contents of this variable are written to the Transaction-Log at the start and end of

each transaction to enable the transactions to be easily identified. This information can

be used in several ways, to identify transactions on a log tape, to provide audit trail

information to identify complete and restored transactions or incomplete, rejected

transactions.

10.9.1 Where to set @$TRVAR

The Start Transaction command is issued before the first field in the transaction is

processed. @$TRVAR can therefore be set in the start of function logic, to name a

function level transaction or the first block-level transaction in a function. Subsequent

block-level transactions can be given different names by re- setting @$TRVAR within the

function logic.

10.9.2 Item locks in ALL

ALL locks all items accessed unless in look-up mode. Transaction Logging maintains

these locks until the end of a transaction. If a user's process is held up waiting for a lock

the message 'Waiting for Lock' is output to inform the user of the reason for the delay.

10.9.3 Aborting transactions

A transaction is aborted if:

• An attempt is made to start a new transaction before the current one has

completed.

• The &$CANCEL.TR flag is enabled at the end of the Logical Screen/Report/Update.

• A TRANSABORT is performed from TCL or DATA/BASIC.

10.9.4 Logging of files

Whenever you create a file in ALL, you are asked "Should this file be transaction

logged?". Enter Y(es) or N(o) as required.

10.9.5 The chain of command

If the control is passed from one function to another via the CHAIN command the status

of any on-going transaction is not affected. There is no automatic Abort issued and any

Transaction End defined for the function is not issued after the CHAIN command has

been carried out.

10.9.6 External calls

Using the LINK command to pass control outside a function is not allowed unless an

abort transaction has been issued by an ENABLE CANCEL.TR.

10.10 Notes on defining transactions in ALL

• Transactions cannot be defined on both function level and block level within one

function.

Section 10: Applications interface

RealityX FailSafe v3.1 Reference Manual v0.1 Page 103 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

• Transactions cannot be nested.

• Transactions must be kept as small as possible to avoid performance problems

caused by holding item locks for longer than necessary.

• The possibility of deadly embraces can be reduced by always processing the same

set of files in the same order.

Section 11: Appendix A: Error messages

RealityX FailSafe v3.1 Reference Manual v0.1 Page 104 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 11: Appendix A: Error messages
This appendix contains a list of error messages which may appear while running

Transaction Logging and provides suggestions as to what to do when each message is

displayed.

Error messages Description

CTL1000 An unrecognised error has occurred

Call support.

CTL1001

Unable to open file 'file-name'

File name does not exist. Re-enter with command

with correct file name.

CTL1002

Unable to read item 'item-id' from 'file-

name'

File name does not exist. Re-enter with command

with correct file name.

CTL1004
unable to create file 'file-name'

Call support.

CTL1005
Error 'code'

Call support.

CTL1006
System file 'file-name' exists

Use TL-CREATE-FILE again with the E option.

CTL1007

System file 'file-name' doesn't exists, don't

use (E) option.

Use TL-CREATE-FILE again without the E option.

CTL1008

Operation incomplete, aborted by user

You have pressed the break key during TL-RESTORE.

Re-execute TL-RESTORE.

CTL1009
An invalid option has been requested

Re-enter command with correct option.

CTL2000

There is a transaction already active for

this process

Issue a transaction end or abort before opening

another transaction.

CTL2001

There is no currently active transaction for

this process

Unless it is in response to a TRANSQUERY, it is

caused by an applications programming error. Re-

program with the necessary TRANSTART.

CTL2102

Start logging operation failed with code

'code'

Call support.

CTL2103

Stop logging operation failed with code

'code'

Call support

CTL2105

Get file information on file 'file-name'

failed

Check to see if physical file is missing. If so, re-create

UNIX file with the appropriate name.

CTL2106 File 'filename' is not a log file

Section 11: Appendix A: Error messages

RealityX FailSafe v3.1 Reference Manual v0.1 Page 105 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Error messages Description

You are trying to restore from a file which is not a

clean log or does not exist. Use a valid clean log

name.

CTL2107

Transaction logging is unsupported

Ensure that Transaction Logging is targeted on your

system and the system and your database are

configured correctly (using mklog) to support

Transaction Logging. Refer to Chapter 4.

CTL2108

Log file 'file-name' is not empty, use CLEAR-

FILE

Either use another log file which is empty or empty

the log file using CLEAR-FILE.

CTL2109

Logging is already active on 'log file name'

Either continue logging to the current clean log or re-

enter TL-START with a different empty log name.

CTL2111

This file is the active log

You cannot restore from an active clean log. Also,

after switching clean logs the recovery file, from

which you have just switched, remains active for 5

minutes.

CTL2112

You can't do this when logging is in a state

of switching/stopping

Wait until switching/stopping is complete. This takes

about 5 minutes.

CTL2113

Logging is already inactive or in a state of

becoming inactive

You have already executed a TL-STOP.

CTL2114

Logging state unknown - you have out of date

transaction verbs

Obtain the correct release of TL commands.

CTL2115

You can't do this when the secondary failsafe

system is paused

Use TL-CONTINUE to resynchronise failsafe before

repeating operation.

CTL2150

The restore operation has failed with code

'code' ('error message')

Call support.

CTL2200

This command must be run from the 'account-

name' account

Log to 'account-name' and re-run command.

CTL2201

This command can only be run when transaction

logging is active

Re-run the command after executing a TL-STOP.

CTL2202

This command cannot be run when transaction

logging is active

Re-run the command after executing a TL-START.

CTL2203

This command cannot be run when you are

inside a transaction

Wait for transaction end or abort transaction, then

retry.

CTL2204

You must have account privilege level of 2 to

execute this command

Log to an account with the required privileges then

re-try.

Section 11: Appendix A: Error messages

RealityX FailSafe v3.1 Reference Manual v0.1 Page 106 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Error messages Description

CTL2205

This command may only be used when no other

users are logged on.

There are in fact 'number' other users logged

on,

Use LISTU to see logged on users.

Either wait until all users are logged off or force all

users off using LOGOFF. You can use INHIBIT-

LOGONS to prevent more users from logging on.

CTL2206

You must specify a clean log file name with

this command

Re-run the command with a valid clean log name.

CTL2207

You must run TL-SET-LOG-STATUS before you can

start logging

You have not yet defined the logging status of the

database.

CTL2209

This command can only be run when transaction

logging is active

Execute TL-START, then reenter command.

CTL2210

This command can only be run when clean

logging is inactive

You cannot enter TL-START while logging is active.

CTL2211

This command can only be run on a primary or

a standalone system

You cannot enter TL-START on the secondary

database.

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 107 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 12: Appendix B: Installation of transaction
handling/logging
This appendix contains detailed examples of the procedures that you need to follow to

install Transaction Handling and Logging on the UMAX V and M88 systems.

12.1 Introduction

The installation of transaction logging for a particular release involves the following:

• Ensuring that the disk is dedicated to logging. All swap partitions and file systems

removed.

• Creating raw log and clean log partitions.

• Mounting the clean log file system.

• Initialising the raw log.

• Configuring the database with a clean log sub-directory.

Caution

For effective operation of transaction logging the raw and clean log partitions should be placed

on their own disk. They must not reside on the same disk as any data bases or swap partitions.

This appendix contains detailed examples illustrating how to create and initialise the

partitions for the raw log and clean log on both UMAX V and M88 systems.

The examples assumes that you have 8 disks, 0 to 7, and that disk 7 is to be set up for

the sole use of raw and clean logs. In this example disk 7 is currently used for a file

system called /user7 and constitutes part of virtual partition vp0. File system /user7 will

be removed and virtual partition vp0 will be redefined to exclude the physical partition

on disk 7.

Note

1. This is only an example. Your system configuration may be different.

2. Remember to save the contents of /user7 and vp0 if you wish to keep them.

3. The example contains some embedded comments, which are highlighted using italics.

12.2 Procedure for UMAX V systems

12.2.1 Removing swap partitions from log disk

The log disk must be dedicated to logging. If swap partitions are defined on the disk,

they from must be removed. The procedure is as follows:

1. Find out if there are any swap partitions on disk7.

$su

Password:

cd /etc

cat init.d/swap

USAGE="Usage:/etc/init.d/swap (start | stop)"

if [! -d /usr/bin]

then # /usr/not mounted ??

exit

fi

case "$1" in

'start')

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 108 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Add swap area described here

/etc/swap -a /dev/dsk/1s1 0 131820

/etc/swap -a /dev/dsk/7sl 0 131820 Yes there is
;;

'stop')

Don't bother deleting swap areas

;;

*)

echo ${USAGE}

exit 1

;;

esac

swap -d /dev/dsk/7s1 0 So remove it
swap -l

path dev swaplo blocks free

/dev/dsk/0s1 0,1 0 196608 177880

/dev/dsk/1s1 0,17 0 131816 113288

/dev/dsk/7s1 0,23 0 131816 113288

2. Repeat 'swap -l' until swap partition on 7s1 is disabled. This is indicated by it no

longer appearing on the swap -l output. On an idle system this may not take very

long.

swap -l

path dev swaplo blocks free

/dev/dsk/0s1 0,1 0 196608 177880

/dev/dsk/1s1 0,17 0 131816 113288

vi init.d/swap

3. Remove the line "/etc/swap -a /dev/dsk/7s1 0 131820" to prevent this

partition being used as swap space again.

12.2.2 Removing file systems from log disk

The log disk must also be cleared of any virtual partitions. The procedure is, as follows:

1. Find out if there are any virtual partitions which use disk7.

cat vptab

/dev/rdsk/vp0 16/dev/rdsk/2s5 /dev/rdsk/3s5 /dev/rdsk/7s5

Yes there is

2. Find out if there are any filing systems using disk 7.

df

/ (/dev/dsk/0s0): 458 blocks 4219 i-nodes

/tmp (/dev/dsk/1s4): 41874 blocks 8082 i-nodes

/usr (/dev/dsk/1s5): 11702 blocks 14615 i-nodes

/usr/tmp (/dev/dsk/1s5): 42712 blocks 8188 i-nodes

/user0 (/dev/dsk/0s6): 31906 blocks 50165 i-nodes

/user1 (/dev/dsk/1s6): 155162 blocks 52868 i-nodes

/user2 (/dev/dsk/2s4): 73978 blocks 53109 i-nodes

/user3 (/dev/dsk/3s4): 115594 blocks 57361 i-nodes

/user4 (/dev/dsk/4s4): 107478 blocks 58855 i-nodes

/user4a (/dev/dsk/4s6): 76868 blocks 47520 i-nodes

/logs (/dev/dsk/4s9): 8024 blocks 24569 i-nodes

/user5 (/dev/dsk/5s4): 225356 blocks 43550 i-nodes

/user6 (/dev/dsk/6s4): 160824 blocks 42053 i-nodes

/user7 (/dev/dsk/7s4): 23680 blocks 58334 i-nodes Yes there is

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 109 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

/usr/cora (/dev/dsk/vp0): 120434 blocks 53853 i-nodes Yes there is

3. Unmount the filing systems.

#umount /user7

#umount /usr/cora

4. Disable the offending virtual partition.

vpadmin -d /dev/rdsk/vp0

vpadmin

Virtual Inter No.

Partition leave Prt Size Real Partitions

/dev/rdsk/vp0 16 3 1759680 /dev/rdsk/2s5 /dev/rdsk/3s5

/dev/rdsk/7s5

5. Repeat the 'vpadmin' command until virtual partition vp0 is disabled. On an idle system
this may not take very long.

vi vptab

6. Remove the string /dev/rdsk/7s5 to exclude disk 7 from the definition of virtual

partition vp0. The line becomes:

/dev/rdsk/vp0 16 /dev/rdsk/2s5 /dev/rdsk/3s5

7. Remove file system name /user7 from fstab, as its virtual partition is to be

obliterated. File system /usr/cora on virtual partition vp0 is ok because the virtual

partition still exists, we’ve just reduced its size as follows:

#vi fstab

Remove line "/dev/dsk/7s4 /user7 BSD"

8. Remove mount point of the file system, the definition of which has just been

removed.

rmdir /user7

12.2.3 Defining the raw log and clean log partitions

1. Check disk 7 for partitions which may be in use but which aren't used for an

automatically mounted file system.

partdisk /dev/rdsk/7s3

Enter 'initialize', 'edit', '?' or 'quit' [e]: e

Current Partition Layout

Partition Offset Size Type Name

2 0 1173930 All all

3 0 780 Header header

15 1172340 1590 Diagnostic diagnostic

Partition 2, 'all', defines the whole accessible disk, all other partitions map onto some

part of partition 2. Partition 3 occupies the first 780 blocks, partition 15 occupies the

Note

Partitions 2 and 3 are always defined, 15 will usually be defined. So, we expect partitions 4 and

5 to be the only additional partitions. If there are any others you must determine their purpose

and ensure that they aren't used in the future.

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 110 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

last 1590. This leaves us 1171560 blocks to define the raw and clean log partitions.
Enter 'add', 'delete', 'rename', 'copy', 'view', 'geom', 'quit',

'?' [?]: add

Enter partition number: 4

Enter partition name: rawlog

Enter size of partition in sectors: 204800

205140 sectors makes partition size a multiple of cylinders

do you wish to use 205140 sectors instead?: yes

First unallocated space of this size at sector number 780.

Enter sector number of partition offset: 780

Is this a diagnostic partition?: no

Enter 'add', 'delete', 'rename' 'copy', 'view', 'geom', or'quit':

add

Enter partition number: 5

Enter partition name: clogs

Enter size of partition in sectors: 966420

966420 sectors makes partition size a multiple of cylinders

Do you wish to use 966420 sectors instead?: yes

first unallocated space of this size at sector number 205920

Enter sector number of partition offset: 205920

Is this a diagnostic partition?: no

Enter 'add', 'delete', 'rename', 'copy', 'view', 'geom', 'quit',

'?' [?]: view

Current Partition Layout

Partition Offset Size Type Name

2 0 1173930 All all

3 0 780 Header header

4 780 205140 Standard rawlog

5 205920 966420 Standard clogs

15 1172340 1590 Diagnostic diagnostic

Enter 'add', 'delete', 'rename', 'copy', 'view', 'geom', 'quit',

'?' [?]: quit

Enter 'y' to save changes: y

This completes the partitioning of the transaction logging disk.

2. Re-enable the virtual partition vp0.

vpadmin -e /dev/rdsk/vp0

vpadmin

Repeat vpadmin command until the virtual partition is shown enabled. On an idle

system this may not take very long.
vpadmin

Virtual Inter No.

Partition leave Prt Size Real Partitions

/dev/rdsk/vp0 16 3 1173120 /dev/rdsk/2s5 /dev/rdsk/3s5

12.2.4 Creating the clean log file system

1. Update fstab so that the new clogs file system is automatically mounted at

system initialisation.

#vi fstab

Add line to define the clogs filing system:
/dev/dsk/7s5 /clogs BSD

2. Make the clean log file system and remake the file system on virtual partition

vp0. Then mount them.

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 111 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

bsdmkfs /dev/dsk/7s5

bsdmkfs /dev/dsk/vp0

mkdir /clogs Defines the mount point for clogs file system

chmod +rw /clogs Allows all users read/write access to the clean log directory

chmod +rw /dev/rdsk/7s4 Allows all users access to raw log partition
mount /usr/cora

mount /clogs

12.2.5 Initialising the raw log

Lastly initialise the raw log for the release, as follows:

REALROOT=/usr/realman/3.1X X being the rev number
export REALROOT

cd $REALROOT/bin

./mklog -r /dev/rdsk/7s4 $REALROOT/bin 7s4 is what we defined with

exit partdisk above for the rawlog

$

12.2.6 Configuring a database for logging

After a database has been created, it may be configured to use transaction

handling/logging with the following command:

$ mklog <clean_log_directory> <data_base_path> { -c subdir }

For example:

$ mklog /clog /usr/jones/dbase1

Creates a clean log sub-directory 'dbase1' in clean log directory '/clog' and updates the

database 'dbase1' configuration file to reference this sub-directory.

To use a different name for the clean log sub-directory, the '-c' option should be used:

For example:

$ mklog /clog /usr/jones/dbase -c jones_clog

This does the same as the previous example, but instead names the clean log sub-

directory 'jones_clog'.

Once a database has been configured, the system manager can log onto the database

and enable logging using the TCL commands:

:TL-CREATE-FILE cleanlog-name

:TL-START cleanlog-name

12.3 Procedure for M88 systems

This example is for one of the larger deskside M88 machines. On the smaller desktop

machines, the disk controller is on the motherboard and so the disk partitions will

typically be named /dev/dsk/m187_000s7.

Caution

Ensure that you identify the correct partition, otherwise a valid file system may be corrupted.

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 112 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

The log disk must be dedicated to logging. If swap partitions are defined on the disk,

they must be removed. The procedure is as follows:

1. Find out if there are any swap partitions on disk 7.

$su

Password:

swap -l

path dev swaplo blocks free

/dev/dsk/m328_000s ll6,1 1 255992 255992

/dev/dsk/m328_007s ll6,16 0 32768 32768 Yes there is.

swap -d /dev/dsk/m328_007s1 0 To remove it.

2. Repeat 'swap -l' until swap partition on 7sl is disabled, until it no longer appears

on the 'swap -l' output. On an idle system this should not take very long.

swap -l

path dev swaplo blocks free

/dev/dsk/m328_000sl ll6,l 1 255992 255992

3. Edit the /etc/init.d/rc2 file to ensure this partition is not enabled as swap again.

cd /etc/init.d

vi rc2

"Run Commands" executed when the system is changing to init

state2,

traditionally called "multi-user".

umask 022

. /etc/TIMEZONE

Pickup start-up packages for mounts, daemons, services, etc.
set 'who -r'

if [$9 = "S"]

then

stty sane tab3 2>/dev/null

echo 'The system is coming up. Please wait.'

BOOT=yes

if [-f /etc/rc.d/PRESERVE] # historical segment for

vi and ex

then

mv /etc/rc.d/PRESERVE/etc/init.d

ln /etc/init.d/PRESERVE/etc/rc2.d/SO2PRESERVE

fi

elif [$7 = "2"]

then

echo 'Changing to state 2.'

if [-d /etc/rc2.d]

then

for f in /etc/rc2.d/K*

{

if [-s ${f}]

then

/bin/sh ${f} stop

fi

}

fi

fi

if [-d /etc/rc2.d]

then

for f in /etc/rc2.d/S*

{

if [-s ${f}]

then

/bin/sh ${f} start

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 113 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

fi

}

Fi

if ["${BOOT}"="yes"]

then

stty sane 2>/dev/null

fi

if ["${BOOT}"="yes" -a -d /etc/rc.d]

then

for f in 'ls /etc/rc.d'

{

if [! -s /etc/init.d/${f}]

then

/bin/sh /etc/rc.d/${f}

fi

}

fi

if ["${BOOT}"="yes" -a $7="2"]

then

echo 'The system is ready.'

elif [$7="2"]

then

echo 'Change to state 2 has been completed.'

fi

/etc/swap -a /dev/dsk/m328_001s0 0 32768

/etc/swap -a /dev/dsk/m328_007s1 0 32768

4. Remove the line '/etc/swap -a /dev/dsk/m328-007sl 032768' to prevent this

partition being used for swap area again.

12.4 Removing file systems from log disk

The log disk must also be cleared of any virtual partitions. The procedure is as follows:

1. Find out if there are any virtual partitions which use disk 7, by looking in the

/etc/vdsk.conf file.

$ cat /etc/vdsk.conf

NAME
vdsk.conf - Virtual Disk Configuration file

DESCRIPTION

Each line defines a specified Virtual Device.

The first device name is the Virtual Device configured with

white space separated list of the physical devices specified

after the virtual device name.

The optional size of the physical device can be specified

after the physical device name separated by a colon.

Each Virtual Device configuration is separated

from the next by a newline.

Lines can be continued by the backslash character before

the newline character.

EXAMPLE

/dev/dsk/vdsk0 /dev/dsk/m328_000sl:10000 /d v/dsk/m328_001sl:10000

/dev/dsk/vdsk1 /dev/dsk/m328_100sl /dev/dsk/m328_101sl \

/dev/dsk/m328_110sl /dev/dsk/m328_lllsl

/dev/dsk/vdsk0 /dev/dsk/m328_00s4 /dev/dsk/m328_007s2 Yes there is

2. Find out if there are any filing systems using this virtual partition.

df

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 114 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

/ (/dev/dsk/m328_000s0): 25080 blocks 5962 i-nodes

/usr (/dev/usr): 200596 blocks 53317 i-nodes

/real (/dev/dsk/m328 000s3): 132428 blocks 37270 i-nodes

/user7 (/dev/dsk/7s4): 23680 blocks 58334 i-nodes

/usr/cora (/dev/dsk/vdsk0: 1867608 blocks 65190 i-nodes Yes there is

Caution

The following operations will obliterate /user7 and reduce the size of /usr/cora (and initialise it),

if necessary, save these filestores before continuing.

3. Unmount the filing systems.

umount /user7

umount /usr/cora

4. Edit the vdsk.conf file to remove the partition on disk7 from the virtual partition.

vi /etc/vdsk.conf

5. Change the line.

/dev/dsk/vdsk0 /dev/dsk/m328-000s4 /dev/dsk/m328-007s2

to

/dev/dsk/vdsk0 /dev/dsk/m328-000s4

6. Remove the file system name /user7 from /etc/fstab because we are going to

obliterate it. File system /usr/cora on virtual partition vdsk0 is ok because the

virtual partition still exists, we've just reduced its size.

vi /etc/fstab

/dev/dsk/m328_000s3 /real

/dev/dsk/vdsk0 /usr/cora

/dev/dsk/m328_007s4 /user7

7. Remove the line /dev/dsk/m328_007s4 /user7.

8. Remove the mount point of the file system.

rmdir /user7

9. Check all partitions defined for disk 7 and ensure they are freed off in one of the

above ways before repartitioning the disk.

Note

Partition 7 is used to access the whole disk and will always be defined.

12.5 Defining the raw log and clean log partitions

Repartition disk 7 using msledit to define a rawlog and a cleanlog partition. The following

is an example of a msledit session:

msledit /dev/rdsk/m328_007s7

slice offset sl size fs size fsname vol-id info

0 648 32768 0 1h8

1 33416 1994149 1994148 1h8

2 0 0 0 1h8

3 0 0 0 1h8

4 0 0 0 1h8

5 0 0 0 1h8

Section 12: Appendix B: Installation of
transaction handling/logging

RealityX FailSafe v3.1 Reference Manual v0.1 Page 115 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

6 0 0 0 1h8

8 0 0 0 1h8

9 0 0 0 1h8

10 0 0 0 1h8

11 0 0 0 1h8

12 0 0 0 1h8

13 0 0 0 1h8

14 0 0 0 1h8

15 0 0 0 1h8

7 0 2027565 0 1h8

slice 0> offset: 648 Enter return to keep.

slice 0> slice size: 32768 1800000 this value.

slice 0> filesystem size: 1800000 Enter size for clean

slice 0> filesystem name: swap clean log partition.
slice 0> vol-id name: R32

slice 0> filesystem information: 1h8

slice 1> offset: 1800648 Calculate new offset

slice 1> slice size: 1994149 225916 Enter raw log size.

slice 1> filesystem size: 0 Enter 0 to inhibit

slice 1> filesystem name: /user0 raw the file system

slice 1> vol-id name: R32 build.
slice 1> filesystem information: 1h8

slice 2> offset: 0 w Enter to write the

new config away

'/dev/rdsk/m328_00s7' written

slice 2> slice size: 0 q

msledit will now automatically rebuild any filesystems in this case, quit.

mkfslk: /dev/rdsk/m328_007s

(DEL if wrong)

bytes per logical block=1024

total logical blocks=41020

total inodes=10240

Space reservation: 10% (4102 logical blocks)

cluster size=8

mkfslk: Available blocks=40377

This completes the partitioning of the transaction logging disk.

Update fstab so that the new clean log filing system is automatically mounted when the

system is booted.

New offset = Previous offset + Previous slice size.

For example, in the previous example the new offset for slice 1

= Previous offset (slice 0) + Previous slice size (slice 0)

= 648 + 1800000

= 1800648

Note

When using msledit it is your responsibility to calculate the correct offsets. msledit performs no

validation to ensure that partitions do not overlap.

Section 13: Glossary

RealityX FailSafe v3.1 Reference Manual v0.1 Page 116 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Section 13: Glossary

Glossary terms Definition

After Image Defines the item update and is used to recover the updated item in

the event of a system/database failure.

ALL Application Language Liberator.

Before Image

Defines how the updated item is restored to its original value and is

used to 'roll-back' the associated update to its original value, if the

system/database fails in mid-transaction.

Clean Log
A file containing a log of changed items, other updates, transaction

start/end and other records.

Commit

Permanently update the database with updates made during a

transaction. (At any point prior to commitment, all updates

belonging to the transaction may be undone.)

Deadly

Embrace

A condition which arises when two or more processes active at the

same time become suspended while competing to lock the same set

of items or other resources.

Dirty Read

A situation where transaction T1 updates an item which is then

read by transaction T2, and T1 aborts, causing all its updates to be

undone. T2 will have read a non-existent record.

'Hard' System

Failure

Any hardware or software fault which causes the database to

become corrupted.

Hit Process A process which terminates abnormally (for example, crashes) or is

killed.

Image

A set of information which collectively defines an operation for an

application. For example, an item update is logged as an 'After

image'. this may be passed back to Reality X to perform the

associated update and restore it on the database. The structure of

the image is such that it can be transferred within Reality X without

the contents needing to be known.

Item Locking
A mechanism to prevent multiple processes attempting to access

the same item at the same time.

Logging
The process which takes data relating to changes to the database

and writes them to a clean log.

Lost Update

A situation where transaction T1 updates an item which has

previously been updated, but not committed, by transaction T2,

and T2 is aborted. The update performed by T1 is then also lost.

Primary

Database

The active database in a FailSafe pair which is currently logged on

to by users.

Raw Log

A central repository in a raw disk partition which holds the recently

logged images of updates from all databases on the system.

Images are held in a circular queue until their transaction has been

committed, after which the 'After' images are transferred to a clean

log.

Rolled Back

All updates since the start of a transaction are deleted by restoring

the 'before' image to the database, maintaining it in a consistent

and predictable state.

Secondary

Database

A database in a FailSafe pair which currently operates as the

standby. It cannot be logged on to.

Transaction
A group of updates or other changes to the database that are

interrelated such that if one update is committed then all updates

Section 13: Glossary

RealityX FailSafe v3.1 Reference Manual v0.1 Page 117 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

Glossary terms Definition

within the group should also be committed to maintain a consistent

database.

Unrepeatable

Read

A situation where transaction T1 reads an item which is then

updated and committed by transaction T2. T1 then re-reads,

definition the same item and sees two different committed values.

TIPH Process
Terminal Independent Process Handler process - one which does

not have a terminal associated with it.

Section 13: Glossary

RealityX FailSafe v3.1 Reference Manual v0.1 Page 118 of 118

COMMERCIAL IN CONFIDENCE

COMMERCIAL IN CONFIDENCE

