
Reality
V10.0

Differences Supplement



  

All trademarks including but not limited to brand names, logos and product names referred to in this document are trademarks or 
registered trademarks of Northgate Information Solutions UK Limited (Northgate) or where appropriate a third party. 

This document is protected by laws in England and other countries. Unauthorised use, transmission, reproduction, distribution or storage 
in any form or by any means in whole or in part is prohibited unless expressly authorised in writing by Northgate. In the event of any such 
violations or attempted violations of this notice, Northgate reserves all rights it has in contract and in law, including without limitation, the 
right to terminate the contract without notice. 

© Copyright Northgate Information Solutions UK Limited, 2003. 

Document No. UM70006928AR1 
September 2003 

Northgate Information Solutions UK Limited 
Peoplebuilding 2 
Peoplebuilding Estate 
Maylands Avenue 
Hemel Hempstead 
Herts 
HP2 4NW 

Tel: +44 (0)1442 232424 
Fax: +44 (0)1442 256454 

www.northgate-is.com 

  



Reality V10.0 Differences Supplement Contents-1

Contents

Chapter 1 About this Manual

Purpose of this Manual.....................................................................................1-2
Contents ...................................................................................................1-2
Related Documents ..................................................................................1-2

Conventions......................................................................................................1-3
User Comments................................................................................................1-5

Chapter 2 New Features in Reality V10.0

GUI Administration ...........................................................................................2-2
Foreign Database Support ...............................................................................2-3
MultiValue Compatibility ...................................................................................2-4

File Triggers..............................................................................................2-4
TCP Connections in DataBasic ................................................................2-5
Pseudo Floppy..........................................................................................2-5
Additional ACCOUNT-RESTORE Options...............................................2-5
SYSTEM Statement..................................................................................2-5
SP-ASSIGN ..............................................................................................2-5

Rapid Recovery File System ............................................................................2-7
Compressed Tape Image.................................................................................2-8
Support for Distributed Transactions under MTS/COM+ .................................2-9
Other New Features .........................................................................................2-10

Large Databases ......................................................................................2-10
Networking................................................................................................2-10
RealEdit ....................................................................................................2-10

Chapter 3 GUI Administration

GUI Administration ...........................................................................................3-2
Tree Structure...........................................................................................3-3
Features....................................................................................................3-4
Logging In .................................................................................................3-5
Setting Up and Maintaining Databases ....................................................3-5
Backup and Restore .................................................................................3-5



Contents

Contents-2 Reality V10.0 Differences Supplement

Users ........................................................................................................ 3-6
Security Profiles ....................................................................................... 3-6

Chapter 4 Foreign Database Support

Summary of Reality File Types........................................................................ 4-2
LISTFILES................................................................................................ 4-3

Foreign Database Files (Reality-specific Storage Format).............................. 4-6
File Definition Item ................................................................................... 4-6
FDB-CLEAR............................................................................................. 4-9
FDB-SET.................................................................................................. 4-10
FDB-SHOW.............................................................................................. 4-11
Saving and Restoring............................................................................... 4-11

SQL View Files ................................................................................................ 4-12
SQL-VIEW................................................................................................ 4-12

Chapter 5 MultiValue Compatibility

File Triggers ..................................................................................................... 5-2
How to Write a Trigger Routine................................................................ 5-2
Debugging Triggers.................................................................................. 5-4
How to Associate a Trigger with a File..................................................... 5-5
Commands that might run Triggers ......................................................... 5-7
Examples ................................................................................................. 5-8
Triggers Dos and Don’ts .......................................................................... 5-10

TCP Connections in DataBasic........................................................................ 5-12
Example Programs................................................................................... 5-12

Pseudo Floppy Support ................................................................................... 5-22
SP-ASSIGN Enhancements ............................................................................ 5-23
Additional ACCOUNT-RESTORE Options ...................................................... 5-24
TCL Commands............................................................................................... 5-25

CREATE-TRIGGER................................................................................. 5-25
DELETE-TRIGGER.................................................................................. 5-26
FDISCTOTAPE ........................................................................................ 5-26
LIST-TRIGGERS...................................................................................... 5-28
TAPETOFDISC ........................................................................................ 5-30



Contents

Reality V10.0 Differences Supplement Contents-3

DataBasic Statements and Functions ..............................................................5-32
ACCEPT Statement..................................................................................5-32
CONNECT Statement...............................................................................5-37

Debugger Commands ......................................................................................5-42
@ ..............................................................................................................5-42
M...............................................................................................................5-43
WF ............................................................................................................5-43
WS ............................................................................................................5-44

Chapter 6 Rapid Recovery File System

Description of Rapid Recovery.........................................................................6-2
What is Rapid Recovery? .........................................................................6-2
How Rapid Recovery Works.....................................................................6-2

Configuring a Database for Rapid Recovery....................................................6-4
Recovery Procedure.........................................................................................6-6

Shadow Databases...................................................................................6-7
Actions Following Rapid Recovery ...........................................................6-7

Chapter 7 Compressed Tape Image

Tape Images.....................................................................................................7-2
Data Compression ....................................................................................7-2

Chapter 8 Support for Distributed Transactions under MTS/COM+

Distributed Transactions...................................................................................8-2
MDTC Recovery Process.................................................................................8-5

rxaserver Command .................................................................................8-6

Index

List of Figures

Figure 6-1. Transaction Logging Configuration and Setup Menu ...............6-4
Figure 8-1. COM+ Distributed Transactions................................................8-3



 1-1

Chapter 1

About this Manual

This chapter describes the different sections of this manual and any

conventions used.



Purpose of this Manual

1-2 Reality V10.0 Differences Supplement

Purpose of this Manual

This manual summarises the differences seen by users upgrading from Reality V9.1 to
V10.0.

Contents
Chapter 1, About this Manual, describes the different sections of the manual and any
conventions used.

Chapter 2, New Features in Reality V10.0, summarises the features that have been
added in Reality V10.0 and describes in detail those features that are not covered
elsewhere in this manual.

Chapter 3, Administration Tool, describes the GUI Administration Tool. This allows
many administrative tasks to be carried out through a simple-to-use graphical interface.

Chapter 4, Foreign Database Support, describes how Reality can access data held on
SQL-based databases.

Chapter 5, MultiValue Migration, describes new features in Reality that have been
added to improve compatibility with other MultiValue system.

Chapter 6, Rapid Recovery File System, describes an additional resilience option that
logs all changes to a database's structure, so that it is possible to return a database to a
usable state within minutes of restarting after a system failure.

Chapter 7, Compressed Tape Image, describes how you can specify a compression
level for data saved in a tape image.

Chapter 8, Support for Distributed Transactions under MTS/COM+, describes how
Reality V10.0 provides support for distributed transactions through the ODBC and XA
interfaces. It also explains the recovery procedures required when using distributed
transactions.

Related Documents
Reality on-line documentation.

On-line help for Reality GUI Administration Tool.

On-line help for RealEdit.



Conventions

About this Manual 1-3

Conventions

The following conventions are used in this manual:

Text Bold text shown in this typeface is used to indicate input
which must be typed at the terminal.

Text Text shown in this typeface is used to show text that is
output to the screen.

Bold text Bold text in syntax descriptions represents characters
typed exactly as shown. For example

WHO

Text Characters or words in italics indicate parameters which
must be supplied by the user. For example in

LIST file-name

the parameter file-name is italicized to indicate that you must supply
the name of the actual file defined on your system.

Italic text is also used for titles of documents referred to by this
document.

{ } Braces enclose options and optional parameters. For
example in

BLIST {DICT} file-name item-id {(options}

The word DICT can optionally be typed to specify the dictionary of
the file.

file-name and item-id must be supplied.

One or more single-letter options can be included, as defined for the
command; these must be preceded by an open parenthesis, can be
given in any order, and are not separated by spaces. Any number of
options can be used except where specified in text.

[ param |
param ]

Parameters shown separated by vertical lines within
square brackets in syntax descriptions indicate that at
least one of these parameters must be selected. For
instance,

[THEN statements | ELSE statements]

indicates that either a THEN clause or an ELSE clause must be
included (or both).

... In syntax descriptions, indicates that the parameters
preceding can be repeated as many times as necessary.

SMALL
CAPITALS

Small capitals are used for the names of keys such as
RETURN.



Conventions

1-4 Reality V10.0 Differences Supplement

CTRL+X Two (or more) key names joined by a plus sign (+)
indicate a combination of keys, where the first key(s)
must be held down while the second (or last) is pressed.
For example, CTRL+X indicates that the CTRL key must
be held down while the X key is pressed.

Enter To enter means to type text then press RETURN. For
instance, 'Enter the WHO command' means type WHO,
then press RETURN.

In general, the RETURN key (shown as ENTER or ↵ on some
keyboards) must be used to complete all terminal input unless
otherwise specified.

Press Press single key or key combination, but do not press
RETURN afterwards.

X'nn' This denotes a hexadecimal value.



User Comments

About this Manual 1-5

User Comments

A Comment Sheet is included at the front of this manual. If you find any errors or have
any suggestions for improvements in the manual please complete and return the form. If
it has already been used then send your comments to the Technical Publications
Manager at the address on the title page, or email techpubs@northgate-is.com.



 2-1

Chapter 2

New Features in Reality V10.0

This chapter summarises the features that have been added in Reality V10.0.



GUI Administration

2-2 Reality V10.0 Differences Supplement

GUI Administration

GUI Administration is a tool providing a Graphical User Interface for easy routine
administration of the system. Via a tree-structure the user is able to:

• Set up and maintain databases including:

Security profiles.

Users.

Backup & restore.

• Administer the system

Add/remove system users.

Server administration.

Thread management.

Set up and administer user access to databases though the GUI Administration
tool.

The tasks replace and supplement most of those available to the system administrator at
TCL.

The interface runs on a client and allows different systems to be accessed via a tree
structure to enable administrative tasks to be performed on Reality databases and their
environments. It consists of a two-pane screen with the left-hand pane containing the
tree structure representing the systems and their Reality databases, and the right hand
pane containing tabbed sub-panes whose contents reflect the selected tree node.
Tooltips are displayed when hovering over most fields but if more information is needed
then tab-specific help can be displayed below the panes.

The GUI Administration Tool is described in greater detail in Chapter 3.



Foreign Database Support

New Features in Reality V10.0 2-3

Foreign Database Support

This feature provides Reality with access to data held on SQL-based foreign databases
(currently Oracle or SQL Server). There are two ways of doing this, implemented as new
Reality file types:

• Reality-specific storage format. In this format, the foreign database is set up to
emulate Reality files, thus allowing Reality applications to store their data in the
foreign database. The Reality account is set up in a local database, with some or all
of the files held on a remote foreign database. The file definition item contains
details of the file location.

A new verb, FDB-SET, is used to change the way in which the CREATE-FILE verb
operates. Following execution of FDB-SET; subsequent CREATE-FILE operations
take place within the specified foreign database. Subsequent restore operations will
restore files onto this foreign database. CREATE-FILE and the restore commands
work in this way until FDB-CLEAR is executed. The verb FDB-SHOW lets you view
the current foreign database setting.

• Data exchange storage format (SQL-VIEW). This provides Reality with a view of
data held in the foreign database. The data remains in the foreign database format
and therefore only limited access is possible from Reality.

Foreign database support requires a working ODBC installation, appropriate ODBC
driver(s) and Data Source Definition(s) on the Reality system.

Foreign database support is described in greater detail in Chapter 4.



MultiValue Compatibility

2-4 Reality V10.0 Differences Supplement

MultiValue Compatibility

Reality V10.0 has been further enhanced to improve compatibility with other MultiValue
systems. The new features are summarised here and described in greater detail in
Chapter 5.

File Triggers
This feature allows the user to specify a DataBasic subroutine that will run automatically
before a file item is written or deleted. A file trigger can be set to run before or after an
item is written and before or after an item is deleted.

• Triggers that run before file operations are mainly used to validate the attempted
change to the database against user-defined constraints, or “business rules”, and
allow the change only if the constraint is satisfied.

• Triggers that run after file operations are normally used to create audit trails and
other transaction logs.

• All types of trigger can be used to create relationships between files, to ensure that
whenever one file is updated, another related file is also updated.

The components of the file triggers feature are as follows:

• A new DataBasic function, ACCESS, can be called from within a trigger subroutine.
It returns information relating to the trigger, the file with which it is associated and
the item being written or deleted.

• New debugger commands @*, WF, WF* and WS and additional options to the SET-
OPTION command make it possible to debug triggers. They also make it easier to
debug DataBasic programs called from PERFORM statement and Procs.

• New TCL verbs: CREATE-TRIGGER, DELETE-TRIGGER, LIST-TRIGGERS. The
first of these allows you to associate a trigger subroutine with a Reality file and to
specify whether it will run when an item is written or deleted and whether it will run
before or after this file operation. The other two allow you to delete file trigger
associations and to list the triggers associated with a file.

For more details, refer to File Triggers in the Programming in DataBasic section of the
DataBasic Reference Manual.



MultiValue Compatibility

New Features in Reality V10.0 2-5

TCP Connections in DataBasic
This feature allows DataBasic programs to connect to and accept connections from
remote systems using raw TCP instead of DDA. This allows connections between
Reality and many different types of system; for example:

• other Reality systems;

• web, ftp, telnet and time servers;

• SMTP and POP3 email servers;

• networked applications (written in Java, for example);

• other MultiValue systems that support raw TCP;

• XML applications;

• SOAP processes (using XML technology).

For details, refer to the descriptions of the DataBasic CONNECT and ACCEPT
statements.

Pseudo Floppy
The format used for Reality tape images is different to the pseudo-floppy (.vtf) format
used by other MultiValue systems. Two new verbs, FDISCTOTAPE and TAPETOFDISC,
allow you to transfer data between Reality and other MultiValue systems by converting
Reality tape images into MultiValue pseudo-floppy images and vice versa.

Additional ACCOUNT-RESTORE Options
Two additional ACCOUNT-RESTORE options are provided to simplify restoring accounts
onto systems with a frame size smaller or larger than the original.

SYSTEM Statement
This new DataBasic statement provides an alternative to using the ASSIGN statement
for changing system elements whose values can be retrieved using the SYSTEM
function. Refer to the DataBasic Reference Manual for details.

SP-ASSIGN
By default, the Reality SP-ASSIGN command will close any open print jobs. This
behaviour can be changed by calling the SET-OPTION command with the SPASSIGN



MultiValue Compatibility

2-6 Reality V10.0 Differences Supplement

option, so that open print jobs will only be closed if SP-ASSIGN is called with no
parameters.



Rapid Recovery File System

New Features in Reality V10.0 2-7

Rapid Recovery File System

This feature provides an additional resilience option. When a database is configured for
Rapid Recovery, all changes to the database's structure are logged so that it is possible
to return the database to a usable state within minutes of restarting after a system
failure. There is no need to restore the latest backup from tape. Transaction logs can
then be rolled forward and the database brought back into use.

Note: This feature is only available on partition databases. It is therefore not available
on some existing UNIX databases.

The Rapid Recovery file system is described in greater detail in Chapter 6.



Compressed Tape Image

2-8 Reality V10.0 Differences Supplement

Compressed Tape Image

This feature allows Reality data to be saved to tape in compressed format, with a choice
of compression levels.

The required compression level can be specified in three ways:

1. By setting a database configuration parameter.

2. By setting an operating system environment variable. This overrides any database
configuration parameter settings.

3. By modifying the path to the tape image. This can be done in the database
configuration file, or by using the T-DEVICE command at TCL. Specifying the level
in this way overrides any default set with the previous two methods.

For details of how to set the compression level, refer to Tape Images in the Tape
Operation and Commands section of the Reality Reference Manual, Volume 2:
Operation.

The default is no compression, for compatibility with older versions of Reality. Note,
however, that a compressed tape image cannot be read by versions of Reality earlier
than V9.1. Reality V9.1 and later can read any tape image, whatever the compression
level.

The Compressed Tape Image feature is described in greater detail in Chapter 7.



Support for Distributed Transactions under MTS/COM+

New Features in Reality V10.0 2-9

Support for Distributed Transactions under MTS/COM+

If an application accessing Reality via the SQL/ODBC interface is running in a Microsoft
MTS/COM+ environment, it may be using distributed transactions. These transactions
are fully supported by Reality, using both ODBC and XA interfaces.

Distributed Transactions are described in greater detail in Chapter 8.



Other New Features

2-10 Reality V10.0 Differences Supplement

Other New Features

Large Databases
The maximum database size has been increased from 256 gigabytes to 2 terabytes.

Networking
UNIX-Connect is now available on Linux. The following features are therefore also now
available:

• Remote Tape.
• UNIX-Connect.
• Remote file access.
• DDA terminal interface.
• Remote client server.
• PLID handling.
• Remote Basic.
• RealWeb.
• SQL (ODBC and JDBC).
• Failsafe
• Heartbeat.

RealEdit
RealEdit is a new Reality editor running under Windows. You can use RealEdit to modify
any item in the database to which you have access. It can create and/or modify
DataBasic programs, Procs, data file items, and file dictionary items. The only items you
cannot edit with RealEdit are cataloged DataBasic programs and other binary format
files.

RealEdit is similar in operation to other Windows editors. However, it also allows you to
perform Reality-specific operations such as compiling and cataloging DataBasic
programs, and viewing included code.



 3-1

Chapter 3

GUI Administration

Via a simple-to-use graphical interface, GUI Administration supports many of

the Administrative tasks that can currently be performed from green-screen

terminal connections to Reality systems. Enhanced functionality is provided

to suit the Client GUI view of the world including maintenance and

housekeeping tasks to ensure that Reality systems are internally consistent

and coherent.



GUI Administration

3-2 Reality V10.0 Differences Supplement

GUI Administration

GUI Administration is a suite of programs and files that enable Reality-related
administrative tasks to be performed on one or more computer systems from a client
graphical user interface running on the same, or different, computer system.

The client component of GUI Administration, referred to hereafter as the Client GUI, is
deployed to client platforms and allows users to take administrative control of various
Reality systems that are visible across the network, subject to the appropriate security
checks being satisfied.

Some major features offered by the Client GUI are:

• Presents comprehensive Tree model of Reality systems and databases

• Displays sets of tabbed Panes for tasks relevant to current Tree-node

• Offers consistent, but configurable, ‘look and feel’ throughout the Client GUI.

• Extensive use of context-sensitive and embedded Help facilities

• Supports and extends existing functionality offered by green-screen equivalents.

• Utilises Wizards to guide users through complex or unfamiliar operations.

• Imposes logon security, on a system-by-system basis, and limits the user’s actions
and their view of the system, according to their specified privilege level.

The administrator who has been entered as the initial user at installation must first set up
more users to administer the system, then select the databases to be part of the network
to be administered and authorise the relevant users to administer the databases. The
tree structure visible to each user is tailored to their security profile. If a system is not
currently available on the network it is indicated in red.

Via the tree-structure the user is able to:

• Set up and maintain databases including:

Security profiles.

Users.



GUI Administration

GUI Administration 3-3

Backup & restore.

• Administer the system

Add/remove system users.

Server administration.

Thread management.

Set up and administer user access to databases though the GUI Administration
tool.

Tree Structure
The system information is presented in a System Tree structure. If the system name is
red then the system is not currently connected to the network. If the name is black the
system exists on the network but may or may not have a GUI Administration (RAJI)
server running. The server must be running for you to access the databases and admin
tasks.

Clicking on the + sign preceding the system name expands a structure of Databases and
Admin. Clicking on further + signs displays the available databases with associated GUI
administration tasks, such as Backup and Restore, setting up Roles and Security
Profiles, and the system administration setup tasks.



GUI Administration

3-4 Reality V10.0 Differences Supplement

Features
Features of Reality GUI Administration which are available at all times:

• A status bar at the base of the screen which displays your log on details, and a Log
Off button.

• A File Menu allowing you to Print the tab/screen in focus or Exit.

• An Options Menu with tick boxes to allow you to choose to display the help panel at
the base of the GUI Admin panel and/or tooltips on many of the fields requiring
input, as in the diagram above. The tooltips (displayed when hovering over the field)
may provide sufficient information for you to enter data. If not, then the help
provides more details. Links to further background information, including the Reality
on-line documentation, are supplied where necessary.

• A Preferences screen allows you to set up, view and change the paths from the
client to where the Reality on-line documentation and the browser are stored, and



GUI Administration

GUI Administration 3-5

the location of the list of systems to populate the viewable network. These should
be set up before logging in.

• A Help panel (if selected in Preferences) documenting the pane of the GUI Admin
Client that you are running.

Logging In
The System Login dialog is displayed when you attempt to access a system on the
Systems Tree by double-clicking a system icon or by attempting to expand a system
icon.  This dialog will also be presented if your security credentials are revoked while you
are within one of the system’s sub-nodes, the most likely cause being that you have
been timed-out due to inactivity.

You must enter your User name and Password.  These fields are initialised with no
content the first time a system is accessed during a session of the Client GUI, but
thereafter the Username field retains the name of the last submitted user for that
particular system. Once both fields have content, pressing Proceed attempts to
authenticate your credentials.

When you are successfully authenticated, you must choose which user role you wish to
adopt within this system, which determines which tree nodes and panes are accessible.
If you have only been assigned one user role, you will be logged on using this role.

Setting Up and Maintaining Databases
A summary of existing databases and their current status is displayed and diagnostics
can also be run on individual databases to check whether the database is clean or needs
checking. The database instance summary shows information that allows the
administrator to see if there are any potential problems.

The Create Database pane has advanced options which echo those available with the
operating system mkdbase command.

Having created a database you must create Database Access Files (DAFs) from the
Admin/Database Access pane to enable the new database to be administered from the
GUI Client, and then use Database Users to enable specified users to access the
database.

Backup and Restore
These panes replace the ACCOUNT-SAVE, FILESAVE and DBSAVE with the
ACCOUNT-RESTORE, DBSAVE (with restore) and Multiple account restore



GUI Administration

3-6 Reality V10.0 Differences Supplement

Users
A Users Summary panel displays information on all of the users of the selected
database. The User Instance summary displays information about the selected user,
while the Modify panes include all the fields on the SSM menu, Option 2.

Security Profiles
Replaces Option 3 of the SSM menu.



 4-1

Chapter 4

Foreign Database Support

This feature provides Reality with access to data held on SQL-based foreign

databases (currently Oracle or SQL Server). There are two ways of doing

this, implemented as new Reality file types:

• Reality-specific storage format. In this format, the foreign database is set up to
emulate Reality files, thus allowing Reality applications to store their data in the
foreign database.

• Data exchange storage format (SQL View). This provides Reality with a view of data
held in the foreign database. The data remains in the foreign database format and
therefore only limited access is possible from Reality.

Foreign database support requires a working ODBC installation, appropriate

ODBC driver(s) and Data Source Definition(s) on the Reality system.

Support for foreign database files and SQL View is not available on AIX and

HP platforms.



Summary of Reality File Types

4-2 Reality V10.0 Differences Supplement

Summary of Reality File Types

Reality supports the following types of file:

• Normal. An ordinary Reality file on the local database. A normal file has the basic
structure described in File and Item Structures in the Reality Users’ Reference
Manual, Volume 1: General. Normal files are backed up via the usual Reality save
and restore procedures.

• Foreign Database. This is a Reality file which has nearly all the characteristics of a
Normal file, with the structure described in File and Item Structures, but which is
located on a foreign (SQL-based) database. You can create, update and manage
Foreign Database files in the same way as Normal files. Multi-values and binary
items are supported. The files also support indexing and Transaction Handling.

It is unlikely that you would want to back up Foreign Database files using the Reality
save commands. If a Reality application is storing its data on a foreign database, it
is recommended that this data is secured by saving the SQL database in whatever
way is appropriate.

• SQL View. This is a Reality file that provides a view of an existing SQL table (or
SQL view) on a foreign database. A table, or view, is mapped to the Reality file;
each row in that table becomes an item in the Reality file and each column within
that row is an attribute in the item.

As the data is stored in a form compatible with the foreign database’s native
applications, restrictions are imposed on Reality applications writing such data.
There is no support for multi-values, indexing or Transaction Handling.

SQL View files are primarily used for read access, but it is possible to update the
external table data if you know the exact structure and controls. If you save an SQL
View file, you are saving the file definition item, but not the external data, which is
secured on the foreign database.

• Directory View. A Reality file that provides a view of a directory in the host system
(UNIX or Windows). A directory is mapped to the Reality file; each file in the
directory appears as an item in that file.

Directory view files are primarily aimed at text file manipulation. A Directory view file
contains Reality items for regular system text files within the referenced directory.



Summary of Reality File Types

Foreign Database Support 4-3

Non-regular files - such as sub-directories, pipes and devices – are not visible as
items.

The LISTFILES command indicates the different types of file on a particular account.

LISTFILES
Purpose

Lists all dictionaries, data sections and index sections defined from a particular account
or specified dictionary.

Command Class

Cataloged DataBasic program

Syntax

LISTFILES {file-specifier} {(options}

Syntax Elements

file-specifier is a file, other than the MD, for which the data sections will be listed.
If no file-specifier is specified, LISTFILES defaults to the current MD,
and each file and data section on the account is listed.

The file-specifier can be the name of another account if the MD
contains a Q-pointer to the other account.  If file-specifier is the name
of a Q-pointer to another account, each file and data section on that
other account are listed.

Options

P sends the listing to the printer.

Report Listing

Each dictionary name is listed with associated data sections listed below, indented by
one space.  Indexes are listed below associated data sections, indented by two spaces.

Report Headings

The following information is displayed:

File name Name of each file.

Type Type of D/CODE.



Summary of Reality File Types

4-4 Reality V10.0 Differences Supplement

Ftype Type of file  This is defined by two characters; a letter and a number.
The letter can be:

A A clean log binary data section.

B A byte stream file. (A ‘normal’ Reality file.)

C A clean log user view data section.

D A directory view.

F A file on a foreign database.

G An SQL view.

The number can be:

1 Master Dictionary

2 File Dictionary

3 Data Section

Mod Modulo

Sep Separation

Just Type of justification (L or R)

Len Number of columns for output

Listing Files from Another Account

If the MD of the account you are currently logged onto contains a Q-pointer to another
account, the account synonym item-id can be given as the file-name.  This then lists the
files on the other account.

For example, you are logged on to the INVENTORY account and you want to list the files
on the PERSONNEL account.  The MD of INVENTORY has a Q-pointer as follows:

PERSONNEL
0001 Q
0002 PERSONNEL



Summary of Reality File Types

Foreign Database Support 4-5

Then enter:

:LISTFILES PERSONNEL

The PERSONNEL account files are then listed.

Example of Report

File definition items in file: TESTACC                                Page 1

File name                         Type    Ftype    Mod     Sep    Just   Len

TAB2                               D        B2       1       1      L     10
 TAB2                              DY       G3  dbora,bob TAB2      L     10

TEMP                               D        B2       1       1      L     10
 TEMP                              DY       D3  /Temp

LOCAL                              DL       B2       1       1      L     10
 DATA2                             DL       B3      11       1      L     10
 LOCAL                             DL       B3      11       1      L     10
  X1                               D        B4       7       1      L     10

ORACLE                             DL       F2  dbora,bob           L     10
 ORA2                              DL       F3  dbora,bob           L     10
 ORACLE                            DL       F3  dbora,bob           L     10
  X1                               D        F4  dbora,bob           L     10

In this report:

LOCAL is a local file with two data sections and one index.

ORACLE is a Foreign Database file with two data sections and one index (all stored on
an Oracle database called 'dbora')

TEMP is a Directory-View file of directory '/Temp'.

TAB2 is a Sql-View file of Table 'TAB2' on database 'dbora'.



Foreign Database Files (Reality-specific Storage Format)

4-6 Reality V10.0 Differences Supplement

Foreign Database Files (Reality-specific Storage Format)

The foreign database is set up to emulate Reality files, thus allowing Reality applications
to store their data in the foreign database. The Reality account is set up in a local
database, with some or all of the files held on a remote foreign database. The file
definition item contains details of the file location.

You can create, update and manage the files on the foreign database files in the same
way as local Reality files. Multi-values and binary items are supported. The files also
support indexing and Transaction Handling.

To create a Reality file on a foreign database, you should use the FDB-SET command to
specify details of the foreign database and then use CREATE-FILE to create the file. The
FDB-SHOW command lets you display the current foreign database setting. FDB-
CLEAR clears the foreign database setting, so that subsequent uses of CREATE-FILE
create files on the local Reality database.

File Definition Item
A file definition item, located in an account's MD, defines the location and characteristics
of a file.  It points to the file dictionary, giving system information in attribute 2, which
specifies the location of the file in the host system, and file creation parameters in
attribute 3.  It also defines retrieval and update lock codes in attributes 5 and 6, and
English formatting characteristics in attributes 7 to 11.

Item Format

item-id File-name

  001 D {L|R} {X|Y}

where:

'D' marks a Definition Item.

'L' marks that the file is to be logged by Transaction Logging.

‘R’ indicates that the file is not logged by Transaction Logging, but
that its data will be recovered during the automatic recovery of a
database configured for Rapid Recovery.



Foreign Database Files (Reality-specific Storage Format)

Foreign Database Support 4-7

(For more information on the logging status of files, please refer
to the Reality Resilience Reference Manual.)

'X' marks that the file is to be ignored by the SAVE command. Use
of the O option in the SAVE verb overrides the 'X' code.

'Y' specifies that during the execution of the SAVE verb, no data,
,except for D-pointers (data level descriptors) is saved to tape.
This also applies to FILE-SAVE and ACCOUNT-SAVE which
use the SAVE verb.  Use of the O option in the SAVE verb
overrides the 'Y' code.

  002 On a Filestore Database:

UNIX path name of File Dictionary

OR, on a Partition Database:

start, id, scatter

where,

start is the logical block no. of the start of file.

id is the reuse identifier.

scatter is the number of blocks in scatter map.

OR, for a file on a Foreign Database:

n;TableName

where,

n is a number indicating which version of the
access method created the file.

TableName is the name of the SQL table on the foreign
database created to hold this Reality file.

  003 For a file on the Local Database:

File creation parameters - Filetype (B2) modulo, 1.



Foreign Database Files (Reality-specific Storage Format)

4-8 Reality V10.0 Differences Supplement

OR, for a file on a Foreign Database:

Fn DSN, {Userid}, {Passwd}

where

F indicates the foreign database access
method.

n is a number indicating the level of the file in
the Reality file system, for example, 3 for a
Data section.

DSN is the ODBC Data Source Name for the
foreign database. The Data Source Name
may itself include a user-id and password.
For information on how to set up Data
Source Names, refer to the documentation
for the ODBC installation on your system.

Userid is the user id for connecting to the foreign
database.

Passwd password associated with this userid
(encrypted).

  004 Null

  005 Retrieval lock code(s)

  006 Update lock code(s)

Note: For a description of lock code operation, refer to Reality
Reference Manual Volume 3.

  007 Optional conversion codes for English to display item-ids.

  008 Optional V (sublist) code for English.

Note: For a description of English sublists, refer to the English
Reference Manual.

  009 Contains a code specifying the type of alignment to be used by
English.  A code is mandatory and must be one of the following:



Foreign Database Files (Reality-specific Storage Format)

Foreign Database Support 4-9

L Left aligned.

R Right aligned.

T Text aligned. Text wraps at word boundaries.

U Unlimited.

Note: For more details, refer to the topic Data Definition Item.

  010 Maximum width of item-id column (default = 10).

  011 Not used and reserved.

  012 Null.

  013 Reallocation parameters. At the next restore from a FILE-SAVE, the
File Dictionary is allocated the new modulo and separation
parameters specified here.

The format of this specification is (m,s) expressed in decimal integer
format where m is the new modulo (separation (s) is always '1' on the
current version of Reality).

014 - 020 Reserved.

Note: If a file has associated indexes, attributes 2, 3 and 13 are multivalued, with the
second and subsequent multivalues containing the corresponding information
for the indexes. Attribute 4 is also multivalued with the names of the indexes in
the second and subsequent multivalues.

FDB-CLEAR
Purpose

Used following the execution of FDB-SET to clear the options set by that command. The
functionality of the CREATE-FILE command and of restore commands reverts to normal.

Command Class

TCL-I verb



Foreign Database Files (Reality-specific Storage Format)

4-10 Reality V10.0 Differences Supplement

Syntax

FDB-CLEAR

Example
FDB-CLEAR

[5425] Foreign Database not active

FDB-SET
Purpose

Changes the functionality of the CREATE-FILE and restore commands so that files are
created/restored on the specified foreign database. This changed functionality of
CREATE-FILE remains in place throughout the current logon session, or until the FBD-
CLEAR command is executed.

Command Class

TCL-I verb

Syntax

FDB-SET database, {user}, {password}

Syntax Elements

database is the ODBC Data Source Name (DSN) for the foreign database. The
DSN may itself include a user-id, and password if required, for
logging on to the database. In this case, you will not need to enter
them as independent parameters. For information on how to set up
DSNs, refer to the documentation for the ODBC installation on your
Reality system.

user is the user-id for logging on to the database. (If the database is not
made up entirely of Reality files, it may be partitioned so that all
Reality files share one user-id.)

password is the password associated with this user-id.

Example
FDB-SET FINANCE,REALITY,WELCOME

[5426] Foreign Database active: Dsn 'FINANCE', User 'REALITY'



Foreign Database Files (Reality-specific Storage Format)

Foreign Database Support 4-11

FDB-SHOW
Purpose

Displays the current foreign database setting (and therefore the current functionality of
the CREATE-FILE and restore commands.

Command Class

TCL-I verb

Syntax

FDB-SHOW

Example
FDB-SHOW

Foreign Database active: Dsn=dbora, User=bob

Saving and Restoring
Although Foreign Database files can be saved using the Reality save commands, it is
unlikely that you would want to do this. If a Reality application is storing its data on a
foreign database, it is recommended that this data is secured by saving the SQL
database in whatever way is appropriate.

If you do save a file on a foreign database using a Reality save command, the File
Definition Item is saved with no amendments, so that when the file is restored it is
restored onto that foreign database.

It is possible to restore files saved from a Reality database onto a foreign database. Use
the FDB-SET command to indicate that subsequent uses of restore commands should
restore files onto the specified foreign database.

Note: Before restoring files onto a foreign database, you must first ensure that the
required database is online.



SQL View Files

4-12 Reality V10.0 Differences Supplement

SQL View Files

These files provide Reality with a view of an existing SQL table (or SQL view) on a
foreign database. A table, or view, is mapped to the Reality file; each row in that table
becomes an item in the Reality file and each column within that row is an attribute in the
item.

As the data is stored in a form compatible with the foreign database’s native applications,
restrictions are imposed on Reality applications writing such data. There is no support for
multi-values, indexing or Transaction Handling.

SQL View files are primarily used for read access, but it is possible to update the
external table data if you know the exact structure and controls. If you save an SQL View
file, you are saving the file definition item, but not the external data, which is secured on
the foreign database.

You create an SQL View file using the SQL-VIEW command.

SQL-VIEW
Purpose

Creates a Reality file that provides a view of an existing SQL table (or SQL view) on a
foreign database. This command does not create a new table. The DICT section resides
in the local Reality database; the Data section(s) are located on the foreign database.

Syntax

SQL-VIEW file-name database, {user}, {password} Table PkCols DataCols {(K)}

Syntax Elements

file-name is the name of the SQL view file you want to create.

database is the ODBC Data Source Name for the foreign database. The DSN
may itself include a user-id, and password if required, for logging on
to the database. If this is the case, you will not need to supply these
as independent parameters.For information on how to set up DSNs,
refer to the documentation for the ODBC installation on your Reality
system.

user is the user-id for logging on to the database.



SQL View Files

Foreign Database Support 4-13

password is the password associated with this user-id.

Table is the name of the SQL table or view for which you want to create the
SQL view file.

PkCols is the name, or names, of the Primary Key column(s) on the SQL
table or view, separated by commas if necessary. Where a table has
a single Primary Key column, the Reality item-id maps to this column
and is used directly to identify an SQL row. Where a table has
multiple Primary Key columns, the Reality item-id comprises the
same number of parts and these are used to identify the matching
SQL row. The delimiter used to separate the different parts of the
item-id is ‘\’ by default. This can be changed by specifying the (K)
option, which causes SQL-VIEW to prompt for the Key Separator
character.

DataCols are the data column names in the SQL table or view, separated by
commas.

Option

K Causes the command to prompt for a Key Separator character to be
used in place of ‘\’. You can specify any character that is not a
Reality system delimiter and which does not appear in the data to be
viewed.

Restrictions

As the data is stored in a form compatible with the foreign database’s native applications,
restrictions are imposed on Reality applications writing such data. There is no support for
multi-values, indexing or transaction management.

The foreign database will impose strict control over the type and size of data that may be
stored in each column. A Reality application using SQL view files must be aware of the
format of the external table data and must keep within these controls. SQL view files may
not be updateable, depending on the view definition and the capabilities of the foreign
database.

Comments

An SQL view file may be based on an SQL table, or on a view definition in the foreign
database. A view can be used to filter the data available to Reality, or to combine data
from more than one table into a single file view.



 5-1

Chapter 5

MultiValue Compatibility

Reality V10.0 has been further enhanced to improve compatibility with other

MultiValue systems. The following new features are provided:

• File Triggers.

• TCP Connections in DataBasic.

• Pseudo Floppy support.

• Enhancements to SP-ASSIGN.

• Additional ACCOUNT-RESTORE options.

• SYSTEM statement.



File Triggers

5-2 Reality V10.0 Differences Supplement

File Triggers

A file trigger is a cataloged subroutine that is called automatically whenever an item is
written to or deleted from a particular file. A trigger can be set to run before or after an
item is written and before or after an item is deleted.

Triggers that run before file operations are mainly used to validate the attempted change
to the database against user-defined constraints, or “business rules”, and allow the
change only if the constraint is satisfied.

Triggers that run after file operations are normally used to create audit trails and other
transaction logs.

All types of trigger can be used to create relationships between files, to ensure that
whenever one file is updated, another related file is also updated.

Note: Triggers are only run when individual items are written to or deleted. They do
not run when a complete file is cleared (for example, with the CLEARFILE
statement).

How to Write a Trigger Routine
A file trigger must be written as an external subroutine that accepts a single parameter.
When the trigger is called by the system, the contents of this parameter depends on the
type of trigger:

Pre-write triggers The parameter contains the item that is to be written. The data to be
written to the item can be modified by changing the contents of this
parameter. You can also prevent the item being written by calling the
INPUTERROR statement.

Post-write triggers The parameter contains the data that was written to the item.

Delete triggers The parameter always contains a null string.

Within the trigger subroutine, you can access other information about the file and the
item by calling ACCESS function (see page 5-32). This accepts a data-element number
that specifies the type of information you require, as follows:

1 A reference to the trigger file.



File Triggers

MultiValue Compatibility 5-3

2 A reference to the dictionary of the trigger file. If the trigger file is a dictionary, this is
the same as ACCESS(1).

These two elements allow you to access other items in the trigger file by passing
the file reference to I/O statements such as READ and WRITE.

3 The item body. Null if a delete operation. This is similar to the contents of the trigger
parameter, but always returns the item data as passed to the trigger; that is, before
any changes made by the trigger. Note that in a POST-WRITE trigger, this element
will contain the data that was written to the item.

10 The id of the item being written or deleted.

11 The file name in the form {DICT} {/account/}filename{,data-section-name}.

12 True if the trigger is of type PRE-DELETE or POST-DELETE.

16 True if the item does not exist; false otherwise. Its value therefore depends on the
type of trigger:

PRE-WRITE True if a new item is being created; false if an existing item is
being updated.

PRE-DELETE Normally false, but true if the user is attempting to delete a non-
existent item (if the item does not exist, no action is taken, but
any triggers still run).

POST-DELETE Always true.

POST-WRITE Always false.

Note that ACCESS(16) checks whether the item exists each time it is called.

20 This element is only valid in a POST-WRITE trigger – if true, it indicates that the
item was modified by the PRE-WRITE trigger; if false, the item was written without
modification. Note that if you need to compare the original item with that written to
the file, you will have to save the original to a variable in a named COMMON area
from within the PRE-WRITE trigger.

In PRE-WRITE, PRE-DELETE and POST-DELETE triggers this element is always
false.



File Triggers

5-4 Reality V10.0 Differences Supplement

Debugging Triggers
Global DEBUG Options

Three options, set with the SET-OPTION verb or from within the DataBasic debugger,
allow you to specify that DataBasic programs will enter the debugger on encountering a
DEBUG statement, or if a warning is generated:

DB.DEBUG Causes any DataBasic program initiated by the user to enter the
DataBasic symbolic debugger on executing DEBUG statements
within the program. This is similar to starting the program with the
DEBUG command, but can be used to debug programs called from
PERFORM statements and from Procs.

Programs initiated by the user are those that are started directly or
indirectly from TCL. They include those initiated by a Proc or other
program that was itself started directly or indirectly from TCL.

EB.DEBUG Causes any DataBasic program run from External Basic to enter the
DataBasic symbolic debugger on executing DEBUG statements
within the program. Programs run from External Basic include file
triggers and RealWeb subroutines; you should set EB.DEBUG
before starting to debug these types of routine.

FATAL.WARNINGS
Causes all warning messages generated by DataBasic programs to
be treated as fatal errors. Breaks to the DataBasic debugger to allow
determination of error and possible recovery. Similar to starting the
program with the F option.

These options can be cleared with the CLEAR-OPTION verb or from within the
DataBasic debugger.

Debugger Commands

New debugger commands and additional options to the SET-OPTION command make it
possible to debug triggers:

@* This command toggles the appropriate global DEBUG option (DB.DEBUG
or EB.DEBUG), depending on whether the program being debugged was
entered from the TCL prompt or was called from External Basic.
Equivalent to calling the SET-OPTION or CLEAR-OPTION verb.



File Triggers

MultiValue Compatibility 5-5

M Toggles the option that causes a break whenever a CALL or RETURN
statement is encountered; that is, each time your program calls or returns
from an external subroutine.

WF Toggles the option that treats warning messages as fatal errors. The
effect is limited to the currently running program.

WF* Toggles the global FATAL.WARNINGS option (equivalent to calling the
SET-OPTION or CLEAR-OPTION verb).

WS The WF command toggles the option that suppresses run-time warning
messages (normally enabled by running your program with the S option).

Refer to page 5-42 for more details.

Note: These debugger commands also make it easier to debug DataBasic programs
called from PERFORM statement and Procs.

Debugger Prompt

If your program has been called from a PERFORM statement, the debugger prompt
shows the level of nesting. This can help you keep track of which of a number of different
programs or routines you are currently debugging. It is particularly useful when
debugging file triggers.

File triggers are always at nesting level 1 or above. For example, if a program called
from TCL causes a trigger to run, the trigger will be at nesting level 1. If that trigger then
carries out an action that causes a second trigger to run, the second trigger will be at
nesting level 2 and the debugger prompt will appear as follows:

{2}*

How to Associate a Trigger with a File
Once you have written your trigger, you must associate it with the appropriate Reality file
using the CREATE-TRIGGER command (page 5-25). You must specify the name of the
file, the name of the trigger subroutine and the type of trigger required (PRE-WRITE,
POST-WRITE, PRE-DELETE or POST-DELETE). Note that the trigger subroutine must
be cataloged in the master dictionary of the account containing the file. A trigger can be
associated with a file data section, a file dictionary or an account’s master dictionary.

The DELETE-TRIGGER command (page 5-26) allows you to remove trigger
associations. In this case you need only specify the file name and the trigger type.

LIST-TRIGGERS (page 5-28) lists the triggers associated with a file.



File Triggers

5-6 Reality V10.0 Differences Supplement

Caution
When associating a trigger with a file, you need to be aware of the effects of any other
triggers that might run as a consequence.

Notes:

• It is strongly recommended that triggers should not be associated with system files.

• When accessing files in a different account on the same database (either by defined
or direct Q-pointers), the trigger subroutine must exist in the current master
dictionary.

• When accessing files in a different database, both the trigger definition and trigger
subroutine must reside in the remote database where the file resides, not in the
local database.

• If a file is open, changes to its associated triggers will not take effect until it is closed
and re-opened.

• Only D-pointers can have trigger definitions; Q-pointers will use the definition in the
target D-pointer.

• The first time a trigger is used after you have logged on or associated it with a file, it
will be copied into a local cache. Subsequent calls to the trigger will therefore be
much quicker because it will not be necessary to fetch the trigger from disk. The
cache will be cleared when you log off, log to another account or catalog any
DataBasic program.

If the cataloged version is changed, only those processes that do not have the
trigger cached will use the new version when the trigger next runs. Note that
because the local cache is cleared when a DataBasic program is catalogued, the
user that catalogs the new version of the trigger will use the new version
immediately.



File Triggers

MultiValue Compatibility 5-7

Commands that might run Triggers
When running the following commands, you should be aware of the effects of any file
triggers that might be run as consequence (the list is not exhaustive).

TCL Commands

BASIC (R (trigger on MD) BASIC (trigger on data section)

BLIST (U (trigger on data section) CATALOG (trigger on MD)

COPY (trigger on destination file) CREATE-FILE (trigger on MD)

CREATE-INDEX (trigger on dictionary) DB

DECAT (trigger on MD) DELETE

DELETE-FILE (trigger on MD) DELETE-INDEX (trigger on DICT)

DIR-VIEW (trigger on MD) ED{IT} (see EDITOR Commands below)

EDELETE MAKE-SPECIAL (trigger on MD)

MOVE-FILE (trigger on dictionary or MD) NEW-COPY-LIST

NEW-SAVE-LIST NEW-SORT-LIST

PQ-COMPILE REFORMAT

RENAME-FILE (trigger on MD) RESIZE-FILE (trigger on dictionary)

SE{D{IT}} (see Screen Editor Commands
below)

SET-FILE (trigger on MD)

SP-COPY SQL (update commands)

SQL-VIEW (trigger on MD) SREFORMAT

T-LOAD

Proc Commands

F-DELETE F-WRITE

EDITOR Commands

FD FI FS

Screen Editor Commands

F



File Triggers

5-8 Reality V10.0 Differences Supplement

DataBasic

DELETE Statement MATWRITE Statement

MATWRITEU Statement WRITE statement

WRITEU Statement WRITEV Statement

WRITEVU Statement

Examples
The first example is a subroutine that is intended to be used as a PRE-WRITE and PRE-
DELETE trigger. It performs some validation and also records information about the
operation for later use by the second example.

SUBROUTINE PRE.TRIG(ITEM)
 *
 * This routine can be used as Pre-Write and Pre-Delete trigger.
 *
 * It performs some validation and also records information
 * about the operation for later use by the Post Trigger.
 *
 *-----------------------------------------------------------------
 *
 * Named Common - used to share info between Pre and Post Triggers
 *
 COMMON /TRIGSTUFF/ T.LOGFILE,T.TYPE,T.SEQ
 *
 * In case we need to debug this routine
 * using SET-OPTION EB.DEBUG
 *
 DEBUG
 CRT "PRE-TRIGGER"
 *
 * Open Logfile for use by Post Trigger
 *
 IF UNASSIGNED(T.LOGFILE) THEN
   *
   * We open the logfile here so that we can abort the operation
   * if there is any problem. By the time the Post trigger is called
   * the operation has completed and cannot easily be cancelled.
   *
   OPEN "LOGFILE" TO T.LOGFILE ELSE
     INPUTERR "Cannot open logfile - operation aborted"
     RETURN
   END
 END
 *



File Triggers

MultiValue Compatibility 5-9

 * Only users with SYS2 privilege are allowed to update this file
 *
 PRIV = SYSTEM(28)  ;* current system privilege level (0,1,2)
 IF (PRIV<2) THEN
   INPUTERR "You do not have permission to update this file"
   RETURN
 END
 *
 * Determine type of operation
 *
 DELETING = ACCESS(12)  ;* True if item being deleted
 NEW.ITEM = ACCESS(16)  ;* True if new item being written
 BEGIN CASE
   CASE DELETING; T.TYPE="DEL";    * delete item
   CASE NEW.ITEM; T.TYPE="NEW";    * write new item
   CASE 1;        T.TYPE="UPD";    * update existing item
 END CASE
 *
 * Check the value of attribute 2 is valid
 *
 IF NOT(DELETING) THEN
   A2 = ITEM<2>
   IF (A2<0) OR (A2>100) THEN
     INPUTERR "Value out of range"
     RETURN
   END
 END
 *
 * Now, we have successfully opened the logfile
 * (if it was not already open)
 * verified that the current user is allowed to update this file
 * and that the data is correct.
 * We have also recorded the type of operation for logging
 * in the Post trigger.
 *
 * Returning without using INPUTERR allows the operation to
complete.
 *
 RETURN

The second example is a POST-WRITE and POST-DELETE trigger subroutine. It logs
the operation using information saved by the previous example.

SUBROUTINE POST.TRIG(ITEM)
 *
 * This routine is a Post-Write and Post-Delete trigger.
 *
 * It logs the operation using information saved by the Pre Trigger.



File Triggers

5-10 Reality V10.0 Differences Supplement

 *
 *-----------------------------------------------------------------
 *
 * Named Common - used to share info between Pre and Post Triggers
 *                and to save a logging sequence number
 *
 COMMON /TRIGSTUFF/ T.LOGFILE,T.TYPE,T.SEQ
 IF UNASSIGNED(T.SEQ) THEN T.SEQ=0
 *
 * In case we need to debug this routine
 * using SET-OPTION EB.DEBUG
 *
 DEBUG
 CRT "POST-TRIGGER"
 *
 * Construct a unique Log item-id
 *
 PORT = SYSTEM(18)  ;* current port number
 T.SEQ += 1         ;* logging sequence number
 *
 LOGID = DATE():'~':TIME():'~':PORT:'~':T.SEQ
 *
 * Construct Log record
 *
 LOGITEM = ''
 LOGITEM<1> = ACCESS(10)  ;* Item-id of item written or deleted
 LOGITEM<2> = T.TYPE      ;* Operation type (NEW, UPD or DEL)
 *
 * Record operation to logfile
 *
 WRITE LOGITEM ON T.LOGFILE,LOGID ON ERROR
   *
   * Write to logfile failed, but operation on datafile completed.
   * Not much we can do here except shout loudly.
   * If using Transaction Boundaries we could use TRANSABORT.
   *
   CRT
   CRT "*** ERROR - Cannot write to logfile"
   CRT
 END
 *
 RETURN

Triggers Dos and Don’ts
• It is strongly recommended that you do not associate triggers with system files.



File Triggers

MultiValue Compatibility 5-11

• When you write DataBasic programs or subroutines, always include the ON
ERROR clause for statements that update files. This is especially important when
using triggers, since any failure caused by a trigger aborts the DataBasic program
unless the ON ERROR clause is present.

Note: If the cataloged DataBasic trigger subroutine cannot be found, the trigger
will return an error and the update will be aborted. This is because the file
would no longer be protected by its business rules and invalid data could
be inserted.

• A trigger can invoke another trigger (Reality limits the number of levels you can nest
triggers to 256). Be careful to use conditional statements to avoid infinite loops that
can be caused by nested triggers.

• PRE-DELETE and POST-DELETE triggers will run even if the item specified by the
user does not exist. You should test element 16 of the ACCESS function (page
5-32) for this situation and take appropriate action.

• If you need to pass data between triggers, use variables in a named COMMON
area.



TCP Connections in DataBasic

5-12 Reality V10.0 Differences Supplement

TCP Connections in DataBasic

This feature allows DataBasic programs to connect to and accept connections from
remote systems using raw TCP instead of DDA. This allows connections between
Reality and many different types of system; for example:

• other Reality systems;

• web, ftp, telnet and time servers;

• SMTP and POP3 email servers;

• networked applications (written in Java, for example);

• other MultiValue systems that support raw TCP;

• XML applications;

• SOAP processes (using XML technology).

For details, refer to the descriptions of the DataBasic CONNECT and ACCEPT
statements on pages 5-37 and 5-32 respectively.

Example Programs
TCP Client/Server

The following client and server programs demonstrate how you might use TCP/IP to
communicate between two Reality systems.

Client Program:

* RTCL - Execute remote TCL command
*
* RTCL Host|* TclCommand  -- * for localhost"
*
* Connect to XTCL listening on HostName, port 52002, send TCL
* command which XTCL will PERFORM and return the response.
*
* Set environment variable RNWS_LOG_LEVEL in range 0 to 7 for
* tracing. Set environment variable RNWS_LOG_FILE to specify trace
* file.



TCP Connections in DataBasic

MultiValue Compatibility 5-13

*
   EQU EDISCONN TO 4235
*
   TCL = SENTENCE()
   HOST = FIELD(TCL," ",2)
   CMD  = FIELD(TCL," ",3)
   PORT = 52002
*
   IF HOST = "" OR HOST = "?" THEN
      PRINT "RTCL Host|* {TclCommand}  -- * for localhost"
      STOP
   END
*
   IF HOST = "*" THEN HOST = "127.0.0.1"
   SYS="*TCP*":HOST:";port=":PORT
*
   CONNECT SYS TO SESS SETTING ERRNO ELSE
      OPN = "CONNECT"
      GOTO FIN
   END
*
   ONEOFF = CMD # ""
   LOOP
      IF NOT(ONEOFF) THEN INPUT CMD
   WHILE CMD # "" DO
      SDAT=CMD
      GOSUB SEND_SDAT
      IF ERRNO THEN GOTO FIN
      GOSUB RECV_RDAT
      IF ERRNO THEN GOTO FIN
      PRINT RDAT<1>
      IF ONEOFF THEN GOTO FIN
   REPEAT
*
FIN:
*
   IF ERRNO THEN
      IF ERRNO = EDISCONN THEN
         PRINT SYS:" disconnected"
      END ELSE
         PRINT OPN:" (":SYS:") failed, ERRNO=":ERRNO
      END
   END
*
   IF NOT(UNASSIGNED(SESS)) THEN
      DISCONNECT SESS SETTING ERRNO ELSE
         PRINT "DISCONNECT (":SYS:") failed, ERRNO=":ERRNO
      END



TCP Connections in DataBasic

5-14 Reality V10.0 Differences Supplement

   END
*
   IF NOT(UNASSIGNED(LSESS)) THEN
      DISCONNECT LSESS SETTING ERRNO ELSE
         PRINT "DISCONNECT(listener) (":SYS:") failed, ERRNO=":ERRNO
      END
   END
*
   STOP
*
**
***
SEND_SDAT:
**********
   MSG = "<":SDAT:">"
   SEND MSG TO SESS SETTING ERRNO ELSE
      OPN = "SEND"
   END
   RETURN
*
**
***
RECV_RDAT:
**********
   RDAT = ""
   LOOP
      RECEIVE MSG FROM SESS SETTING ERRNO ELSE
         OPN = "RECEIVE"
         GOTO FIN_RECV_RDAT
      END
      RDAT = RDAT:MSG
      AGAIN = RDAT[-1,1] # ">"
   WHILE AGAIN DO REPEAT
*
   RDAT[-1,1] = ""
   RDAT[1,1] = ""
*
FIN_RECV_RDAT:
*
   RETURN
*
**
***
END
***



TCP Connections in DataBasic

MultiValue Compatibility 5-15

Server Program:

* XTCL - Perform TCL command from remote client
*
* XTCL LocalHostName|*  -- * for all local interfaces
*
* Listen on port 52002 for incoming connection, receive and perform
* TCL command and return response to client. Loop back for next
* command or client disconnect. 'RTCL host OFF' will log us off.
*
* Set environment variable RNWS_LOG_LEVEL in range 0 to 7 for
tracing.
* Set environment variable RNWS_LOG_FILE to specify trace file.
*
   EQU EDISCONN TO 4235
*
   LOOPING = 0
   TCL = SENTENCE()
   HOST = FIELD(TCL," ",2)
   PORT = 52002
*
   IF HOST = "" OR HOST = "?" THEN
      PRINT "XTCL LocalHostname|*  -- * for all local interfaces"
      STOP
   END
*
   IF HOST = "*" THEN
      HOST = ""
   END
*
   SYS="*TCP*":HOST:";port=":PORT
*
*  Activate listening socket
*
   ACCEPT SYS:";listen=1" TO LSESS SETTING ERRNO ELSE
      OPN = "ACCEPT(listen)"
      GOTO FIN
   END
*
* Accept incoming connection
*
   LOOPING = 1
   ERRNO = 0
   LOOP
      ACCEPT SYS TO SESS SETTING ERRNO ELSE
         OPN = "ACCEPT"
         GOTO FIN
      END



TCP Connections in DataBasic

5-16 Reality V10.0 Differences Supplement

*
      LOOP
         ERRNO = 0
         GOSUB RECV_RDAT
         IF ERRNO = 0 THEN
            IF RDAT = "STOP" THEN
               SDAT = "CLOSING SERVER"
               LOOPING = 0
            END ELSE
               PERFORM RDAT CAPTURING SDAT
            END
            GOSUB SEND_SDAT
         END
      WHILE ERRNO = 0 DO REPEAT
      IF ERRNO = EDISCONN THEN ERRNO=0
*
FIN:
*
      IF ERRNO THEN
         PRINT OPN:" (":SYS:") failed, ERRNO=":ERRNO
      END
*
      IF NOT(UNASSIGNED(SESS)) THEN
         DISCONNECT SESS SETTING ERRNO ELSE
            PRINT "DISCONNECT (":SYS:") failed, ERRNO=":ERRNO
         END
      END
*
   WHILE ERRNO = 0 AND LOOPING DO REPEAT
*
   IF NOT(UNASSIGNED(LSESS)) THEN
      DISCONNECT LSESS SETTING ERRNO ELSE
         PRINT "DISCONNECT(listener) (":SYS:") failed, ERRNO=":ERRNO
      END
   END
*
   STOP
*
**
***
SEND_SDAT:
**********
   MSG = "<":SDAT:">"
   SEND MSG TO SESS SETTING ERRNO ELSE
      OPN = "SEND"
   END
   RETURN
*



TCP Connections in DataBasic

MultiValue Compatibility 5-17

**
***
RECV_RDAT:
**********
   RDAT = ""
   LOOP
      RECEIVE MSG FROM SESS SETTING ERRNO ELSE
         OPN = "RECEIVE"
         GOTO FIN_RECV_RDAT
      END
      RDAT = RDAT:MSG
      AGAIN = RDAT[-1,1] # ">"
   WHILE AGAIN DO REPEAT
*
   RDAT[-1,1] = ""
   RDAT[1,1] = ""
*
FIN_RECV_RDAT:
*
   RETURN
*
**
***
END
***

TCP Ping
* PING - Reality sockets test program to send/receive to echo server
*
* PING HostName
*
* Provides similar functionality to the UNIX ping utility. A
* connection is established to a remote TCP 'echo' server specified
* by argument 1. A message is sent and echo received, five times.
*
* Set environment variable RNWS_LOG_LEVEL in range 0 to 7 for
* tracing. Set environment variable RNWS_LOG_FILE to specify trace
* file.
*
   TCL = SENTENCE()
   HOST = FIELD(TCL," ",2)
   PORT=7
*
   IF HOST = "" OR HOST = "?" THEN
      PRINT "PING [HostName|IP address]"
      STOP
   END



TCP Connections in DataBasic

5-18 Reality V10.0 Differences Supplement

*
   SYS="*TCP*":HOST:";port=":PORT
*
   CONNECT SYS TO SECHO TIMEOUT 1 SETTING ERRNO ELSE
      PRINT "Failed to connect to ":SYS:", error=":ERRNO
      GOTO L_ABORT
   END
*
   SMSG="Data/Basic socket call to echo port"
*
   FOR I = 1 TO 5
      SEND SMSG TO SECHO SETTING ERRNO ELSE
         PRINT "Failed to send msg to ":SYS:", error=":ERRNO
         GOTO L_ABORT
      END
*
      RECWAIT RMSG FROM SECHO TIMEOUT 1 SETTING ERRNO ELSE
         PRINT "Failed to receive msg from ":SYS:", error=":ERRNO
         GOTO L_ABORT
      END
      PRINT "Received:'":RMSG:"' from ":HOST
   NEXT I
*
L_ABORT:
   IF NOT(UNASSIGNED(SECHO)) THEN
      DISCONNECT SECHO SETTING ERRNO ELSE
         PRINT "Failed to disconnect from ":SYS:", error=":ERRNO
      END
   END
*
   STOP
*
END

TCP Email
* MAIL - send email
*
* MAIL <To:> <From:> <SmtpServer>
*
* Connect to SMTP service on specified DNS name and pass sender and
* recipient's mail path, viz email addresses, finally send the email
* body.
*
* This program was based on information found in RFC 821, it in no
* way handles every eventuality and is for example purposes only.
*
   EQU EDISCONN TO 4235



TCP Connections in DataBasic

MultiValue Compatibility 5-19

   EQU TRACING TO 1
   CRLF = CHAR(13):CHAR(10)
*
   TCL = SENTENCE()
   EML.TO   = FIELD(TCL," ",2)
   EML.FROM = FIELD(TCL," ",3)
   SMTPHOST  = FIELD(TCL," ",4)
   PORT = 25
*
   IF SMTPHOST = "" THEN
      PRINT "MAIL <To:> <From:> <SmtpServer>"
      STOP
   END
*
   SYS="*TCP*":SMTPHOST:";port=":PORT
*
*  Build email header
*
   EML.HEADER = "Subject: TEST Sockets API":CRLF:"From: ":EML.FROM
   EML.HEADER = EML.HEADER:CRLF:"To: ":EML.TO
*
   PRINT "Enter message text:"
   INPUT EML.TEXT
*
   CONNECT SYS TO SESS SETTING ERRNO ELSE
      OPN = "CONNECT"
      GOTO FIN
   END
*
   SDAT = "MAIL FROM:":EML.FROM
   GOSUB POST; IF ERRNO THEN GOTO FIN
   IF RDAT[1,6] # "250 OK" THEN GOTO PROTOCOL.ERROR
*
   SDAT = "RCPT TO:":EML.TO
   GOSUB POST; IF ERRNO THEN GOTO FIN
   IF RDAT[1,6] # "250 OK" THEN GOTO PROTOCOL.ERROR
*
   SDAT = "DATA"
   GOSUB POST; IF ERRNO THEN GOTO FIN
   IF RDAT[1,3] # "354" THEN GOTO PROTOCOL.ERROR
*
*  Build email body - header, blank line, text & a '.' on it's own
line,
*  this, with the final CRLF added by POST, terminates the message
body.
*
   SDAT = EML.HEADER:CRLF:CRLF:EML.TEXT:CRLF:"."
   GOSUB POST; IF ERRNO THEN GOTO FIN



TCP Connections in DataBasic

5-20 Reality V10.0 Differences Supplement

   IF RDAT[1,6] # "250 OK" THEN GOTO PROTOCOL.ERROR
*
   GOTO FIN
*
PROTOCOL.ERROR:
*
   PRINT "Unexpected response from SMTP server."
   PRINT "SDAT=":SDAT
   PRINT "RDAT=":RDAT
*
FIN:
*
   IF ERRNO THEN
      IF ERRNO = EDISCONN THEN
         PRINT SYS:" disconnected"
      END ELSE
         PRINT OPN:" (":SYS:") failed, ERRNO=":ERRNO
      END
   END
*
   IF NOT(UNASSIGNED(SESS)) THEN
      DISCONNECT SESS SETTING ERRNO ELSE
         PRINT "DISCONNECT (":SYS:") failed, ERRNO=":ERRNO
      END
   END
*
   STOP
*
**
***
POST:
*****
   IF TRACING THEN PRINT "POST:":SDAT
   MSG = SDAT:CRLF
   SEND MSG TO SESS SETTING ERRNO THEN
      GOSUB RECV
   END ELSE
      OPN = "SEND"
   END
   RETURN
*
**
***
RECV:
****
   RDAT = ""
   LOOP
      RECEIVE MSG FROM SESS SETTING ERRNO ELSE



TCP Connections in DataBasic

MultiValue Compatibility 5-21

         OPN = "RECEIVE"
         GOTO FIN_RECV
      END
      RDAT = RDAT:MSG
      AGAIN = RDAT[-2,2] # CRLF
   WHILE AGAIN DO REPEAT
*
   RDAT[-2,2] = ""
*
   IF TRACING THEN PRINT "RECV:":RDAT
   IF RDAT[1,3] = "220" THEN
*     This is the greeting reply from server, is ok, go do another
receive
      GOTO RECV
   END

FIN_RECV:
*
   RETURN
*
**
***
END
***



Pseudo Floppy Support

5-22 Reality V10.0 Differences Supplement

Pseudo Floppy Support

The format used for Reality tape images is different to the pseudo-floppy (.vtf) format
used by other MultiValue systems. Two new verbs, FDISCTOTAPE (page 5-26) and
TAPETOFDISC (page 5-30), allow you to transfer data between Reality and other
MultiValue systems by converting Reality tape images into MultiValue pseudo-floppy
images and vice versa.



SP-ASSIGN Enhancements

MultiValue Compatibility 5-23

SP-ASSIGN Enhancements

By default, the Reality SP-ASSIGN command will close any open print jobs. This
behaviour can now be changed by calling the SET-OPTION command with the
SPASSIGN option, so that open print jobs will only be closed if SP-ASSIGN is called
with no parameters.



Additional ACCOUNT-RESTORE Options

5-24 Reality V10.0 Differences Supplement

Additional ACCOUNT-RESTORE Options

Two additional options are provided for the ACCOUNT-RESTORE command. These
simplify restoring accounts onto systems with a frame size smaller or larger than the
original.

D Doubles the modulo in the files restored. Use this option if the target system has a
smaller frame size.

H Halves the modulo in the files restored. Use this option if the target system has a
larger frame size.

Note that the new modulos will be only a working approximation to allow the system to
work reasonably efficiently. For optimum efficiency, you should resize the files.



TCL Commands

MultiValue Compatibility 5-25

TCL Commands

CREATE-TRIGGER
Associates a trigger with a Reality file.

Syntax

CREATE-TRIGGER file-specifier trigger-name trigger-type

Syntax Elements

file-specifier is the name of the file with which the trigger will be associated. This
can be a file data section, a file dictionary or an account’s master
dictionary.

trigger-name The name of the trigger subroutine. This must be a cataloged
DataBasic subroutine in the MD of the account containing the file.

trigger-type The type of trigger – one of the following:

WRITE or PRE-WRITE
Run the trigger routine before writing a file item.

POST-WRITE Run the trigger routine after writing a file item.

DELETE or PRE-DELETE
Run the trigger routine before deleting an item
from the file.

POST-DELETE Run the trigger routine after deleting an item from
the file.

Restrictions

Requires SYS2 privileges.

Comments

The file specified may be a local file (dictionary or data section) or the master dictionary
of an account.

When associating a new trigger with a file, any existing trigger of the specified type must
first be deleted (see DELETE-TRIGGER on page 26).



TCL Commands

5-26 Reality V10.0 Differences Supplement

Example
:CREATE-TRIGGER TF TRIG1 PRE-WRITE
[1901] 'PRE-WRITE' trigger added to file 'TF'.

DELETE-TRIGGER
Deletes one or all of the trigger associations for a Reality file.

Syntax

DELETE-TRIGGER file-specifier [trigger-type | * ]

Syntax Elements

file-specifier is the name of the file with which the trigger is associated.

trigger-type The type of trigger: WRITE, PRE-WRITE, POST-WRITE, DELETE,
PRE-DELETE or POST-DELETE (see CREATE-TRIGGER).
* specifies all triggers.

Note that the keywords WRITE and DELETE are synonyms for PRE-
WRITE and PRE-DELETE respectively,

Restrictions

Requires SYS2 privileges.

Comments

The file specified may be a local file (dictionary or data section) or the master dictionary
of an account.

Example
:DELETE-TRIGGER TF *
[1915] All triggers deleted from file 'TF'.

FDISCTOTAPE
Purpose

Converts a MultiValue pseudo-floppy image into a Reality tape image.

Syntax

FDISCTOTAPE file-specifier item-id path {(options}



TCL Commands

MultiValue Compatibility 5-27

Syntax Elements

file-specifier The name of a Reality binary DIR-VIEW file containing the MultiValue
pseudo floppy image.

item-id The name of the item containing the MultiValue pseudo floppy image.

path The native directory path into which to save the Reality tape image.

Note: You will be prompted for any missing parameters.

Options

Cn Sets the Reality tape compression to level n; defaults to 0.

S Suppresses the progress '#' characters.

Operation

FDISCTOTAPE reads the MultiValue pseudo floppy image item-id from the Reality
binary DIR-VIEW file file-specifier and converts it to a Reality tape image. The tape
image is saved in the native directory defined by path and is given the same name as the
pseudo floppy image, but with the file extension ‘.rti’ or ‘.rci’. Compressed tape images
have the extension ‘.rci’ and uncompressed images the extension ‘.rti’.

Caution
Any existing file with the same name will be overwritten.

Restrictions

The size of image that can be converted is limited to about 60Mb by the active
workspace limit.

Note: This restriction is likely to be removed on future releases; please check the
Northgate web site for the latest product and documentation updates.

You can increase the active workspace limit by setting the environment variable
RWSMAXSIZE. For example, if you need to convert a 200Mb image, you should set
RWSMAXSIZE to at least 204800.

• On UNIX, add a line containing the following to the file .realityrc in your home
directory.

RWSMAXSIZE=limit



TCL Commands

5-28 Reality V10.0 Differences Supplement

where limit is the required active workspace limit in kilobytes.

Once you have converted your pseudo floppy image, you should return the active
workspace limit to its original value by removing RWSMAXSIZE from .realityrc.

• On Windows, set the environment variable when you log on, as follows:

Logon please : username RWSMAXSIZE=limit

where username is your Reality user name and where limit is the required active
workspace limit in kilobytes.

In neither case will this change affect other Reality users.

Example
DIR-VIEW HOST-FILES C:\images\tapes (B
FDISCTOTAPE HOST-FILES PFDATA C:\images\tapes (C6

Sets up a binary directory view of the PC directory C:\images\tapes and then converts
the item PFDATA into a Reality tape image. The tape image is saved with level 6
compression, in the file C:\images\tapes\PFDATA.rci.

LIST-TRIGGERS
Lists the triggers associated with a Reality file.

Syntax

LIST-TRIGGERS file-specifier

Syntax Elements

file-specifier is the name of the file for which to list the triggers.

Comments

The file specified may be a local file (dictionary or data section) or the master dictionary
of an account.

Example
:LIST-TRIGGERS TEST

File 'TF' has the following triggers:

   PRE-WRITE: T1



TCL Commands

MultiValue Compatibility 5-29

   PRE-DELETE: T2

2 trigger(s) listed.



TCL Commands

5-30 Reality V10.0 Differences Supplement

TAPETOFDISC
Purpose

Converts a Reality tape image into a MultiValue pseudo-floppy image.

Syntax

TAPETOFDISC path tape-image file-specifier {(options}

Syntax Elements

path The native directory path containing the Reality Tape image.

tape-image The name of the native file containing the Reality Tape image. This
must have a file extension of either ‘.rci’ or ‘.rti’.

file-specifier The name of a Reality binary DIR-VIEW file into which to save the
MultiValue pseudo floppy image.

Note: You will be prompted for any missing parameters.

Options

S Suppresses the progress '#' characters.

Operation

TAPETOFDISC reads the Reality tape image tape-image from the directory path and
converts it to a MultiValue pseudo floppy image. The pseudo floppy image is saved in
the Reality binary DIR-VIEW file file-specifier as an item with the same name as the tape
image, but without the extension ‘.rti’ or ‘rci’.

Caution
Any existing item with the same name will be overwritten.

Restrictions

Only Reality tapes images that have a block size of 500 can be converted to MultiValue
pseudo floppy images.

The size of image that can be converted is limited to about 60Mb by the active
workspace limit (see FDISCTOTAPE on page 5-26 for more details).



TCL Commands

MultiValue Compatibility 5-31

Example
DIR-VIEW HOST-FILES C:\images\tapes (B
TAPETOFDISC C:\images\tapes PFDATA.rci HOST-FILES

Sets up a binary directory view of the PC directory C:\images\tapes and then converts
the Reality tape image C:\images\tapes\PFDATA.rci into a MultiValue pseudo floppy
image. The image is saved in the DIR-VIEW file as the item PFDATA.



DataBasic Statements and Functions

5-32 Reality V10.0 Differences Supplement

DataBasic Statements and Functions

ACCEPT Statement
Purpose

To declare the availability of the server to the local session manager, or to accept a
connection from a client that has just requested a connection.

Syntax

ACCEPT accept-string TO session {TIMEOUT minutes}
{SETTING error} {RETURNING client-id} [THEN statement(s) | ELSE statement(s)]

Syntax Elements

accept-string is a string with one of the formats described in the section Accept
String.

session is a variable to hold a “session handle”. On return this will contain a
value that identifies the connection.

minutes is an expression giving a timeout value in minutes. The ELSE clause
is executed if a connect request is not received and a session
established within this time. If a connect request is not received and
the TIMEOUT clause is omitted (or minutes = 0), error is set to 4225
and the ELSE clause is taken.

client-id is a dynamic array variable consisting of two attributes that identify
the client program, that is:

client-plid^client-system*user-id

where:

client-plid is the PLId of the process running the client
program. This forms the first attribute.

client-system is the name of the system running the client
program, specified in the client's routing
information (ROUTE-FILE in UNIX or the registry
in Windows).



DataBasic Statements and Functions

MultiValue Compatibility 5-33

user-id is the user-id used to logon the client process.
This forms part of the second attribute and is
separated from the first part, client-system, by an
asterisk (*).

^ represents an attribute mark inserted by entering
CTRL+^

error is a variable that is assigned an error code number according to any
errors detected if the ELSE clause is taken. If the ELSE clause is not
taken, the value of error is set to 0. The error codes and
corresponding messages are given in the DataBasic Reference
Manual.

statement(s) comprises one or more DataBasic statements, executed as part of a
THEN or ELSE clause. A statement must be included. The THEN
clause is executed if the ACCEPT establishes a session without
error, otherwise, the ELSE clause is executed.

Accept String
The accept-string parameter must be a string with one of the following formats:

• To accept a connection from a Reality client program:

{*PTP*}server

where:

*PTP* specifies that this is a Reality process-to-process connection.
Note that, for Reality process-to-process this element is
optional.

server is the name by which the client knows this PTP server.

• To accept a connection from a remote system using raw TCP/IP:

*TCP*host;port=port{;option}{;option}...

where:

*TCP* specifies that this is a raw TCP/IP connection.

host is the IP address on which to accept a connection. This can be
the IP address of a local network interface, blank to listen on all



DataBasic Statements and Functions

5-34 Reality V10.0 Differences Supplement

local network interfaces, or for local loopback, either the IP
address 127.0.0.1 or “localhost”.

port is the port on host from which to accept a connection.

option is a name/value pair (separated by an equals sign), specifying
an optional parameter to be passed to the host.

Examples:

“*TCP*152.114.24.126;port=1045;listen=1”

Listens on port 1045 of the network interface with IP address 152.114.24.126.

“*TCP*;port=52002;listen=1”

Listens on port 52002 of all local network interfaces.

“*TCP*localhost;port=2701;listen=1”

Listens on local loopback port 2701.

Operation

DDA Connections
The ACCEPT statement is used either to declare to the Session Manager that the server
is available to any client that might subsequently request connection or it might be used
as a reply to accept connection to a client that has just requested connection.

Raw TCP/IP Connections
When using the ACCEPT statement to accept raw TCP/IP connections, you must first
create a listening socket by issuing an ACCEPT with the listen option. For example:

ACCEPT “*TCP*152.114.24.126;port=1045;listen=1” TO LISTENSESS ELSE STOP

Incoming connections from this host will then be queued. The listen option specifies the
size of the queue (note that the operating system may limit on the size of the queue).

Subsequent ACCEPT calls, specifying the same host and port, but without the listen
option, can then be used to fetch connection requests from the queue. For example:

ACCEPT “*TCP*152.114.24.126;port=1045” TO CONNSESS ELSE STOP

When your program has finished with a connection or no longer wishes to accept
incoming connections on the specified address, it should issue a disconnect:



DataBasic Statements and Functions

MultiValue Compatibility 5-35

DISCONNECT CONNSESS ELSE STOP

ACCESS Function
Purpose

To provide access to the current states of various data elements. Can be used only
within a file trigger subroutine.

Syntax

ACCESS(data-element)

Syntax Elements

data-element is the number corresponding to the data element to be referenced.

Operation

These values of data-element return the following information:

1 A reference to the trigger file.

2 If the trigger file is a data section, a reference to the dictionary of the trigger file. If
the trigger file is a dictionary, a reference to the trigger file.

3 The item body. Null if a delete operation.

10 The id of the item being written or deleted.

11 The file name in the form {DICT} {/account/}filename{,data-section-name}.

12 True if a PRE-DELETE or POST-DELETE trigger.

13 Always returns 0.

16 True if the item does not exist; false otherwise. Its value therefore depends on the
type of trigger:

PRE-WRITE True if a new item is being created; false if an existing item is
being updated.

PRE-DELETE Normally false, but true if the user is attempting to delete a non-
existent item (if the item does not exist, no action is taken, but
any triggers still run).



DataBasic Statements and Functions

5-36 Reality V10.0 Differences Supplement

POST-DELETE Always true.

POST-WRITE Always false.

Note that ACCESS(16) checks whether the item exists each time it is called.

20 In a POST-WRITE trigger, if true, indicates that the item was modified by the PRE-
WRITE trigger; if false, the item was written without modification. Always false in
PRE-WRITE, PRE-DELETE and POST-DELETE triggers.

23 The calling environment. Currently always returns 1 (trigger).

Examples
* Named Common - used to share info between Pre and Post Triggers
 COMMON /TRIGSTUFF/ T.TYPE

* Determine type of operation
 DELETING = ACCESS(12)  ;* True if item being deleted
 NEW.ITEM = ACCESS(16)  ;* True if new item being written
 BEGIN CASE
   CASE DELETING; T.TYPE="DEL";    * delete item
   CASE NEW.ITEM; T.TYPE="NEW";    * write new item
   CASE 1;        T.TYPE="UPD";    * update existing item
 END CASE

This example calls ACCESS(12) and ACCESS(16) to determine whether an item is
being created, updated or deleted, and stores the result in a named common area for
use in a subsequent trigger.

* Construct Log record
 LOGID = DATE():'~':TIME()
 LOGITEM = ''
 LOGITEM<1> = ACCESS(10)  ;* Item-id of item written or deleted
 LOGITEM<2> = T.TYPE      ;* Operation type (NEW, UPD or DEL)
 *
 * Record operation to logfile
 *
 WRITE LOGITEM ON LOGFILE,LOGID ON ERROR
   *
   * Write to logfile failed, but operation on datafile completed.
   * Not much we can do here except shout loudly.
   * If using Transaction Boundaries we could use TRANSABORT.
   *
   CRT
   CRT "*** ERROR - Cannot write to logfile"



DataBasic Statements and Functions

MultiValue Compatibility 5-37

   CRT
 END

This example calls ACCESS(10) obtain the item-id of the item being written of deleted
and then writes this information to a log file.

CONNECT Statement
Purpose

To establish a connection between the client program and a server on a local or remote
system.

Syntax

CONNECT connect-string TO session {TIMEOUT minutes} {SETTING error}
[THEN statement(s) | ELSE statement(s)]

Syntax Elements

connect-string is a string with one of the formats described in the section Connect
String. This specifies the protocol to use, the host to which to
connect, etc.

session is a variable to hold a “session handle”. On return this will contain a
value that identifies the connection.

minutes is an expression giving a timeout value in minutes. The ELSE clause
is executed if a connect request is not received and a session not
established within this time. If the TIMEOUT clause is omitted, the
program waits indefinitely for the CONNECT to complete.

error is a variable that is assigned an error code number if the CONNECT
operation fails. If the connection is established successfully, error is
set to 0. The error codes and corresponding messages are given in
the DataBasic Reference Manual.

statement(s) is either a THEN or ELSE clause (or both). A statement must be
included. The THEN clause is executed if the CONNECT establishes
a connection without error. The ELSE clause is executed otherwise.

Connect String
The connect-string parameter specifies the protocol to use, the host to which to connect,
etc. The available protocols are:

• Reality process-to-process.



DataBasic Statements and Functions

5-38 Reality V10.0 Differences Supplement

• TCP/IP.

Reality process-to-process:
For a Reality process-to-process connection, connect-string must be a string with
the following format:

{*PTP*}{system}^{account{,acct-passwd}}^server{,server-passwd}{^Q}

where:

*PTP* specifies that this is a Reality process-to-process connection.
Note that, for Reality process-to-process this element is
optional.

system is an entry in the UNIX ROUTE-FILE or Windows registry, that
identifies the remote system to connect to. The local database is
used if this is omitted.

^ represents an attribute mark (character with decimal value 254,
typed as CTRL+^). All except the last of these must be included.

account is an account on which a server is to be started. Can be omitted
if the server should already be running.

acct-passwd is the password for the named account, if one is required,
unless the account is the server's default account in which case
the acct-passwd is not required.

server is a command in the named account's MD that executes a
server program or the name of a server program already running
on the specified system or database. In the latter case, the
name of the server program is that specified as its server-id in
the ACCEPT statement it executes.

If the server-id specified in the CONNECT statement exists as a
user-id on the remote system (the system to which connection is
being connected), then the server-id is used as the user-id to log
to and its associated user profile is used to validate the
connection.

If the server-id is not defined as a user-id, the local user's profile
is checked for a network id (net-id). If a net-id is defined then
this is used as the user-id. However, the net-id must also be



DataBasic Statements and Functions

MultiValue Compatibility 5-39

defined as a user-id on the remote system otherwise the
connection will fail.

If a net-id is not defined on the local system either, then the
user-id used on the remote system defaults to the user-id used
to logon the process running the client program.

server-passwd is required if the server requires a password.

Q is the character Q. If it is appended after an attribute mark,
queues the connect instead of starting a server.

The connect request is queued until an already-running server
with the name specified issues an accept.

For example:

"FINANCE":AM:"SALES-ACCOUNT":AM:"ORDER-SERVER"

TCP/IP:
For connection to a remote system using raw TCP/IP, connect-string must be a
string with the following format:

*TCP*host;port=port{;option}{;option}...

where:

*TCP* specifies that this is a raw TCP/IP connection.

host is the IP address or DNS domain name of the system to which
to connect.

port is the port on host to which to connect.

option is a name/value pair (separated by an equals sign), specifying
an optional parameter to be passed to the host.

For example:

“*TCP*152.114.24.123;port=21;linger=5000”



DataBasic Statements and Functions

5-40 Reality V10.0 Differences Supplement

Operation

The CONNECT statement is executed by a client program to establish a connection with
a server program on a local or remote system.

• For Reality process-to-process connections, the connection is made to the system
and account identified by the system and account parameters in the connect-string
parameter. If a program, identified by server, is running and has issued an ACCEPT
statement to this process, the connection is made. If not, the server is instructed to
start the program on the server system.

• For TCP/IP connections, the connection is made to the system identified by the host
parameter. The port used is specified in the port parameter. Connections can be to
various kinds of remote system. For example:

other Reality systems;

web, ftp, telnet and time servers;

SMTP and POP3 email servers;

networked applications (written in Java, for example);

other MultiValue systems that support raw TCP/IP;

XML applications;

SOAP processes (using XML technology).

Note, however, that the CONNECT statement provides only a raw TCP connection.
You must implement the protocols needed for communication with these remote
systems.

Once a session has been started, either the client or the server can send data, receive
data, or terminate the connection.

A program can maintain more than one connection at the same time. Each connection is
identified in SEND, RECEIVE, RECWAIT, and DISCONNECT statements by the session
handle that is assigned by the CONNECT and ACCEPT statements.



DataBasic Statements and Functions

MultiValue Compatibility 5-41

SYSTEM Statement
Purpose

To allow the states of various system elements to be changed. An alternative to the
ASSIGN statement for setting a system element.

Syntax

SYSTEM(sys-element) = value

Syntax Elements

sys-element is the number corresponding to the system element to be changed.

System Elements

Only the following system elements can be changed:

2 Current page width (numeric).
3 Current page length (numeric).
5 Current page number (numeric).
7 Terminal type (numeric).
30 Pagination in effect (numeric).
35 Language in use (numeric).
37 Thousands separator in use (string).
38 Decimal separator in use: comma or period (string).
39 Money sign in use (string).

Examples
SYSTEM(5) = 12

Assigns the value 12 to system element 5, the current page number.

See Also

SYSTEM Function, ASSIGN Statement.



Debugger Commands

5-42 Reality V10.0 Differences Supplement

Debugger Commands

@
Purpose

To inhibit a break if a DEBUG statement is encountered.

Syntax

@{*}

Syntax Elements

* Toggles the appropriate global DEBUG option (DB.DEBUG or
EB.DEBUG), depending on whether the program being debugged
was entered from the TCL prompt or was called from External Basic.
Equivalent to calling the SET-OPTION or CLEAR-OPTION verb.

Note: Use SET-OPTION to set EB.DEBUG before starting to
debug file triggers.

If this element is omitted, the effect of the @ command is limited to
the program currently being debugged.

Operation

If a program contains one or more DEBUG statements and the program was run via the
DEBUG command, an execution break occurs every time a DEBUG statement is
encountered.

The @ command toggles the function of the DEBUG statement. Issuing the @ command
one time inhibits breaking. Issuing it a second time turns it back on.

The words ON and OFF are printed next to the @ to indicate the current status of the @
command.

Examples
*@  ON

Indicates that any subsequent DEBUG statements will be ignored.

*@  OFF



Debugger Commands

MultiValue Compatibility 5-43

Turns the @ command off, so a subsequent DEBUG statement will cause an execution
break.

M
Purpose

The M command toggles the option that causes a break whenever a CALL or RETURN
statement is encountered; that is, each time your program calls or returns from an
external subroutine.

Syntax

M

Operation

The words ON and OFF are printed next to the M to indicate the status of the option.

WF
Purpose

The WF command toggles the option that treats warning messages as fatal errors.

Syntax

WF{*}

Syntax Elements

* Toggles the global FATAL.WARNINGS option (equivalent to calling
the SET-OPTION or CLEAR-OPTION verb). You should use this
option when debugging file triggers.

If this element is omitted, the effect of the WF command is limited to
the program currently being debugged.

Operation

The option that treats warning messages as fatal errors can be enabled by running your
program with the F option. The WF debugger command toggles this option on and off.
The words ON and OFF are printed next to the WF to indicate the status of the option.



Debugger Commands

5-44 Reality V10.0 Differences Supplement

WS
Purpose

The WF command toggles the option that suppresses run-time warning messages.

Syntax

WS

Operation

The option that suppresses run-time warning messages can be enabled by running your
program with the S option. The WS debugger command toggles this option on and off.
The words ON and OFF are printed next to the WS to indicate the status of the option.



 6-1

Chapter 6

Rapid Recovery File System

This feature provides an additional resilience option. All changes to a

database's structure are logged so that it is possible to return a database to a

usable state within minutes of restarting after a system failure. There is no

need to restore the latest backup from tape. Transaction logs can then be

rolled forward and the database brought back into use.

Note: This feature is only available on partition databases. It is therefore

not available on some existing UNIX databases.



Description of Rapid Recovery

6-2 Reality V10.0 Differences Supplement

Description of Rapid Recovery

What is Rapid Recovery?
Rapid Recovery is a software facility that enables quick restoration of a database to a
valid structure following a system failure. Structural changes to a database are saved to
a dedicated log disk so that, if the database becomes corrupted, recent changes can be
rolled back until the database is in a consistent state.  The images of structural changes
are known as Quick images.

Rapid Recovery is normally used together with Transaction Logging to ensure that both
the database structure and the users’ data are restored during recovery. However, for
purposes of efficiency, it is possible to configure a database (or individual files) to a lower
level of resilience, but still maintain recovery of the database structure.

How Rapid Recovery Works
Each time a structural change is made to a database that has Rapid Recovery enabled,
the Rapid Recovery software writes the change to the raw log located on the log disk.

The raw log is a raw partition on the log disk. It acts as a central repository for the Before
and After images saved by the Transaction Logging software (see Raw Log) and for the
Quick images logged by the Rapid Recovery software. One raw log partition is shared by
all databases on a system.

Rapid Recovery software will save After images of changes to any file that is defined as
Recoverable. These images are written to the raw log, as described in Introduction to
Transaction Logging in the Reality Resilience Manual but are tagged as ‘phantom’ to
indicate that they should not be copied to the clean log. (If the database is not configured
for Transaction Logging, there will be no clean log available.) After images are available
on the raw log during automatic database recovery to restore the file’s data.

The logging status of files on a Rapid Recovery database can be:

• Logged: Before and After images are written to the raw log as well as the Quick
images. The After images are then stored in the clean log as an audit trail and for
disaster recovery. (This status is only available if the database is also configured for
Transaction Logging.)

• Recoverable: Before and After images are written to the raw log as well as the
Quick images, but the After images are tagged as ‘phantom’ and are not written to
the clean log. This mode may be useful for application level indexes for example.



Description of Rapid Recovery

Rapid Recovery File System 6-3

• Not Logged: Only Quick images are written to the raw log. Following automatic
recovery, the database will have a consistent structure but there may be data
missing from these files. This mode is suitable for scratch files.



Configuring a Database for Rapid Recovery

6-4 Reality V10.0 Differences Supplement

Configuring a Database for Rapid Recovery

To use Rapid Recovery on a particular database it must first be configured. This is
carried out from tlmenu’s Configuration and Setup menu (Figure 6-1), displayed by
selecting option 2 on the main administration menu. A full description of tlmenu is
provided in the Reality Resilience Manual.

Transaction Logging Menu System              Mon Jul 31 1999
Database name : dbase2                       Host name : crime
State         : Transaction Handling/Logging not enabled

        Configuration and Setup
        =======================

        1.  Define/Redefine the Database Configuration
        2.  Start Transaction Logging
        3.  Stop Transaction Logging
        4.  Configure the Transaction logging Status Monitor

        Enter option (1-4) : _

Figure 6-1. Transaction Logging Configuration and Setup Menu

1. Select option 1 on the Configuration and Setup menu. A message is then displayed
describing the purpose of the procedure and prompting you to confirm that you wish
to continue.

2. Enter y at the confirmation prompt. You are asked to select the resilience option
that you want to configure, from the menu:

Configure database for :

        1. Transaction Handling
        2. Stand-Alone Transaction Logging
        3. Shadow

        4. FailSafe/Heartbeat (Heartbeat on UNIX Only)
        5  Stand-Alone Rapid Recovery

        Enter option (1-5) :



Configuring a Database for Rapid Recovery

Rapid Recovery File System 6-5

3. Either:

• Select option 2 to configure both Rapid Recovery and Transaction Logging.
When prompted:

Do you wish to set up database for Rapid Recovery File System?
(y/n/q) ?

Enter y and follow the procedure for Defining/Redefining a Transaction
Logging database described in the Reality Resilience Manual.

Or:

• Select option 5 to configure Rapid Recovery only. A message is displayed
indicating that this will also enable Transaction Handling; enter y to confirm
that you want to continue. Rapid Recovery is enabled on the database and you
are then returned to the Configuration and Setup menu.

Note: Transaction Handling must be running in order for Rapid Recovery to be
possible. If logging is stopped on the database – either by executing TL-STOP
at TCL or via option 3 on tlmenu’s Configuration and Setup Menu – the Rapid
Recovery feature is inhibited. It will not be possible to recover the database
following a system failure until Transaction Handling is restarted.



Recovery Procedure

6-6 Reality V10.0 Differences Supplement

Recovery Procedure

When Reality restarts following a system or application failure, any Rapid Recovery
database that has become corrupted is marked as ‘Waiting for Recovery’. If a user tries
to log on to one of these databases, the message Awaiting Rapid Recovery is
displayed and the logon will fail.

Once you are satisfied that the underlying operating system is stable, execute the
command

realrecover

to initiate recovery of the database(s).

Notes: On UNIX you must be logged on as root to run realrecover.

The Rapid Recovery process is not repeatable. If a second system crash
occurs while recovery is in process, the database will not be recoverable. This
leads to problems if, for example, the system enters a power cycling mode. It is
therefore recommended that you do not execute the realrecover command
until you are confident that the system is stable. However, if you would like
database recovery to be automatic when the system restarts after a failure, you
can achieve this by adding the line REALRAPIDRECOVERY=1 into the file
$REALROOT/files/realityrc.

There is no need to restore a database from a backup tape. The Rapid Recovery
Process will restore the database to a consistent state within minutes.

If a user tries to log on to a database while the recovery is in progress, the message
Rapid Recovery in Progress is displayed and the logon will fail. When recovery is
complete, the database is unlocked and users can log on.

When the database is restored to a valid structure, application updates made during the
five minutes before failure are lost. For files that are Recoverable or Logged, logged
updates are automatically replayed, but there will be application data missing from files
that are Not Logged.

If the recovery process fails, the corrupted database remains locked. If anyone attempts
to log on to the database, the message This database needs checking is displayed
and the logon fails. It will then be necessary to restore the database from the most recent
backup tape and, if the database is configured for Transaction Logging, to restore



Recovery Procedure

Rapid Recovery File System 6-7

updates from the clean log. Refer to Transaction Logging Database Recovery in the
Reality Resilience Manual for a full description of this manual recovery procedure.

Shadow Databases
If you have any shadow databases configured, the realrecover script will attempt to
check and mount the base file system for each of these databases. Various messages
are displayed as this process takes place.

If the mount of the file systems fails, the following message is displayed:

File system <mount_point> needs to be checked.
Please check and mount the above filing systems and then rerun this
script.
Alternatively rerun this script with the –f switch and the above
databases will not be recovered.

If you are unable to recover a shadow database via realrecover, you must follow the
procedure described in Shadow Database Recovery in the Reality Resilience Manual.

Actions Following Rapid Recovery
If any of the operations listed in the following table were in progress at the time of the
system failure, you should take the appropriate action once the Rapid Recovery process
has completed.

Operation in Progress Action Following Rapid Recovery

Resize file Restart the resize operation using

RESIZE-FILE filename (R

Create index Delete the index and recreate it.

Account restore Delete any incomplete accounts and restore them again.

Note: Account restore of a complete database is
normally carried out before the database is
enabled for logging. In this case the database
cannot be recovered using Rapid Recovery: you
should remake the database and restart the
account restore.

MOVE-FILE Check that there is no duplicate D-pointer. If there is a D-
pointer in both the old location and the new location, use
EDELETE to delete the old D-pointer.



 7-1

Chapter 7

Compressed Tape Image

This chapter describes how you can specify a compression level for data

saved in a tape image.



Tape Images

7-2 Reality V10.0 Differences Supplement

Tape Images

A tape image is an ordinary file that is used to emulate a Reality tape device (on UNIX it
can also be a named pipe). This provides a method of saving Reality data to disk. Any
file name may be used, but it is recommended that the .rti extension is used so that tape
images can be easily identified. For compressed images (see below), you could use the
extension .rci.

Reality tape image emulates tape operations as closely as possible. When accessing a
normal file (not a pipe), all normal tape operations are supported (T-FWD, T-REW, T-
WEOF, etc.). When using a pipe as a tape image, you can only move forwards through
the image; commands that rewind the tape (such as T-BCK and T-REW) are not
available.

Notes:

1. When accessing a tape image, a control file tracks the current position in the tape
image. If you attach to a tape image, read a file, log off, log back on and re-attach to
the tape image, you will be where you left off; that is, one file down the tape.

Always treat a tape image exactly as you would a real tape. If in doubt, do a T-REW
before doing anything else.

2. As with tape drives, a tape image can contain multiple tape files.

3. Writing to a tape image will always write a full block, as it would to a tape drive. To
save space in the image file use the compression feature described below.

Data Compression
If required, you can specify that the data saved in the tape image should be compressed.
This can be done in three ways:

1. Set the database configuration parameter CompressTapeImage to the compression
level required. See Chapters 9 (UNIX) and 14 (Windows) of the Reality Reference
Manual, Volume 3: Administration for details.

2. Set the operating system environment variable REALCOMPTAPEIMAGE to the
compression level required. This overrides any CompressTapeImage setting.

3. Modify the path to the tape image to specify the compression level. This can be
done in the database configuration file, or by using the T-DEVICE command at TCL.



Tape Images

Compressed Tape Image 7-3

Specifying the level in this way overrides any default set with the previous two
methods.

To specify the tape image compression, append :clevel to the tape image filename
when defining the tape device, where level is the required compression level. For
example, /tmp/filsave.rti:c8 sets the compression level to 8 for the file
/tmp/filsave.rti.

In all cases, the compression level must be a number from 0 to 9, where 0 is no
compression (fastest) and 9 is maximum compression (slowest). The recommended
compression level, optimising compression and performance, is 6. Compression is
performed at the tape block level, so when using compression always use the maximum
tape block size allowed to maximise compression.

The default is no compression, for compatibility with older versions of Reality. Note,
however, that a compressed tape image cannot be read by versions of Reality earlier
than V9.1. Reality V9.1 and later can read any tape image, whatever the compression
level.



 8-1

Chapter 8

Support for Distributed Transactions under

MTS/COM+

If an application accessing Reality via the SQL/ODBC interface is running in

a Microsoft MTS/COM+ environment, it may be using distributed

transactions. These transactions are fully supported by Reality, using both

ODBC and XA interfaces.



Distributed Transactions

8-2 Reality V10.0 Differences Supplement

Distributed Transactions

SQL for Reality enables ODBC compliant applications to read and write data on a Reality
database. If the ODBC compliant application accessing the database via the SQL/ODBC
interface is running in a Microsoft COM+ environment, it may be using distributed
transactions. Reality’s support for COM+ transactions uses both ODBC and XA
interfaces, see Figure 8-1.

A distributed transaction, like a local transaction, is a set of related updates logically
grouped by transaction boundary commands. However, the related updates can be to
different databases on different systems on the network. If one of the updates is applied,
all of the other systems must be updated to maintain consistency. In this scenario,
updates applied to each database are classified as belonging to a transaction branch,
each branch being uniquely identified by the Transaction Manager (TM). The
responsibility for managing distributed transactions rests not with the local Reality TM,
but with a remote TM: Microsoft’s Distributed Transaction Co-ordinator (MDTC).

Where distributed transactions are being used, the Reality database must be configured
for Transaction Handling and for Transaction Logging. Refer to Defining and
Starting/Stopping Transaction Handling and Configuring for Transaction Logging. in the
Reality Resilience Manual.



Distributed Transactions

Support for Distributed Transactions under MTS/COM+ 8-3

 

Reality Database containing 
CUSTOMERS and 

ORDERS files 

SQL Server 

STOCK file 
 

(MS SQL Server) 

Marketing 
Database 
(Oracle) 

Reality ODBC Driver 

COM+ 

MDTC 

Application 

Windows System

Reality Host System (UNIX or  Windows)

ODBC updates 

XA transaction control 
(two-phase commit) 

Figure 8-1. COM+ Distributed Transactions

A local transaction is committed when the final update in that logical group is applied to
the database. Up to that point, the transaction can be rolled back if remaining updates



Distributed Transactions

8-4 Reality V10.0 Differences Supplement

fail to complete because of process or system failure, or because the transaction is
deliberately aborted. The transaction is also rolled back if remaining updates fail to
complete before the specified timeout period.

A distributed transaction has a two phase commit. In the first phase, each participating
database is requested to prepare their transactions for commitment; then, providing they
all return a successful outcome to phase-one, they enter phase-two whereby they are
requested to commit their transactions. If one or more databases fail to prepare their
transaction branches, the TM requests all databases to roll back their updates,
effectively aborting the transaction. Once a transaction branch is prepared, the database
effectively guarantees that it is capable of committing the transaction, even after a
database crash. If there is a crash, the database may be requested to commit the
transaction twice - once during normal operation and once after system recovery.

Until a transaction has been prepared, it can be rolled back, for example, if it exceeds
the local transaction timeout value. The Reality SQL server informs the MDTC of the
rollback and the MDTC rolls back all other participating transaction branch updates.
Once a transaction is prepared, it cannot be rolled back by the local TM. In the case of a
failure, the MDTC runs a recovery process, examining each prepared transaction branch
in turn and requesting either a commit or a rollback



MDTC Recovery Process

Support for Distributed Transactions under MTS/COM+ 8-5

MDTC Recovery Process

Recovery of processes using distributed transactions is handled by the MDTC.

In a distributed environment, failure can occur on the client, on the Reality server, or at
any point on the network. Failures on the Reality server are of two types: process failure
and system failure.

When a process fails:

• if the transaction branch has not been prepared, updates are rolled back, any
locks taken are released, and the remote TM aborts the transaction.

• if the transaction branch has been prepared, it persists in that state - as do any
locks taken on its behalf - even though the process itself may have terminated.
When the MDTC initiates its automated recovery, it requests the transaction
branch to either commit or roll back its transaction updates, effectively
completing the transaction, and releasing all associated locks.

When a system failure occurs, Reality runs its standard transaction recovery phase, in
which it scans the raw log and rolls back all uncompleted local transaction updates.
During this period all Reality databases on the system are locked to all users. If the raw
log contains any prepared distributed transactions, it is the responsibility of the MDTC to
initiate and complete recovery of these outstanding transaction branches. When both
local and distributed transactions have been resolved, the databases are released back
to users.

If the MDTC itself fails, any outstanding prepared transaction branches will persist on the
raw log until the MDTC restarts and connects to run the recovery process. This is known
as cold recovery.

If the MDTC does not fail, it will connect to the Reality system immediately and start the
recovery process. This is known as hot recovery.

When the MDTC connects to the Reality system to initiate the recovery, the connection
is to the RXA server instead of to the SQL server as shown in Figure 8-1. The RXA
server provides the MDTC with details of all prepared transactions currently in the raw
log. For each of these transactions, the MDTC issues a request to the RXA server to roll
back or commit. When all of the rollback or commit operations have completed
successfully, the MDTC closes the connection.



MDTC Recovery Process

8-6 Reality V10.0 Differences Supplement

If the MDTC’s automatic recovery process fails to complete, it is possible to carry out
manual recovery of distributed transactions via the rxaserver command.

rxaserver Command
f, following a system failure, the raw log contains prepared transactions for which the
MDTC has not issued a request to rollback or commit; Reality databases on the system
(all of which need access to the raw log) will remain locked to users. If the MDTC’s
automatic recovery process fails to complete, the rxaserver command allows you to
manually commit or rollback prepared transactions.

Caution
In order to make the decision to rollback or commit a prepared transaction, you must
have information about the state of all other systems participating in that transaction.

At the UNIX or Windows system prompt, execute the following command to list all
distributed transactions in the raw log:

rxaserver –l

Transaction 001 of 002

======================

Database : d:\dbases\live  DbKey  : 1     Port  : 401         Pid : 1896

Status   : ACTIVE         Started: 11:33 Offset: 0x08a18a00 Flags: 0x02

XID      : XA Transaction Identifier

FormatID : 0x4478019       Gtrid  : 48    Bqual : 16

Data     : 9FB37754665F574D819A550FC9CAF9602364B472884F3F4EBA08302B03D699B1

           990B2E20B08A9C479BDABA08BC1C1FBD0B8F02E2CC317D41B1B6F4E260D0FDCD

Transaction 002 of 002

======================

Database : d:\dbases\live  DbKey  : 1     Port  : 404         Pid  : 2073

Status   : PREPARED        Started: 11:35 Offset: 0x08a1C800  Flags: 0x82

XID      : XA Transaction Identifier

FormatID : 0x4478019       Gtrid  : 48    Bqual : 16

Data     : F6737754665F574D819A550FC9CAF5102364B472884F3F4EBA08302B03D699B1

           990B2E20B08A9C479BDABA08BC1C1FBD0B8F02E2CC317D6AB109C2AAF020DE79

Execute the following command to run the manual recovery process:

rxaserver –r



MDTC Recovery Process

Support for Distributed Transactions under MTS/COM+ 8-7

The recovery process displays each prepared transaction in turn, giving you the option to
abort or commit.

Transaction 001 of 001

======================

Database : d:\dbases\live  DbKey  : 1     Port  : 404         Pid  : 2073

Status   : PREPARED        Started: 11:35 Offset: 0x08a1C800  Flags: 0x82

XID      : XA Transaction Identifier

FormatID : 0x4478019       Gtrid  : 48    Bqual : 16

Data     : F6737754665F574D819A550FC9CAF5102364B472884F3F4EBA08302B03D699B1

           990B2E20B08A9C479BDABA08BC1C1FBD0B8F02E2CC317D6AB109C2AAF020DE79

Enter 'I'gnore (default), 'A'bort, 'C'ommit : C

You are about to Commit transaction 1 do you want to continue? <Y/N> : Y

Operation to Commit transaction 1 was successful, result 0



Reality V10.0 Differences Supplement Index-1

@ debugger command   5-42

A
ACCESS function   5-2, 5-35

B
Breakpoints, inhibiting debugger breaks

5-42

C
CLEARFILE statement   5-2
COM+   8-2

transaction example   8-3
CompressTapeImage   7-2
Configuration parameters,

CompressTapeImage   7-2
Conversion codes   4-8
CREATE-TRIGGER command   5-25

D
Data compression, tape image   7-2
DEBUG statement   5-42
Debugger prompt   5-5
Definition items, file   4-6
DELETE-TRIGGER command   5-26
Deleting file triggers   5-26
Directory view   4-2

Distributed transaction   8-2
example   8-3
manual recovery   8-6
recovery   8-5

E
Environment variables,

REALCOMPTAPEIMAGE   7-2

F
FDB-CLEAR command   4-9
FDB-SET command   4-10
FDB-SHOW command   4-11
FDISCTOTAPE command   5-26
File definition item   4-6
File triggers   5-2, 5-25, 5-26, 5-28, 5-35
File types   4-2
Foreign databases   4-12

creating files   4-10, 4-11
Reality files on foreign databases   4-7
saving and restoring files   4-11
SQL-view files   4-12

I
Inhibiting debugger breaks   5-42
INPUTERROR statement, in triggers   5-2

Index



Index

Index-2 Reality V10.0 Differences Supplement

L
LISTFILES command   4-3
Listing file triggers   5-28
LIST-TRIGGERS command   5-28
Locks

retrieval   4-8
update   4-8

Logging status   6-2

M
MDTC   8-2
Microsoft Distributed Transaction Co-

ordinator   8-2
Modulo   4-9
MultiValue systems

transferring data from   5-26
transferring data to   5-30

O
ODBC

Data Source   4-10, 4-12
interface   8-2
Reality files on foreign databases   4-8

P
Pipe, using as a tape image (UNIX)   7-2
Process recovery, distributed transactions

8-5
Pseudo-floppy image

converting to Reality tape image   5-26
creating from tape image   5-30

Pseudo-tape – see Tape image

Q
Q-pointer   4-3, 4-4
Quick images   6-2

R
Rapid Recovery

database recovery   6-6
description   6-2
shadow databases   6-7

Raw log   6-2
REALCOMPTAPEIMAGE environment

variable   7-2
Reallocation parameters   4-9
realrecover command   6-6
Recoverable Files   6-2
Retrieval locks   4-8

S
Shadow database, Rapid Recovery   6-7
SQL-VIEW command   4-12
SQL-view files   4-2, 4-12
SYSTEM statement   5-41

T
Tape image   7-2

converting to pseudo-floppy image   5-30
creating from pseudo-floppy image   5-26
data compression   7-2

TAPETOFDISC command   5-30
Transaction, distributed   8-2
Transferring data

from other MultiValue systems   5-26
to other MultiValue systems   5-30

Triggers – see File triggers

U
Update locks   4-8

W
WF debugger command   5-43
WS debugger command   5-44



Index

Reality V10.0 Differences Supplement Index-3

X
XA interface   8-2


	Reality V10.0, Differences Supplement
	Contents
	Chapter 1 - About this Manual
	Purpose of this Manual
	Contents
	Related Documents

	Conventions
	User Comments

	Chapter 2 - New Features in Reality V10.0
	GUI Administration
	Foreign Database Support
	MultiValue Compatibility
	File Triggers
	TCP Connections in DataBasic
	Pseudo Floppy
	Additional ACCOUNT-RESTORE Options
	SYSTEM Statement
	SP-ASSIGN

	Rapid Recovery File System
	Compressed Tape Image
	Support for Distributed Transactions under MTS/COM+
	Other New Features
	Large Databases
	Networking
	RealEdit


	Chapter 3 - GUI Administration
	GUI Administration
	Tree Structure
	Features
	Logging In
	Setting Up and Maintaining Databases
	Backup and Restore
	Users
	Security Profiles


	Chapter 4 - Foreign Database Support
	Summary of Reality File Types
	LISTFILES

	Foreign Database Files (Reality-specific Storage Format)
	File Definition Item
	Item Format

	FDB-CLEAR
	FDB-SET
	FDB-SHOW
	Saving and Restoring

	SQL View Files
	SQL-VIEW


	Chapter 5 - MultiValue Compatibility
	File Triggers
	How to Write a Trigger Routine
	Debugging Triggers
	Global DEBUG Options
	Debugger Commands
	Debugger Prompt

	How to Associate a Trigger with a File
	Commands that might run Triggers
	TCL Commands

	Examples
	Triggers Dos and Don’ts

	TCP Connections in DataBasic
	Example Programs
	TCP Client/Server
	TCP Ping
	TCP Email


	Pseudo Floppy Support
	SP-ASSIGN Enhancements
	Additional ACCOUNT-RESTORE Options
	TCL Commands
	CREATE-TRIGGER
	DELETE-TRIGGER
	FDISCTOTAPE
	LIST-TRIGGERS
	TAPETOFDISC

	DataBasic Statements and Functions
	ACCEPT Statement
	ACCESS Function
	CONNECT Statement
	SYSTEM Statement

	Debugger Commands
	@
	M
	WF
	WS


	Chapter 6 - Rapid Recovery File System
	Description of Rapid Recovery
	What is Rapid Recovery?
	How Rapid Recovery Works

	Configuring a Database for Rapid Recovery
	Recovery Procedure
	Shadow Databases
	Actions Following Rapid Recovery


	Chapter 7 - Compressed Tape Image
	Tape Images
	Data Compression


	Chapter 8 - Support for Distributed Transactions under MTS/COM+
	Distributed Transactions
	MDTC Recovery Process
	rxaserver Command


	Index




