

UIMS

Version 2.0

DATA/BASIC API
Reference Manual

All trademarks including but not limited to brand names, logos and product names referred to in this document are trademarks or
registered trademarks of Northgate Information Solutions UK Limited (Northgate) or where appropriate a third party.

This document is protected by laws in England and other countries. Unauthorised use, transmission, reproduction, distribution or storage
in any form or by any means in whole or in part is prohibited unless expressly authorised in writing by Northgate. In the event of any such
violations or attempted violations of this notice, Northgate reserves all rights it has in contract and in law, including without limitation, the
right to terminate the contract without notice.

© Copyright Northgate Information Solutions UK Limited, 1994.

Document No. UM70006277B
September 1994

Northgate Information Solutions UK Limited
Boundary Way
Hemel Hempstead, Hertfordshire,
HP2 7HU

Tel: +44 (0)1442 232424
Fax: +44 (0)1442 256454

www.northgate-is.com

Comment Sheet

Please give page number and description for any errors found:

Page Error

Please use the box below to: describe any material you think is missing; describe any material which is hard
to understand; enter any suggestions for improvement; provide any specific examples of how you use your
system which you think might be useful to readers of this manual

Continue on a separate sheet if necessary.

If you would like someone to contact you about documentation, please tick this box.

Important: Please enter your name, address and telephone number on the back of this form
before returning.

Manual: UIMS DATA/BASIC API, Reference Manual,
UM70006277B, September 1994.

Company Name / Address:

Technical Publications Department
Northgate Information Solutions UK Limited
Boundary Way
Hemel Hempstead
Hertfordshire HP2 7HU

FOLD B

FOLD C

F
O
L
D

A

BUSINESS REPLY SERVICE
Licence No. HH698

Fold along fold A,
then B and C. Tuck in
so name and address
are on outside.

Name of Sender:

Telephone:

Date:

Contents

Chapter 1 About this Manual

Purpose of this Manual ... 1-2
Related Documents ... 1-3

Conventions.. 1-4
User Comments .. 1-6

Chapter 2 Overview

Introduction .. 2-2
UIMS software ... 2-4
UIMS Applications... 2-5
Objects and Contacts .. 2-6

Graphics Contacts ... 2-6
Contact Hierarchy ... 2-6

Chapter 3 Objects

Common Contact Attributes ... 3-2
AppContext .. 3-4
AppHelp ... 3-6
AppResource .. 3-7
AppWindow ... 3-8
Brush.. 3-13
CheckButton... 3-14
ChildWindow ... 3-15
Clipboard.. 3-18
DialogBox .. 3-19
Display ... 3-21
Drawrule... 3-22
EditBox .. 3-25
ExclusiveGroup .. 3-28
Font .. 3-30
InclusiveGroup ... 3-32
Line .. 3-34
ListBox... 3-35
Menu .. 3-38

UIMS DATA/BASIC API, Reference Manual Contents-1

Contents

MenuBar... 3-39
MenuItem ... 3-40
MessageBox ... 3-41
OptionButton.. 3-43
Pen ... 3-44
Pointer .. 3-45
Rectangle.. 3-47
ScrollBar .. 3-48
Speaker... 3-51
SystemDictionary ... 3-52
Text .. 3-53
TextEditor .. 3-54
TitledButton ... 3-58
TypeFace .. 3-59
General Subroutines.. 3-61

Chapter 4 Messages

Overview .. 4-2
Message Loop ... 4-2
Masking Messages .. 4-3

Message Categories .. 4-7
Message Descriptions ... 4-9

Parameters... 4-9

Chapter 5 NewView

Introduction .. 5-2
Assigning Text Strings .. 5-2
The Terminal Window .. 5-3
Running NewView Applications on Normal Terminals 5-3

NewView Groups ... 5-4
Controlling the State of a Group.. 5-4
NewView Subroutines... 5-4

Setting the Terminal Window ... 5-6
Menus ... 5-6
System Messages .. 5-7

Contents-2 UIMS DATA/BASIC API, Reference Manual

Contents

On-line Help ... 5-8
A NewView Application... 5-9

Chapter 6 Subroutine Reference

Chapter 7 Resource Compiler

Introduction .. 7-2
Object Definitions... 7-3

Nested Definitions... 7-4
Menus ... 7-6
MenuItem Attributes ... 7-7
Screen Coordinates.. 7-8
Resource File Control.. 7-9
Comments... 7-9
White-space Characters ... 7-9

Pre-processor Commands.. 7-10
Constant Definitions.. 7-10
File Inclusion .. 7-12
Conditional Compilation ... 7-12

Compiling a Resource Script... 7-15
Errors .. 7-15

Using the Compiled Resources ... 7-20

Chapter 8 The Help System

Introduction .. 8-2
Creating the Help File... 8-3
Making Help Available to the User ... 8-4

Context-sensitive Help .. 8-4
Creating a Help Menu ... 8-5
Help Subroutines... 8-5

Appendix A Key Aliases

UIMS DATA/BASIC API, Reference Manual Contents-3

Contents

Appendix B Screen Colours

Specifying Colours ... B-2
Graphics Drawing Modes.. B-4

Appendix C Resource Compiler Keywords

Object Types... C-2
Object Attributes... C-3
Common Object Attributes ... C-11
Errors.. C-14

Appendix D Error Codes

UIMS Error Codes.. D-2
DDE Error Codes.. D-5
Execute Error Codes ... D-7
SendKeys Error Codes .. D-9
SystemCommand Error Codes .. D-10
NewView Error Codes .. D-11

Glossary

Index

List of Figures

Figure 2-1. The User Interface Management System................................... 2-2
Figure 3-1. The Components of an App Window.. 3-8
Figure 3-2. Foreground and Background Colours 3-24
Figure 3-3. Font Metrics... 3-31
Figure 3-4. TypeFace Styles ... 3-59

Contents-4 UIMS DATA/BASIC API, Reference Manual

Contents

List of Tables

Table 3-1. User Interface for EditBox.. 3-26
Table 3-2. User Interface for Standard List Box... 3-36
Table 3-3. User Interface for Multiple-selection List Box 3-37
Table 3-4. User Interface for Scroll Bar... 3-50
Table 3-5. User Interface for Text Editor ... 3-55
Table 5-1. NewView RealLink Menu Items .. 5-7
Table 6-1. SendKeys Key Definitions ... 6-196
Table A-1. Key Aliases .. A-2
Table A-2. Key Modifiers .. A-9
Table A-3. Pointer Modifiers ... A-10
Table B-1. Logical Colour Bindings .. B-2
Table B-2. UIMS.DRAW.CLEAR Colour Combinations B-6
Table B-3. UIMS.DRAW.NOTCLEAR Colour Combinations................... B-6
Table B-4. UIMS.DRAW.NOTOR Colour Combinations.......................... B-7
Table B-5. UIMS.DRAW.NOTXOR Colour Combinations B-7
Table B-6. UIMS.DRAW.OR Colour Combinations.................................. B-8
Table B-7. UIMS.DRAW.XOR Colour Combinations B-8

UIMS DATA/BASIC API, Reference Manual Contents-5

About this Manual

Chapter 1
About this Manual

This chapter describes the different sections of this manual and any

conventions used.

1-1

Purpose of this Manual

Purpose of this Manual

This manual is intended for the DATA/BASIC programmer who will be writing applications
that use the REALITY User Interface Management System (UIMS). It gives both general
and detailed information about the UIMS subroutines, messages and resource compiler. It
does not attempt to explain how to create a UIMS application. Rather, it gives detailed
descriptions of each component of the UIMS DATA/BASIC API for readers who already
have a basic understanding of DATA/BASIC programming.

It is assumed that, in addition to being an experienced DATA/BASIC programmer, you will
be familiar with RealLink for Windows and Microsoft Windows, and have access to the
appropriate user manuals.

This manual consists of the following sections:

Chapter 1, About this Manual, describes the different sections of the manual and any
conventions used.

Chapter 2, Overview, gives a brief overview of UIMS.

Chapter 3, Objects, describes the UIMS objects and indicates which subroutines can be
used to manipulate each of them.

Chapter 4, Messages, describes how a UIMS application uses messages to receive user
input. It also lists the different types of message and gives details of their parameters.

Chapter 5, NewView, describes the UIMS NewView subsystem for enhancing existing
applications.

Chapter 6, Subroutine Reference, lists the UIMS subroutines in alphabetical order. It gives
the full syntax for each subroutine and provides details of parameters and return values.

Chapter 7, Resource Compiler, describes how to use the UIMS Resource Compiler to create
resource files on the PC.

Chapter 8, Help System, describes how to provide the user of a UIMS application with on-
line help.

Appendix A, Key Aliases, lists the symbolic constant names, decimal values and descriptive
information for the UIMS key aliases.

1-2 UIMS DATA/BASIC API, Reference Manual

Purpose of this Manual

Appendix B, Screen Colours, describes how screen colours are specified in a UIMS
application and lists the pre-defined logical colours. It also explains the effects of the
different graphics drawing modes.

Appendix C, Resource Compiler Keywords, lists the object type and attribute keywords
recognised by the resource compiler and gives details of mandatory attributes and valid
attribute settings. It also lists the error messages that might be displayed by the resource
compiler and suggests probable causes for these.

Appendix D, Error Codes, lists the completion and error codes which might be returned by
UIMS subroutines.

Related
Documents

UIMS DATA/BASIC API, Quick Reference Guide.

UIMS DATA/BASIC API, Programmer's Guide.

RealLink for Windows User Manual.

REALITY DATA/BASIC Reference Manual.

Microsoft Windows User's Guide.

About this Manual 1-3

Conventions

Conventions

The following conventions are used in this manual:

Text Bold text shown in this typeface is used to indicate input which must
be typed on the keyboard.

Text Text shown in this typeface is used to show text that is output to the
screen.

Bold text Bold text in syntax descriptions represents characters typed exactly as
shown. For example:

WHO

Text Characters or words in italics indicate parameters which must be
supplied by the user. For example, in

GetChildFocus(Context, Contact, vChild)

the parameters Context, Contact and vChild are italicised to indicate
that this is the general form of the GetChildFocus subroutine. In an
actual program, the user supplies particular arguments for the place-
holders Context, Contact and vChild.

Italic text is also used for titles of documents referred to by this
document.

vText A lower case 'v' prefixing a place-holder name indicates that a
variable must be supplied so that a value can be returned. In the
example above, for instance, the 'v' prefix to the parameter name
vChild indicates that, in an actual program, the user must supply the
name of a variable in which to return the handle of the child which
currently has the focus.

aText, vaText A lower case 'a' prefixing a place-holder name indicates that either
the programmer must supply a dynamic array or, when combined
with a lower case 'v', that on return the parameter will contain a
dynamic array with one value in each attribute.

[Brackets] Brackets enclose optional parameters. For example, in

1-4 UIMS DATA/BASIC API, Reference Manual

Conventions

#IFDEF ident
source code block

[#ELSE
source code block]

#ENDIF

the keyword #ELSE and an associated source code block can
optionally be included.

… In syntax descriptions, ellipses following a group of items indicate
that the parameters preceding can be repeated as many times as
necessary. For example, in

ATTRIBUTE = Value
[ATTRIBUTE = Value
…]

the ellipses indicate that the sequence ATTRIBUTE = Value may be
repeated as many times as necessary.

Vertical ellipses are used in program examples to indicate that a
portion of the program is omitted.

SMALL CAPITALS Small capital letters are used for the names of keys such as RETURN.

CTRL+X Two (or more) key names joined by a plus sign (+) indicate a
combination of keys, where the first key(s) must be held down while
the second (or last) is pressed. For example, CTRL+X indicates that the
CTRL key must be held down while the X key is pressed.

Enter To enter means to type text then press RETURN. For instance, 'Enter
the WHO command' means type WHO, then press RETURN.

In general, the RETURN key (shown as ENTER or ↵ on some
keyboards) must be used to complete all terminal input unless
otherwise specified.

Press Press single key or key combination but do not press RETURN

afterwards.

X'nn' This denotes a hexadecimal value.

About this Manual 1-5

User Comments

User Comments

A Comment Sheet is included at the front of this manual. If you find any errors or have any
suggestions for improvements in the manual please complete and return the form. If it has
already been used then send your comments to the Technical Publications Manager at the
address on the title page.

1-6 UIMS DATA/BASIC API, Reference Manual

Overview

Chapter 2
Overview

This chapter gives a brief overview of the REALITY User Interface

Management System (UIMS). It describes the main features of UIMS, the

UIMS software, the three types of UIMS application, and the objects and

contacts that make up a UIMS graphical user interface.

2-1

Introduction

Introduction

RealLink for Windows is a PC terminal emulator that runs in the Microsoft Windows
environment. At the heart of RealLink is a User Interface Manager that provides its interface
to the Windows environment and generates its graphical display.

RealLink makes many of the features of the User Interface Manager available to host
applications by means of commands that can be transmitted across a LAN or other
communications link. The UIMS DATA/BASIC API provides the REALITY DATA/BASIC
programmer with a suite of subroutines that can be used in applications. These subroutines
simplify the programmer's task by constructing the User Interface Manager commands and
transmitting them to RealLink. RealLink, in turn, carries out these commands and returns
any results to the host application via variables supplied by the DATA/BASIC programmer.

Host Application

UIMS
DATA/BASIC

API

API calls UIMS Messages

Communications Port

K
ey

bo
a

rd
 c

o
d

es

P
ri

sm
 c

od
e

s

PRINT INPUT

UIMS calls UIMS Messages

Communications Port

Host

PC

RealLink for Windows

User Interface Manager

Microsoft Windows

Figure 2-1. The User Interface Management System

2-2 UIMS DATA/BASIC API, Reference Manual

Introduction

By using the UIMS DATA/BASIC API, programmers can create applications on MDIS
Series 19 and Series X host systems which make use of the features provided by the
Microsoft Windows graphical user interface. These include:

• A graphical user interface featuring windows, menus, dialog boxes and controls for
applications.

• Queued input.

• Multitasking.

• Data interchange between applications.

Overview 2-3

UIMS software

UIMS software

The UIMS software consists of the following components:

• RealLink for Windows.

• An Application Programming Interface for DATA/BASIC (DATA/BASIC API). This
consists of a suite of cataloged DATA/BASIC subroutines which provide the commands
that host applications use to access the RealLink User Interface Manager.

• A resource compiler for use by application programmers. This allows the graphical
objects used by an application to be defined on the PC rather than the host, thus
improving performance by sharing the processing and reducing communication between
the two systems. In addition, resources created in this way are loaded only when the
application is run, allowing a programmer to produce different versions of an
application, without having to change the host program.

When developing UIMS applications, you will require all three of the above. The users of
your finished applications, however, need only the first two, but they will require copies of
your compiled resource files (on their PCs), in addition to your host programs and
subroutines.

2-4 UIMS DATA/BASIC API, Reference Manual

UIMS Applications

UIMS Applications

There are three types of application program which make use of the UIMS DATA/BASIC
API: true UIMS applications, 'hybrid' applications, and NewView applications.

• A UIMS application is one which uses only the advanced user-interface functions of the
RealLink software for input and output.

• A hybrid application is a character-display application whose presentation has been
improved by the addition of some advanced user-interface functionality, but which still
relies largely on standard character input and output for its user interface.

• A NewView application is similar to a hybrid application, in that it is a character-display
application whose presentation has been improved. However, NewView allows the
existing user interface to be converted, so that the changes to the original code are
minimised.

The UIMS DATA/BASIC API, Programmer's Guide describes how to write these three types
of application.

Overview 2-5

Objects and Contacts

Objects and Contacts

The user interface for a UIMS application is built up of various kinds of pre-defined building
block (objects). Each of these objects acts as a template for creating graphical elements
which share certain common characteristics; for example, every list box is a box containing
a list. Characteristics such as size or colour can be changed to suit the requirements of the
user interface.

There are two types of object: contacts (windows, buttons, list boxes, etc.) which can be
displayed on the screen, and which provide different types of interface with the user; and
objects which define the appearance of the contacts (screen colours, text font and style, line
width, etc.). Chapter 3 describes each of the UIMS objects and contacts in detail.

The programmer designs the user interface for an application by creating contacts of the
required types which are then displayed on the screen as appropriate to the requirements of
the application. For instance, when the application requires input from the user, it might
display a dialog box, which could contain an input field and option buttons to allow the
selection of various options. Command buttons would allow the user to accept any changes
or to cancel the operation.

Graphics Contacts UIMS provides subroutines to draw text, lines and rectangles. If these are used, however, the
host application must ensure that they are redrawn when necessary (for instance, when the
user switches from one application to another, thus exposing all or part of a window). Since
the necessary commands must all be sent from the host to the PC via the communications
link, this can result in a slow response.

The alternative is to use the UIMS graphics contacts. These provide an interface to the user
only in that they can be displayed on the screen. However, they are always redrawn
automatically by UIMS when ever necessary. This reduces the communication between the
host and the PC, and improves the speed of your application.

Contact Hierarchy When you use UIMS contacts, you must organise them in a hierarchy consisting of 'parents'
and 'children'. This hierarchy has the following rules:

• A contact can have only one parent. Attaching a contact to a new parent removes it from
its previous parent, if any.

• A child contact can, itself, be the parent of other contacts.

• A contact cannot be displayed on the screen unless it has a parent contact. Similarly, the
children of a contact that has no parent cannot be displayed.

2-6 UIMS DATA/BASIC API, Reference Manual

Objects and Contacts

• A contact cannot be displayed unless its parent is visible.

• A child contact can only be displayed in the area of the screen that is occupied by its
parent contact. If it is positioned so that it overlaps the edge of its parent, only the part
that is inside the parent will be displayed.

• A child contact is always positioned relative to its parent. If the parent moves, its
children move with it.

• Disabling a contact also disables its children.

• Destroying a contact also destroys its children.

Overview 2-7

Objects

Chapter 3
Objects

UIMS provides various kinds of graphic objects with which to create the

user interface for an application. This chapter describes these objects and

indicates which subroutines can be used to manipulate each of them.

3-1

Common Contact Attributes

Common Contact Attributes

There are a number of attributes which are common to almost all contacts. The following
lists these attributes and the subroutines that control them. Note that where an attribute is not
supported by a particular contact, this is mentioned in the contact description.

Size The overall width and height of the contact.

Subroutines – Resize, GetSize.

Position The position of the top left-hand corner of the contact, relative to the top
left-hand corner of its parent.

Subroutines – Move, GetPosition.

Border style Whether or not a window has a visible border. In the case of an App
window, the type of border (single or double) is determined by the style of
the window.

Subroutines – SetBorderStyle, GetBorderStyle.

Help index The name of the help file section with which the contact is associated (see
page 3-6).

Subroutines – SetHelpIndex, GetHelpIndex.

Enabled Whether or not the contact is enabled. A disabled contact is displayed on
the screen, but cannot be selected by the user. The disabled state is
indicated by a greying effect, the exact form of which is platform
dependent.

Subroutines – SetEnabled, Disable, Enable, GetState.

Visible Whether or not the contact is visible on the screen.

Subroutines – SetMapped, Map, UnMap, GetState.

3-2 UIMS DATA/BASIC API, Reference Manual

Common Contact Attributes

Update mode Specifies when a contact will be redrawn if a change occurs. The following
options can be selected.

• Immediate – redraw immediately.
• None – don't redraw; wait for a Draw command.

The Draw subroutine redraws the specified contact immediately, whatever
its update mode setting.

Subroutines – SetUpdate, GetUpdate, Draw.

Event mask A list of message types that will be passed on by the contact to its parent
(refer to Chapter 4 for details).

Subroutines – SetEventMask, GetEventMask.

Objects 3-3

AppContext

AppContext

One of the first subroutine calls in a UIMS application must be to SignOn. This starts a
UIMS session and creates an AppContext object containing various configuration settings.

Once created, the App context is unique to the instance of the application that created it. The
user could run a second instance of the same application, but this would have its own App
context which might be configured differently.

All AppWindow contacts created by the application must be children of the AppContext.

Attributes Root window The handle of the first AppWindow contact created by the application.

Subroutines – GetRootWindow.

Front window The handle of the AppWindow which either currently has the focus or
which contains the contact which currently has the focus. If some other
application has the focus, the front window is that which last had the focus.

Subroutines – GetFrontWindow.

Coordinate mode
The coordinate system used to specify the positions and sizes of contacts.
Two modes are available: text (character) or graphics (pixel). In text mode,
a character cell is the size of an average character in the default (system)
font.

Subroutines – SetCoordMode, GetCoordMode.

Drawrule The handle of the default Drawrule object. This has default Pen, Brush
and Font objects as its children.

Subroutines – SetDrawrule, GetDrawrule.

Event mask A list of message types that will be passed on to the application by the
AppContext (refer to Chapter 4 for details).

Subroutines – SetEventMask, GetEventMask.

3-4 UIMS DATA/BASIC API, Reference Manual

AppContext

Wait pointer This provides a simple method of indicating to the user that a lengthy
operation is in progress, by changing the mouse pointer to an hourglass (or
other wait-pointer, as determined by the hardware platform).

Subroutines – WaitPointerOn, WaitPointerOff.

Help file The name of the current application help file.

Subroutines – SetHelpFile, GetHelpFile.

Help key The key that will be used to display the help text.

Subroutines – SetHelpKey, GetHelpKey.

Objects 3-5

AppHelp

AppHelp

An AppHelp object is a compiled Help text file (see Chapter 8) that contains named
sections of help text.

The sections of the help file are linked by means of 'hot words' embedded in the text. These
act as links to other sections of the file. If the user clicks on a hot word, the associated
section of the help file is displayed. The help file also contains an index (built during the
compilation process); this contains hot words giving access to every section of the file.

The application can display a specified section of the Help file by calling the AppHelp
subroutine. The programmer must provide the user with access to the help file; this can be
done by creating a Help menu, for example.

The AppHelp object also supports context sensitive help. Contacts used within the
application can each be linked to a section of the help file. The appropriate section of the
help file is displayed whenever the user presses a Help Accelerator key; this is normally
function key F1, but can be changed by the application. If the contact is not linked to a help
file section, the help index will be displayed.

Subroutines SetHelpFile Attaches a help file to the application.

GetHelpFile Returns the name of the application's help file.

AppHelp Displays a specified section of the help file.

SetHelpIndex Associates a contact with a section of the help file.

GetHelpIndex Returns the name of the help file section which is associated with a
specified contact.

SetHelpKey Assigns a key as the help accelerator.

GetHelpKey Returns the key currently assigned as the help accelerator.

3-6 UIMS DATA/BASIC API, Reference Manual

AppResource

AppResource

An AppResource object is a compiled UIMS Resource Script file (see Chapter 7) that
defines a group of UIMS objects and/or contacts. The application can dynamically create all
the defined objects and contacts by a single call to the LoadAppRes subroutine. An
application may load any number of AppResource files.

The only attribute of an AppResource is its filename.

Objects 3-7

AppWindow

AppWindow

An AppWindow contact is an application's primary interface with the user. Every
application must have at least one App window – the Root window; the handle of the root
window is always available in the AppContext object. An App window must be a child of
the App context and it can therefore be displayed anywhere on the screen; it cannot be
constrained within the client area of any other window (cf. Child window).

An App window consists of a client area, which must be managed by the application, and a
border, managed by UIMS. The border can include a title bar, system menu, maximise and
minimise icons, a menu bar, and horizontal and vertical scroll-bars.

Maximize Box

Minimize Box

Scroll Bar

Menu Bar

Title Bar

System Menu Box

System Menu

Window Border Scroll Bar

Thumb

Figure 3-1. The Components of an App Window

An App window is created using the CreateAppWin subroutine.

The Client Area The application has complete control over the appearance of a window's client area. Text,
lines and rectangles may be drawn directly on the client area. However, should the client
area be disturbed in any way (if, for instance, a dialog box is drawn in the client area) the
application must restore it to its previous state.

3-8 UIMS DATA/BASIC API, Reference Manual

AppWindow

Text Canvas If required, the responsibility for maintaining the client area can be partially transferred to
UIMS, by specifying that the window should have a text canvas. This is used to hold
transient text strings drawn with DrawTextString in the window client area, so that they can
be repainted at any time. If a window has a text canvas, the application does not have to
redraw the text when the window is resized or uncovered by another contact. The default is
for a window not to have a text canvas.

Notes:

1. The text canvas only stores the text strings and their positions in the client area; the
appearance of the text is determined by the currently selected Font object. If the
font is changed the appearance of the text will change when it is next redrawn.

2. Graphics shapes drawn with DrawLine and DrawRect are not stored in the text
canvas. The application must ensure that these are redrawn when the window is
updated.

3. The Erase subroutine can be used to clear the text canvas, and this also clears the
whole of the client area. Note, however, that erasing all or part of the client area
does not clear the text canvas – the stored text will be redrawn when the window is
next updated.

Attributes Style The style of the window. This can be a combination of the following
options:

• Movable – generates a single border, a title bar, and a system menu
with the Move command enabled.

• Closable – this is the same as movable, except that the Close command
on the system menu is enabled.

• Iconisable – this is the same as movable, except that the title bar
includes a minimise box, and the Minimise command on the system
menu is enabled.

• Resizable – this is the same as movable, except that the border is
double, the title bar includes a maximise box, and the Size and
Maximize commands on the system menu are enabled.

• Display a horizontal scroll-bar.
• Display a vertical scroll-bar.
• Allow movement from child to child with the TAB and SHIFT+TAB keys,

as in a dialog box.
• Text canvas (see above).

Subroutines – AppWinSetStyle, AppWinGetStyle.

Objects 3-9

AppWindow

Title The text that will appear in the title bar of the window. Note that an App
window only has a title bar if it is movable. If there is no title bar, the title
will not be displayed.

Subroutines – AppWinSetTitle.

Display The handle of the Display object on which the App window will be drawn.
This is a screen display object

Subroutines – AppWinGetDisplay.

MenuBar The handle of the MenuBar contact which is attached to the App window.

Subroutines – AppWinSetMenuBar, AppWinGetMenuBar,
AppWinRemoveMenuBar.

Horizontal scroll-bar
The handle of the window's horizontal scroll-bar.

Subroutines – AppWinGetHScroll.

Vertical scroll-bar
The handle of the window's vertical scroll-bar.

Subroutines – AppWinGetVScroll.

State Whether or not the window is minimised or maximised.

Subroutines – AppWinSetSizing, AppWinMaximize, AppWinMinimize,
AppWinRestore.

Clip region Defines a clipping region within the client area for all drawing operations.
Text and graphics drawn outside the clipping region are not displayed.

Subroutines – SetClip, GetClip.

Drawrule The handle of a Drawrule object used for all drawing operations within
client area. This defines attributes such as foreground and background
colours, text font, line width, etc. (see page 3-22).

Subroutines – SetDrawrule, GetDrawrule.

3-10 UIMS DATA/BASIC API, Reference Manual

AppWindow

Pointer The handle of a Pointer object used when the mouse pointer is within the
window's client area.

Subroutines – SetPointer, GetPointer.

Cursor state The type of cursor displayed in the client area and whether or not it is
visible. The following types are available:

• Outline cursor (not supported on Microsoft Windows).
• Block cursor.
• Underline cursor.
• Vertical bar cursor.

Subroutines – SetCursorState, GetCursorState.

Cursor position The position of the cursor relative to the origin (top left-hand corner) of the
client area. The position is specified in text or graphics coordinates,
depending on the coordinate mode of the application.

Subroutines – SetCursorPosition, GetCursorPosition.

Children The list of child contacts.

Subroutines – AddChild, AddChildren, RemoveChild,
RemoveChildren, GetChild, GetChildren, GetChildCount.

Focus The handle of the child contact which has the input focus.

Subroutines – SetContactFocus, GetChildFocus.

Default button The handle of the default TitledButton contact. This attribute is only
applicable to windows with the UIMS.WIN.DIALOG style.

Subroutines – AppWinSetDefButton.

Common Contact
Attributes

All the common contact attributes (see page 3-2) apply to AppWindow contacts.

Other Subroutines DrawTextString Draws text on the client area or text canvas.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Objects 3-11

AppWindow

Scroll Scrolls the client area.

Erase Erases a specified part of the client area or the whole of the text canvas.

3-12 UIMS DATA/BASIC API, Reference Manual

Brush

Brush

A Brush object defines the way in which areas of a window client area are filled. A Brush
cannot be attached directly to a contact, but must be a child of the attached Drawrule
object.

UIMS provides a default Brush, the handle of which can be obtained by using GetDrawrule
to fetch the handle of the drawrule for the Application context, and then calling the
DrawruleGetBrush subroutine. Additional Brush objects can be created with the
CreateDrawBrush subroutine.

Attributes Colour A UIMS logical colour or RGB value. Note that this attribute specifies
only the foreground colour of the brush pattern; in use, the background
colour will be determined by the Drawrule to which the brush is attached
(see Figure 3-2).

Subroutines – BrushSetColour, BrushGetColour.

Style The style of the brush. The following styles are available:

UIMS.BRUSH.SOLID
A solid block in the specified foreground colour.

UIMS.BRUSH.HOLLOW
Transparent. The colour attribute is ignored.

Subroutines – CreateDrawBrush.

Other Subroutines DrawruleGetBrush
Returns the handle of the Brush which is attached to the specified
Drawrule object.

DrawruleSetBrush
Attaches a Brush to a Drawrule object.

Objects 3-13

CheckButton

CheckButton

A CheckButton is a contact that allows the user to select and deselect an option. It consists
of a small box with a button title to the right. When the option is selected, the box contains a
mark of some kind – usually a cross or a tick, depending on the platform.

A check button differs from an option button in that, when a number of check buttons are
grouped together, each button can be selected independently of the others.

A CheckButton contact is created with the CreateCheckButton subroutine.

Attributes Title The text that will appear beside the check button. One of the characters in
the title can be designated as a selector key by preceding it with an
ampersand character.

Subroutines – CheckButtonSetTitle.

State Whether or not the button is selected.

Subroutines – CheckButtonSetSelected, CheckButtonSelect,
CheckButtonDeselect, CheckButtonGetSelected.

Autotoggle This is an operating mode that removes the burden of check mark control
from the application. When selected, Autotoggle automatically toggles the
check mark on or off, as appropriate, each time the user selects the button.

Subroutines – CheckButtonSetToggle.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to CheckButton
contacts.

3-14 UIMS DATA/BASIC API, Reference Manual

ChildWindow

ChildWindow

A ChildWindow contact is similar to an App window, but its movement is constrained
within the client area of its parent. Its position is specified relative to its parent, so that,
when the position or size of the parent window changes, the Child window will be redrawn
automatically. If necessary, a Child window will be clipped at the edges of its parent's client
area.

A Child window can be the child of an App window or another Child window.

Unlike an App window, a Child window cannot have a title bar, system menu, maximise and
minimise icons, or a menu bar, though it can have a single border and scroll-bars.

A Child window is created using the CreateChildWin subroutine.

The Client Area The application has complete control over the appearance of a window's client area. Text,
lines and rectangles may be drawn directly on the client area. However, should the client
area be disturbed in any way (if, for instance, a dialog box is drawn in the client area) the
application must restore it to its previous state.

Text Canvas If required, the responsibility for maintaining the client area can be partially transferred to
UIMS, by specifying that the window should have a text canvas. This is used to hold
transient text strings drawn with DrawTextString in the window client area, so that they can
be repainted at any time. If a window has a text canvas, the application does not have to
redraw the text when the window is resized or uncovered by another contact. The default is
for a window not to have a text canvas.

Notes:

1. The text canvas only stores the text strings and their positions in the client area; the
appearance of the text is determined by the currently selected Font object. If the
font is changed the appearance of the text will change when it is next redrawn.

2. Graphics shapes drawn with DrawLine and DrawRect are not stored in the text
canvas. The application must ensure that these are redrawn when the window is
updated.

3. The Erase subroutine can be used to clear the text canvas, and this also clears the
whole of the client area. Note, however, that erasing all or part of the client area
does not clear the text canvas – the stored text will be redrawn when the window is
next updated.

Objects 3-15

ChildWindow

Attributes Style The style of the window. This can be a combination of the following
options:

• Display a horizontal scroll-bar.
• Display a vertical scroll-bar.
• Allow movement from child to child with the TAB and SHIFT+TAB keys,

as in a dialog box.
• Text canvas (see above).

Subroutines – ChildWinSetStyle, ChildWinGetStyle.

Horizontal scroll-bar
The handle of the window's horizontal scroll-bar.

Subroutines – ChildWinGetHScroll.

Vertical scroll-bar
The handle of the window's vertical scroll-bar.

Subroutines – ChildWinGetVScroll.

Clip region Defines a clipping region within the client area for all drawing operations.
Text and graphics drawn outside the clipping region are not displayed.

Subroutines – SetClip, GetClip.

Drawrule The handle of a Drawrule object used for all drawing operations within
client area. This defines attributes such as foreground and background
colours, text font, line width, etc. (see page 3-22).

Subroutines – SetDrawrule, GetDrawrule.

Pointer The handle of a Pointer object used when the mouse pointer is within the
window's client area.

Subroutines – SetPointer, GetPointer.

Cursor state The type of cursor displayed in the client area and whether or not it is
visible. The following types are available:

• Outline cursor (not supported on Microsoft Windows).
• Block cursor.

3-16 UIMS DATA/BASIC API, Reference Manual

ChildWindow

• Underline cursor.
• Vertical bar cursor.

Subroutines – SetCursorState, GetCursorState.

Cursor position The position of the cursor relative to the origin (top left-hand corner) of the
client area. The position is specified in text or graphics coordinates,
depending on the coordinate mode of the application.

Subroutines – SetCursorPosition, GetCursorPosition.

Children The list of child contacts.

Subroutines – AddChild, AddChildren, RemoveChild,
RemoveChildren, GetChild, GetChildren, GetChildCount.

Focus The handle of the child contact which has the input focus.

Subroutines – SetContactFocus, GetChildFocus.

Default button The handle of the default TitledButton contact. This attribute is only
applicable to windows with the UIMS.WIN.DIALOG style.

Subroutines – ChildWinSetDefButton.

Common Contact
Attributes

All the common contact attributes (see page 3-2) apply to ChildWindow contacts.

Other Subroutines DrawTextString Draws text on the client area or text canvas.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Scroll Scrolls the client area.

Erase Erases a specified part of the client area, or the whole of the text canvas.

Objects 3-17

Clipboard

Clipboard

The Clipboard object provides access to the GUI system clipboard (if one is available). This
allows the user to move data within an application and between UIMS applications and other
applications running on the GUI.

Attributes Content The data on the clipboard.

Subroutines – ClipboardGetContent, ClipboardSetContent, Copy, Cut,
Paste

Size The amount of data on the clipboard. When requesting the size of the
clipboard contents, a format must be specified. If data is available, but it is
not in the specified format, zero is returned.

Subroutines – ClipboardGetSize.

Help index A pointer to the related section of the application help file (see page 3-6).

Subroutines – SetHelpIndex, GetHelpIndex.

Cut and Paste
Operations

The Copy, Cut and Paste subroutines provide the means of transferring data between
EditBox and TextEditor contacts and the clipboard. Copy and Cut place the selected text
on the clipboard (in the case of Cut, removing it from the edit contact at the same time),
while Paste inserts the contents of the clipboard into the edit contact at a specified position.
Note, however, that Cut, Copy and Paste cannot be used with any other type of contact.

3-18 UIMS DATA/BASIC API, Reference Manual

DialogBox

DialogBox

A DialogBox contact is a window that is used to prompt for information from the user. It
does this by means of its child contacts (controls); typical dialog controls are check buttons,
option buttons, edit boxes, list boxes and titled buttons.

When created, a dialog box is always application modal – the application will not continue
until the user has responded to the dialog, but other applications continue to work normally.
Two other modes are available: system modal and modeless. A system-modal dialog box
disables the complete user interface; the user can do nothing until he has responded to the
dialog. A modeless dialog box does not disable the parent window; the user can continue to
work with the application while the dialog box is displayed.

A DialogBox contact is created with the CreateDlgBox subroutine.

Attributes Mode Modeless, application modal or system modal.

Subroutines – DlgBoxSetMode, DlgBoxGetMode.

Style The style of the dialog box. This can be a combination of the following
options:

• Movable – generates a title bar and a system menu with the Move
command enabled.

• Closable – this is the same as movable, except that the Close command
on the system menu is also enabled.

Subroutines – DlgBoxSetStyle, DlgBoxGetStyle.

Objects 3-19

DialogBox

Title The text that will appear in the title bar. Note that a dialog box only has a
title bar if it is movable. If there is no title bar, the title will not be
displayed.

Subroutines – DlgBoxSetTitle.

Children The list of child contacts.

Subroutines – AddChild, AddChildren, RemoveChild,
RemoveChildren, GetChild, GetChildren, GetChildCount.

Focus The handle of the child contact which has the input focus.

Subroutines – SetContactFocus, GetChildFocus.

Default button The handle of the default TitledButton contact.

Subroutines – DlgBoxSetDefButton.

Common Contact
Attributes

All the common contact attributes (see page 3-2) except Border Style apply to DialogBox
contacts.

Other Subroutines DrawTextString Draws text on the client area.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Erase Erases a specified part of the client area.

3-20 UIMS DATA/BASIC API, Reference Manual

Display

Display

A Display object provides access to the characteristics of a display or printer device. Its
attributes can only be read, and on some platforms some attributes may not be supported.

Display objects are constructed by UIMS during initialisation, and whenever a new printer
device is configured on the underlying GUI. The values are largely settings taken from the
underlying GUI.

Note: Printer display objects are not supported on this version of UIMS. The subroutines
concerned are provided for use on later releases.

Attributes Pixel size The dimensions in pixels of the display or the print area.

Subroutines – DisplayGetPixelSize.

Other Subroutines AppWinGetDisplay
Returns the handle of the Display object on which an App window is being
displayed.

DisplayGetMetrics
Returns information about the sizes of the various window elements (title
bar, border, etc.) when shown on the specified Display object.

GetDefaults Returns the handles of the default Display, Printer and TypeFace objects.

Objects 3-21

Drawrule

Drawrule

A Drawrule object encapsulates the methods for drawing text and graphics in a window's
client area.

UIMS provides a default Drawrule, the handle of which can be obtained by using
GetDrawrule to fetch the handle of the drawrule for the Application context. Additional
Drawrule objects can be created with the CreateDrawrule subroutine. The default Brush,
Font and Pen objects for the application context will be attached to the newly-created
drawrule. These can be changed with the appropriate subroutines (see below).

Drawrule
Inheritance

There are two ways in which a drawrule becomes attached to a contact: by calling the
SetDrawrule subroutine; or by inheritance from its parent:

A newly created contact inherits its parent's drawrule. This means that a contact created
without a parent has no drawrule until it is either given a parent, or specifically given a
drawrule with SetDrawrule.

Once a contact has a drawrule, it retains it until changed with SetDrawrule. However, a
contact's drawrule can be removed by calling SetDrawrule and specifying a null handle. If
the contact has a parent, the old drawrule will be replaced by that attached to the parent
object. If the contact has no parent, the old drawrule will be removed and the contact will
inherit a new drawrule when it is next attached to a parent object.

Attributes Font The handle of a Font object for character drawing (see page 3-30).

Subroutines – DrawruleSetFont, DrawruleGetFont.

Pen The handle of a Pen object for line drawing (see page 3-44).

Subroutines – DrawruleSetPen, DrawruleGetPen.

Brush The handle of a Brush object for area filling (see page 3-11).

Subroutines – DrawruleSetBrush, DrawruleGetBrush.

Text mode Character drawing mode. The following are available:

UIMS.TEXT.OPAQUE Fill the text background with the selected
background colour;

UIMS.TEXT.HOLLOW Do not fill the text background.

3-22 UIMS DATA/BASIC API, Reference Manual

Drawrule

Subroutines – CreateDrawrule.

Graphics mode Graphics pen or brush drawing mode. The following are available:

UIMS.DRAW.CLEAR Invert the Pen colour and combine the
result with the colour on the screen by
using a bit-wise AND operation.

UIMS.DRAW.COPY Replace the colour on the screen with
that of the selected Pen.

UIMS.DRAW.NOTCLEAR Combine the Pen and screen colours
with a bit-wise AND.

UIMS.DRAW.NOTCOPY Replace the colour on the screen with
the bit-wise inverse of the Pen colour.

UIMS.DRAW.NOTOR Invert the Pen colour and combine the
result with the colour on the screen by
using a bit-wise OR operation.

UIMS.DRAW.NOTXOR Combine the Pen and screen colours by
means of a bit-wise exclusive-OR and
then invert the result.

UIMS.DRAW.OR Combine the Pen and screen colours by
means of a bit-wise OR operation.

UIMS.DRAW.XOR Combine the Pen and screen colours by
means of a bit-wise exclusive-OR
operation.

The effects of these graphics drawing modes are described in detail in
Appendix B.

Subroutines – CreateDrawrule.

Colours Foreground and background colours. These must be UIMS logical colours
or RGB values. Note that the foreground colour is used only for text; the
colours of lines and area fills are determined by the Pen and Brush objects
respectively (see Figure 3-2).

Subroutines – DrawruleSetColour, DrawruleGetColour.

Objects 3-23

Drawrule

Drawrule background colour
(DrawruleSetColour)

Pen colour (PenSetColour)

Brush colour (BrushSetColour)

Drawrule foreground colour
(DrawruleSetColour)

Figure 3-2. Foreground and Background Colours

Other Subroutines GetDrawrule Returns the handle of the Drawrule that is attached to a specified object.

SetDrawrule Attaches a new Drawrule to the specified object or contact.

3-24 UIMS DATA/BASIC API, Reference Manual

EditBox

EditBox

An EditBox contact is a single line text field in which text may be input and edited by the
user, or presented for display by the application. The field can be left, right or decimal point
aligned.

Within the edit box, the cursor can be moved with the keyboard or the mouse. Unless the
Wait Pointer is on, when inside the edit box, the mouse pointer changes to a vertical I-beam;
clicking within the edit box sets the cursor to the character position closest to the mouse
pointer. Note that attempting to move the cursor beyond the edge of the field will
automatically scroll the contents.

Text within the edit box may also be selected with the mouse or the keyboard. Making a
selection generates a Select message which gives the start and end positions of the selected
text; deselecting text generates a Select message with the start and end positions both given
as zero.

Table 3-1 gives full details of the edit box keyboard and mouse interfaces.

An EditBox contact is created using the CreateEditBox subroutine.

Attributes Content The text displayed within the edit box.

Subroutines – EditBoxSetContent, EditBoxGetContent.

Selection The text which is highlighted within the edit box.

Subroutines – EditBoxSetSelected.

Style Whether or not the edit field is enclosed in a box.

Subroutines – CreateEditBox.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style and Drawrule apply to
EditBox contacts.

User Interface Table 3-1 summarises the mouse and keyboard interfaces for an edit box.

Objects 3-25

EditBox

Table 3-1. User Interface for EditBox

Action Result

Mouse Interface

Single click Positions the insertion point and drops the selection anchor.

Double click Selects a word.

SHIFT+Single click Positions the insertion point and extends the selection from the selection

anchor to the insertion point.

Drag Drops the selection anchor, moves the insertion point and extends the

selection from the selection anchor to the insertion point.

Keyboard Interface

LEFT ARROW, RIGHT

ARROW

Removes the selection from any text and moves the insertion point in the

indicated direction.

SHIFT+RIGHT ARROW,

SHIFT+LEFT ARROW

Drops the selection anchor (if it is not already dropped), moves the insertion

point and selects all text between the selection anchor and the insertion point.

CTRL+RIGHT ARROW,

CTRL+LEFT ARROW

Moves the insertion point to the beginning of the word in the indicated

direction.

SHIFT+CTRL+RIGHT

ARROW,

SHIFT+CTRL+LEFT

ARROW

Drops the selection anchor (if it is not already dropped), moves the insertion

point to the beginning of the word in the indicated direction, and selects all text

between the selection anchor and the insertion point.

HOME Removes the selection from any text and moves the insertion point to the

beginning of the field.

SHIFT+HOME Drops the selection anchor (if it is not already dropped), moves the insertion

point to the beginning of the field, and selects all text between the selection

anchor and the insertion point.

CTRL+HOME As HOME.

SHIFT+CTRL+HOME As SHIFT+HOME.

END Removes the selection from any text and moves the insertion point to the

end of the field.

(continued)

3-26 UIMS DATA/BASIC API, Reference Manual

EditBox

Table 3-1 User Interface for EditBox (continued)

Action Result

SHIFT+END Drops the selection anchor (if it is not already dropped), moves the insertion

point to the end of the field, and selects all text between the selection

anchor and the insertion point.

CTRL+END As END.

SHIFT+CTRL+END As SHIFT+END.

DELETE If text is selected, deletes the text. Otherwise, deletes the character following

the insertion point.

BACKSPACE If text is selected, deletes the text. Otherwise, deletes the character preceding

the insertion point.

SHIFT+DELETE If text is selected, cuts the text to the clipboard. Otherwise, deletes the

character following the insertion point.

SHIFT+INSERT Pastes (inserts) the contents of the clipboard at the insertion point.

CTRL+INSERT Copies the selected text to the clipboard, but does not delete it.

Note: When the user types a character, any selected text is automatically replaced by the
character typed.

Objects 3-27

ExclusiveGroup

ExclusiveGroup

An ExclusiveGroup is a contact that manages a number of button contacts as a group. It has
the following characteristics:

• Only one button in the group can be selected at a time.

• The group can be made up of OptionButton contacts only.

If required, the group may be given a heading and enclosed in a rectangle.

Note: The border and title of an ExclusiveGroup lie within its client area. Care must be
taken when positioning option buttons, text and graphics, to ensure that they do not
overwrite the border and the title.

An ExclusiveGroup is created using the CreateExGroup subroutine.

Attributes Title The text that will appear above the group. This will only be displayed if
the group has a surrounding rectangle.

Subroutines – ExGroupSetTitle.

Style Whether or not the group has a surrounding rectangle.

Subroutines – ExGroupSetStyle.

Selection Which of the buttons in the group is currently selected. This is a read-only
attribute; selection is made by the user, or by calling the appropriate option
button subroutine.

Subroutines – ExGroupGetSel, OptionButtonSelect,
OptionButtonDeselect, OptionButtonSetSelected.

Children The list of child OptionButton contacts.

Subroutines – AddChild, AddChildren, RemoveChild,
RemoveChildren, GetChild, GetChildren, GetChildCount.

3-28 UIMS DATA/BASIC API, Reference Manual

ExclusiveGroup

Focus The handle of the child contact which has the input focus.

Subroutines – SetContactFocus, GetChildFocus.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to ExclusiveGroup
contacts.

Objects 3-29

Font

Font

A Font object defines the characteristics of the text font used when writing characters on a
window's client area. A Font cannot be attached directly to a contact, but must be a child of
the attached Drawrule object.

UIMS provides a default Font, the handle of which can be obtained by using GetDrawrule
to fetch the handle of the drawrule for the Application context, and then calling the
DrawruleGetFont subroutine. Additional Font objects can be created with the
CreateDrawFont subroutine.

Attributes TypeFace The handle of a TypeFace object.

Subroutines – FontSetTypeFace, FontGetTypeFace.

Style A combination of the styles which are available in the selected typeface.
Depending on the typeface, the following styles might be available:
Normal, Bold, Italic, Outline, Underline, Strikeout.

Subroutines – FontSetStyle, FontGetStyle.

Point size The required point size for the font. A list of the point sizes available in
the selected typeface may be obtained by calling the
TypeFaceGetPointSizes subroutine.

Subroutines – FontSetPointSize.

Font metrics The dimensions, in pixels, of the selected style and size of the selected
typeface, as follows:

• The total height of the font – the ascent plus the descent (see below).
• The height above the base line of the tallest characters (ascent).
• The height of the longest descender (descent).
• The distance between the descenders of one row of characters and the

top of the tallest characters in the next row (leading).
• The average width of the lower case characters.
• The average width of the upper case characters.
• The width of the widest character.

3-30 UIMS DATA/BASIC API, Reference Manual

Font

Ascent

Descent
Base line

Base line

Leading

Figure 3-3. Font Metrics

These values are set when the font is created and cannot be changed by the
programmer.

Subroutines – FontGetMetrics.

Other Subroutines DrawruleGetFont
Returns the handle of the Font which is attached to the specified
Drawrule object.

DrawruleSetFont
Attaches a Font to a Drawrule object.

Objects 3-31

InclusiveGroup

InclusiveGroup

An InclusiveGroup is a contact that manages a number of other contacts as a group. An
inclusive group differs from an exclusive group in that it can contain contacts other than
option buttons and that, if the group contains a number of buttons, more than one can be
selected at once.

Except where used internally by a child contact, the cursor keys can be used to move the
input focus within the group. The order in which contacts receive the focus depends on their
positions in the list of children. Pressing TAB moves the focus to the next contact outside the
group.

If required, the group may be given a heading and enclosed in a rectangle.

The example below shows an inclusive group containing Text, EditBox and CheckButton
contacts. These are enclosed in a rectangle with a title.

Note: The border and title of an InclusiveGroup lie within its client area. Care must be
taken when positioning child contacts, text and graphics, to ensure that they do not
overwrite the border or the title.

An InclusiveGroup is created using the CreateIncGroup subroutine.

Child Contacts The following types of contact can be used within an inclusive group:

CheckButton,
ChildWindow,
EditBox,
ExclusiveGroup,
InclusiveGroup,
Line,

ListBox,
OptionButton,
Rectangle,
ScrollBar,
Text,
TextEditor.

Attributes Title The text that will appear above the group. This will only be displayed if
the group has a surrounding rectangle.

Subroutines – IncGroupSetTitle.

3-32 UIMS DATA/BASIC API, Reference Manual

InclusiveGroup

Style Whether or not the group has a surrounding rectangle.

Subroutines – IncGroupSetStyle.

Children The list of child contacts.

Subroutines – AddChild, AddChildren, RemoveChild,
RemoveChildren, GetChild, GetChildren, GetChildCount.

Focus The handle of the child contact which has the input focus.

Subroutines – SetContactFocus, GetChildFocus.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to InclusiveGroup
contacts.

Other Subroutines DrawTextString
Draws text on the client area.

DrawLine Draws a line on the client area.

DrawRect Draws a rectangle on the client area.

Erase Erases a specified part of the client area.

Objects 3-33

Line

Line

A Line contact provides a way of displaying a line within the client area of a window. The
length and slope of the line are determined by the size and shape of an imaginary containing
box. The line may be drawn with an arrowhead at either or both ends.

A Line contact will redraw or realign itself when required. Lines drawn directly onto the
client area must be redrawn by the application.

Note: When a Line contact is created, its length and slope are determined by the positions
of the two ends of the line. To change its size, the Resize subroutine must be used;
when calling this, you must specify new values for the width and height of the
containing box.

A Line contact is created using the CreateLine subroutine.

Attributes Drawrule The handle of an attached Drawrule object. This specifies the Pen object
used to draw the line (see page 3-44). The Drawrule object is described on
page 3-22.

Subroutines – SetDrawrule, GetDrawrule.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style and Event Mask apply to
Line contacts.

3-34 UIMS DATA/BASIC API, Reference Manual

ListBox

ListBox

A ListBox contact allows the user to select one or more from a list of options. It consists of
a box in which the available items are displayed as a vertical list. The list is displayed in the
order supplied by the application; the ListBox contact cannot sort its contents. If there are
more items available than will fit in the box, a vertical scroll-bar will automatically be
attached to the box so that the user can scroll through the list. Scrolling is managed by the
list box; the application does not have access to the scroll-bar attributes.

A list box can be configured so that the user can select only one item at a time, or to permit
multiple selections. A selection is shown within the ListBox by highlighting the entire line.
Tables 3-2 and 3-3 give details of the mouse and keyboard interfaces for standard and
multiple-selection list boxes.

If required, a ListBox can be linked to an EditBox contact; when an item is selected it is
copied into the edit box. The characters are inserted into the EditBox one at a time, as if
they had been entered at the keyboard. The result will depend on whether or not each
character passed any edit box validation mask criteria; the application is responsible for
ensuring that the edit box will accept items copied from the list box.

A ListBox contact is created using the CreateListBox subroutine.

Attributes Contents The list of items (character strings).

Subroutines – ListBoxAddContent, ListBoxAddContents,
ListBoxGetContent, ListBoxGetContents, ListBoxRemoveContent,
ListBoxRemoveContents.

Link The handle of an EditBox contact to which the ListBox is linked.

Subroutines – ListBoxSetLink.

Selections The positions in the contents list of the items that are selected.

Subroutines – ListBoxAddSelection, ListBoxAddSelections,
ListBoxGetSelections, ListBoxRemoveSelection,
ListBoxRemoveSelections.

Objects 3-35

ListBox

Controls Whether or not multiple selections are allowed.

Subroutines – CreateListBox.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to ListBox contacts.

User Interface The tables below summarise the mouse and keyboard interfaces for standard and multiple-
selection list boxes.

Table 3-2. User Interface for Standard List Box

Action Result

Mouse Interface

Single click Selects the item and removes the selection from the previously selected item

(if any).

Double click Same as a single click.

Keyboard Interface

SPACEBAR Selects the item

RIGHT ARROW,

DOWN ARROW

Selects the next item in the list and removes the selection from the previously

selected item (if any).

LEFT ARROW, UP ARROW Selects the preceding item in the list and removes the selection from the

previously selected item (if any).

PAGE UP Scrolls the currently selected item to the bottom of the list box, selects the first

visible item in the list box, and removes the selection from the previously

selected item (if any).

PAGE DOWN Scrolls the currently selected item to the top of the list box, selects the last

visible item in the list box, and removes the selection from the previously

selected item (if any).

HOME Scrolls the first item in the list to the top of the list box, selects the first item,

and removes the selection from the previously selected item (if any).

END Scrolls the last item in the list to the bottom of the list box, selects the last

item, and removes the selection from the previously selected item (if any).

3-36 UIMS DATA/BASIC API, Reference Manual

ListBox

Table 3-3. User Interface for Multiple-selection List Box

Action Result

Mouse Interface

Single click Toggles the selection state of the item, while preserving the selection state of

all other items.

Double click Same as a single click.

Keyboard Interface

SPACEBAR Toggles the selection state of the item, while preserving the selection state of

all other items.

RIGHT ARROW,

DOWN ARROW

Moves the list box cursor to the next item in the list.

LEFT ARROW, UP ARROW Moves the list box cursor to the preceding item in the list.

PAGE UP Scrolls the currently selected item to the bottom of the list box and moves the

list box cursor to the first visible item in the list box.

PAGE DOWN Scrolls the currently selected item to the top of the list box and moves the list

box cursor to the last visible item in the list box.

HOME Scrolls the first item in the list to the top of the list box and moves the list box

cursor to the first item.

END Scrolls the last item in the list to the bottom of the list box and moves the list

box cursor to the last item.

Objects 3-37

Menu

Menu

A Menu contact consists of a vertical list of choices from which the user can select. The
choices are MenuItem or Menu contacts. A menu can be used in two ways:

• It can be used as a pull-down menu, by attaching it to a MenuBar contact.

• It can be attached to another Menu contact to create a cascaded menu.

The parent MenuBar or Menu contact displays the title of the menu. The menu itself only
appears when selected by the user.

A Menu contact is created by calling CreatePullDownMenu or MakePullDownMenu.

Attributes Title The text that will appear on the parent menu bar or menu. One of the
characters in the title can be designated as a selector key by preceding it
with an ampersand character.

Subroutines – MenuSetTitle.

Children A list containing the handles of child MenuItem and Menu contacts.

Subroutines – CreateMenuItem, CreatePullDownMenu, AddChild,
AddChildren, RemoveChild, RemoveChildren, GetChild, GetChildren,
GetChildCount.

Common Contact
Attributes

Of the common contact attributes, only the following apply to Menu contacts:

• Enabled/disabled state.

• Update display control.

• Event mask.

3-38 UIMS DATA/BASIC API, Reference Manual

MenuBar

MenuBar

A MenuBar is a contact that consists of a horizontal list of choices displayed below the title
of an AppWindow contact. It offers the first level of menu choice for a user. The choices a
menu bar offers may be Menu or MenuItem contacts.

A MenuBar contact is created using the CreateMenuBar subroutine.

Attributes Choices A list of the handles of the menu bar's child Menu or MenuItem contacts.

Subroutines – CreatePullDownMenu, CreateMenuItem, AddChild,
AddChildren, RemoveChild, RemoveChildren, GetChild, GetChildren,
GetChildCount.

Common Contact
Attributes

Of the common contact attributes, only the following apply to MenuBar contacts:

• Update display control.

• Event mask.

Other Subroutines AppWinSetMenuBar
Attaches a menu bar to an AppWindow contact.

AppWinRemoveMenuBar
Removes the menu bar from an AppWindow contact.

AppWinGetMenuBar
Returns the handle of an App window's MenuBar contact, if any.

Comments Keyboard access to the menu bar is by means of a selector key that is platform dependent
and cannot be changed by the user. On Microsoft Windows, this selector is the ALT key.

Objects 3-39

MenuItem

MenuItem

A MenuItem contact allows the user to select an application command from a menu. It must
be attached to a Menu or a MenuBar contact and consists of a title that appears on the
parent contact. When the user selects a menu item, a button-press message is generated; this
can be detected by the application, which must initiate the appropriate operation.

A MenuItem contact is created using the CreateMenuItem subroutine.

Attributes Title The text that will appear on the parent menu bar or menu. One of the
characters in the title can be designated as a selector key by preceding it
with an ampersand character.

If a single hyphen is used as the title, a separator item is created. This
appears as a continuous line across the width of its parent menu. Separator
items cannot be selected by the user and should be used to visually group
related menu items. Note that a separator item cannot be attached to a
menu bar.

Subroutines – MenuItemSetTitle.

Check mark A mark (normally a tick or a cross, depending on the platform) that can be
displayed beside a menu item to indicate that an option is selected.

Subroutines – MenuItemCheck, MenuItemUncheck,
MenuItemSetCheckMark, MenuItemGetCheckMark.

Autocheck This is an operating mode that removes the burden of check mark control
from the application. When selected, Autocheck automatically toggles the
check mark on or off, as appropriate, each time the user selects the menu
item.

Subroutines – MenuItemSetAutoCheck.

Common Contact
Attributes

Of the common contact attributes, only the following apply to Menu contacts:

• Enabled/disabled state.

• Update display control.

• Event mask.

3-40 UIMS DATA/BASIC API, Reference Manual

MessageBox

MessageBox

A MessageBox contact is a dialog box which displays a message and waits for the user to
respond. It has up to three titled buttons and a graphic icon. A message box is always
application modal (see page 3-19).

The programmer can define the icon displayed, the number of buttons, the titles on the
buttons and the default button. The following icons are available:

Information:

Warning:

Alert:

Query:

Alternatively a pre-defined style can be chosen; the following are available.

• An Information message box which displays a message and has one button. Unless
changed, the button title is 'OK'.

• A Warning message box which displays a warning message and has two or three buttons.
Unless changed, a two-button Warning box has 'OK' and 'Cancel' buttons and a three-
button Warning box 'Yes', 'No' and 'Cancel' buttons.

Objects 3-41

MessageBox

• An Alert message box which displays a alert message and has two or three buttons.
Unless changed, a two-button Alert box has 'Retry' and 'Cancel' buttons and a three-
button Alert box 'Abort', 'Retry' and 'Cancel' buttons.

• A Query message box which displays a question mark and has two or three buttons.
Unless changed, a two-button Query box has 'OK' and 'Cancel' buttons and a three-button
Query box 'Yes', 'No' and 'Cancel' buttons.

The button titles can be changed if necessary, to suit the particular requirements of the
application.

The size of the message box is adjusted according to the length of the message, which must
be less than 200 characters long.

A MessageBox contact is created by calling the CreateMessageBox subroutine.

Attributes Style The icon, number of buttons and default button, or one of seven pre-
defined styles: Information, Warning with two buttons, Warning with three
buttons, Alert with two buttons, Alert with three buttons, Query with two
buttons or Query with three buttons.

Title The title to be displayed at the top of the message box.

Message The message to be displayed.

Button Titles A list of button titles, if required.

These are all set when the message box is created.

Common Contact
Attributes

None of the common contact attributes apply to MessageBox contacts.

3-42 UIMS DATA/BASIC API, Reference Manual

OptionButton

OptionButton

A OptionButton is a contact that allows the user to select one from a group of options. It
consists of a small circle with a button title to the right. When the option is selected, the
circle contains a mark of some kind – usually a second, filled in, circle in the centre of the
button, though this depends on the platform.

Although option buttons can be used individually, they are normally grouped together in an
ExclusiveGroup contact. When this is done, only one button in the group can be selected at a
time. Exclusive groups of option buttons should be used to offer a number of mutually
exclusive options.

A OptionButton contact is created using the CreateOptionButton subroutine.

Attributes Title The text that will appear beside the option button. One of the characters in
the title can be designated as a selector key by preceding it with an
ampersand character.

Subroutines – OptionButtonSetTitle.

State Whether or not the button is selected.

Subroutines – OptionButtonSelect, OptionButtonDeselect,
OptionButtonSetSelected, OptionButtonGetSelected.

Autotoggle This is an operating mode that removes the burden of selection mark
control from the application. When selected, Autotoggle automatically
toggles the selection mark on or off, as appropriate, each time the user
selects the button.

Option buttons within an exclusive group always operate in Autotoggle
mode.

Subroutines – OptionButtonSetToggle.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to OptionButton
contacts.

Objects 3-43

Pen

Pen

A Pen object determines the appearance of lines drawn using the Line and Rectangle
contacts, and the DrawLine and DrawRect subroutines. A Pen cannot be attached directly
to a contact, but must be a child of a Drawrule object (see page 3-22).

UIMS provides a default Pen, the handle of which can be obtained by using GetDrawrule
to fetch the handle of the drawrule for the Application context, and then calling the
DrawruleGetPen subroutine. Additional Pen objects can be created using the
CreateDrawPen subroutine.

Attributes Colour A UIMS logical colour or RGB value.

Subroutines – PenSetColour, PenGetColour.

Style The style of the pen. The following styles are available:

UIMS.PEN.SOLID
A continuous line with colour and width as specified.

UIMS.PEN.HOLLOW
A transparent line. This is most useful when drawing rectangles –
if the pen is continuous, the rectangle will be enclosed in a border;
with a transparent pen, this border will be invisible.

Subroutines – CreateDrawPen.

Width The width of the line in pixels.

Note: A pen width greater than zero can be inefficient on some display
platforms.

Subroutines – PenSetWidth, PenGetWidth.

Other Subroutines DrawruleGetPen
Returns the handle of the Pen which is attached to the specified Drawrule
object.

DrawruleSetPen
Attaches a Pen to a Drawrule object.

3-44 UIMS DATA/BASIC API, Reference Manual

Pointer

Pointer

A Pointer object determines the shape and characteristics of the mouse pointer.

When the workstation has a mouse (or any other type of pointing device), the pointer shows
the current location of the mouse. The pointer is automatically displayed and moved as the
mouse is moved. If the workstation does not have a mouse, the pointer is not normally
displayed.

The pointer is normally moved by the user but, if required, the application can control its
position, or restrict it to a specific window. The type of pointer displayed is controlled partly
by UIMS and partly by the application. The application can determine the type of pointer
used within each window's client area, and can change it to the Wait Pointer type while
processing takes place.

A Pointer object is created using the CreatePointer subroutine.

Pointer
Inheritance

There are two ways in which a pointer becomes attached to a contact: by calling the
SetPointer subroutine; or by inheritance from its parent.

A newly created contact inherits its parent's pointer. This means that a contact created
without a parent has no pointer until it is either given a parent, or specifically given a pointer
with SetPointer.

Once a contact has a pointer, it retains it until changed with SetPointer. However, a
contact's pointer can be removed by calling SetPointer and specifying a null handle. If the
contact has a parent, the old pointer will be replaced by that attached to the parent object. If
the contact has no parent, the old pointer will be removed and the contact will inherit a new
pointer when it is next attached to a parent object.

Attributes Type The shape of the pointer. This can be any of the following:

• Standard arrow pointer.
• Text I-beam pointer.
• Diagonal cross-hair pointer.
• Horizontal and vertical cross-hair pointer.
• Wait pointer – normally an hourglass.

Subroutines – PointerSetType, PointerGetType.

Objects 3-45

Pointer

Other Subroutines GetPointer Returns the handle of the Pointer object that is attached to a specified
object or contact.

GetPointerPos
Returns the pointer position, relative to either the screen or a specified
contact.

GrabPointer Traps the pointer within a contact.

SetPointer Attaches a new Pointer object to a specified object or contact.

SetPointerPos
Sets the pointer position, relative to either the screen or a specified contact.

UngrabPointer
Releases the pointer if it has been trapped in a contact by GrabPointer.

WaitPointerOff
Changes the mouse pointer from the wait pointer to the pointer type
specified by the Pointer object.

WaitPointerOn
Changes the mouse pointer to the wait pointer, overriding the pointer type
specified by the Pointer object.

3-46 UIMS DATA/BASIC API, Reference Manual

Rectangle

Rectangle

A Rectangle contact provides a way of displaying a rectangle within the client area of a
window. It differs in the following ways from text drawn directly on a window's client area
with the DrawRect subroutine:

• A Rectangle contact will redraw or realign itself when required. A rectangle drawn
directly onto the client area must be redrawn by the application.

• The background of a Rectangle contact can be a different colour to that of the client
area.

Note: When a Rectangle contact is created, its size is determined by the positions of its
edges. To change its size, the Resize subroutine must be used; when calling this,
you must specify new values for the width and height of the rectangle.

A Rectangle contact is created using the CreateRect subroutine.

Attributes Style Whether or not the Rectangle has a border.

Subroutines – CreateRect.

Drawrule The handle of an attached Drawrule object. This specifies the Pen object
used to draw the rectangle (see page 3-44) and the Brush object used to fill
the centre of the rectangle (see page 3-11). The Drawrule object is
described on page 3-22.

Subroutines – SetDrawrule, GetDrawrule.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style and Event Mask apply to
Rectangle contacts.

Objects 3-47

ScrollBar

ScrollBar

A ScrollBar contact provides a graphical method of selecting one from a range of values. It
consists of a band (or thumbtrack) with a small box containing an arrow at each end. A box
on the thumbtrack (the thumb) acts as a slider which can be dragged along the thumbtrack
using the mouse. The position of the thumb on the thumbtrack represents the currently
selected value, in relation to the maximum and minimum values assigned to the end points
of the thumbtrack.

Thumbtrack

Thumb Direction arrows

Scroll-bars are most frequently seen in association with other contacts; they are provided in
application and child windows, list boxes and text editors so that the user can view
information which is not visible on the screen. A ScrollBar contact, however, is an
independent control which can represent whatever the application requires. A minimum
value is assigned to one end of the track and a maximum to the other; the user can then
choose any value between these by simply moving the thumb. A minimum step can be
specified to ensure that only meaningful values can be selected.

The user can move the thumb by dragging it with the mouse, or clicking either side of it, on
the direction arrows or the thumbtrack. When a direction arrow is clicked, the thumb is
moved by a small amount (line increment) in the appropriate direction; clicking the
thumbtrack moves the thumb by a larger, page increment. Both the line and page increment
can be set by the application. Table 3-4 on page 3-50 gives full details of the scroll-bar
mouse and keyboard interfaces.

A ScrollBar can work in two modes: tracking and non-tracking. In tracking mode, each new
thumb position is reported as it is moved; in non-tracking mode, the thumb position is only
reported when the mouse button is released.

A ScrollBar contact is created using the CreateScrollBar subroutine.

3-48 UIMS DATA/BASIC API, Reference Manual

ScrollBar

Attributes Type Horizontal or Vertical.

Subroutines – CreateScrollBar.

Tracking mode Tracking or non-tracking.

Subroutines – ScrollBarSetTracking.

Range The maximum and minimum values represented by the ends of the
thumbtrack.

Subroutines – ScrollBarSetRange.

Thumb position A value representing the thumb position, relative to the specified
maximum and minimum values.

Subroutines – ScrollBarSetThumb, ScrollBarGetThumb.

Increments The line and page increments by which the thumb can move.

Subroutines – ScrollBarSetInc.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to ScrollBar
contacts. Note, however, that none of the common contact attributes are applicable to scroll-
bars created automatically as part of another contact.

Scroll-bar
Messages

When the user operates a scroll-bar, a message is generated and a message returned to the
application. The type of message depends on whether the scroll-bar is an independent
control, or was created automatically as part of an App or Child window: ScrollBar contacts
generate UIMS.MSG.SCROLL messages, while App and Child window horizontal and
vertical scroll-bars respectively generate UIMS.MSG.HSCROLL and
UIMS.MSG.VSCROLL messages.

When an application receives a scroll-bar message, the Data2 parameter will contain a value
that indicates what kind of scrolling is being performed. The application must use this
information to determine how to position the scroll-bar thumb and what that position means
to the application. Table 3-4 lists these Data2 values and describes the user actions that
generate them.

Objects 3-49

ScrollBar

Table 3-4. User Interface for ScrollBar

Message Data2 Value Mouse Keyboard

UIMS.SB.UP User clicked the Up arrow on

the scroll-bar.

User pressed the UP cursor

key.

UIMS.SB.LEFT User clicked the Left arrow on

the scroll-bar.

User pressed the LEFT cursor

key.

UIMS.SB.DOWN User clicked the Down arrow on

the scroll-bar.

User pressed the DOWN cursor

key.

UIMS.SB.RIGHT User clicked the Right arrow on

the scroll-bar.

User pressed the RIGHT cursor

key.

UIMS.SB.PAGEUP User clicked the scroll-bar

thumbtrack above the thumb.

User pressed the PAGEUP key.

UIMS.SB.PAGELEFT User clicked the scroll-bar

thumbtrack to the left of the

thumb.

User pressed CTRL+PAGEUP.

UIMS.SB.PAGEDOWN User clicked the scroll-bar

thumbtrack below the thumb.

User pressed the PAGEDOWN

key.

UIMS.SB.PAGERIGHT User clicked the scroll-bar

thumbtrack to the right of the

thumb.

User pressed

CTRL+PAGEDOWN.

UIMS.SB.THUMB User has stopped dragging the

thumb.

None

UIMS.SB.THUMBTRACK User is dragging the thumb. None

3-50 UIMS DATA/BASIC API, Reference Manual

Speaker

Speaker

The Speaker object provides access to the loudspeaker in the workstation or terminal.

Attributes Pitch The pitch (in Hertz) of the required sound.

Duration The duration of the sound in milliseconds.

Repeats The number of times to make the sound.

Delay The time in milliseconds between repeats.

All of these are set using the SoundSpeaker subroutine.

Objects 3-51

SystemDictionary

SystemDictionary

The SystemDictionary object provides access to various workstation configuration values.
It is constructed by UIMS during initialisation. The values are largely the default values for
attributes of the underlying GUI. The SystemDictionary is UIMS system-wide and is
accessed by all instances of all UIMS applications running on the workstation.

Attributes Default screen The handle of the default screen Display object (see page 3-20).

Subroutines – GetDefaults.

Default printer The handle of the default printer Display object (see page 3-20).

Subroutines – GetDefaults.

Default typeface The handle of the default TypeFace object (see page 3-59).

Subroutines – GetDefaults.

Typefaces A list of the available TypeFace objects (see page 3-59).

Subroutines – GetTypeFaces, GetTypeFace.

Note: Printer display objects are not supported on this version of UIMS. The subroutines
concerned are provided for use on later releases.

3-52 UIMS DATA/BASIC API, Reference Manual

Text

Text

A Text contact provides a way of displaying text within the client area of a window. It
differs from text drawn directly on a window's client area with the DrawTextString
subroutine in the following ways:

• A Text contact will redraw or realign itself when required. Text drawn directly onto the
client area must be redrawn by the application.

• The text may be left or right aligned, justified or centred within the containing window
boundary. Alignment of text within a window's client area is the responsibility of the
application.

• The background of a Text contact can be a different colour to that of the client area.

A Text contact is created using the CreateText subroutine.

Attributes Content The text to be displayed.

Subroutines – TextSetContent, TextGetContent.

Drawrule The handle of an attached Drawrule object. This specifies the font used,
the colour of the text, and the colour of the child window's background
(refer to page 3-22 for details).

Subroutines – SetDrawrule, GetDrawrule.

Alignment Text alignment – left, right, both (justified) or centred.

Subroutines – TextSetJustification.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style and Event Mask apply to
Text contacts.

Objects 3-53

TextEditor

TextEditor

A TextEditor contact is a text field in which text may be input and edited by the user, or
presented for display by the application. It is similar to an EditBox, but allows the entry or
display of more than one line of text.

The text within a TextEditor is divided into lines, each terminated by a carriage return. If
the text editor contains more text than will fit into its display window, the text can be
scrolled horizontally or vertically as necessary. If automatic scrolling is enabled, scrolling
will take place as the cursor moves, or the mouse is dragged outside the contact. In addition,
scroll-bars can be displayed so that the user can control text scrolling; these are managed
entirely by the TextEditor and do not generate scroll messages.

Within the text editor, the cursor can be moved with the keyboard or the mouse. Unless the
Wait Pointer is on, when inside the text editor, the mouse pointer changes to a vertical
I-beam. Clicking within the text editor sets the cursor to the character position closest to the
mouse pointer.

Text within the text editor may also be selected with the mouse or the keyboard. Making a
selection generates a Select message which gives the start and end positions of the selected
text; deselecting text generates a Select message with the start and end positions both given
as zero.

Table 3-5 gives full details of the edit box keyboard and mouse interfaces.

A TextEditor contact is created using the CreateTextEditor subroutine.

Attributes Style The style of the text editor. This can be a combination of the following
options:

• Border. If selected, the edit field is enclosed in a box.
• Display a horizontal scroll-bar.
• Display a vertical scroll-bar.
• Autoscroll. If selected, the text will scroll when the mouse is dragged

outside the text editor.
• Read only. If selected, the text editor will be a display-only field, with

no editing allowed.

Subroutines – CreateTextEditor.

3-54 UIMS DATA/BASIC API, Reference Manual

TextEditor

Content The text being edited or displayed.

Subroutines – TextEditorSetContent, TextEditorGetContent,
TextEditorGetTextLen.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style and Drawrule apply to
TextEditor contacts.

User Interface The table below summarises the mouse and keyboard interfaces for a text editor.

Table 3-5. User Interface for Text Editor

Action Result

Mouse Interface

Single click Positions the insertion point and drops the selection anchor.

Double click Selects a word.

SHIFT+Single click Positions the insertion point and extends the selection from the selection

anchor to the insertion point.

Drag Drops the selection anchor, moves the insertion point and extends the

selection from the selection anchor to the insertion point.

Keyboard Interface

Direction Removes the selection from any text and moves the insertion point in the

indicated direction.

SHIFT+Direction Drops the selection anchor (if it is not already dropped), moves the insertion

point and selects all text between the selection point and the insertion point.

CTRL+RIGHT ARROW,

CTRL+LEFT ARROW

Moves the insertion point to the beginning of the word in the indicated

direction.

SHIFT+CTRL+RIGHT

ARROW,

SHIFT+CTRL+LEFT

ARROW

Drops the selection anchor (if it is not already dropped), moves the insertion

point to the beginning of the word in the indicated direction, and selects all text

between the selection anchor and the insertion point.

HOME Removes the selection from any text and moves the insertion point to the

beginning of the line.

(continued)

Objects 3-55

TextEditor

Table 3-5 User Interface for Text Editor (continued)

Action Result

SHIFT+HOME Drops the selection anchor (if it is not already dropped), moves the insertion

point to the beginning of the line, and selects all text between the selection

anchor and the insertion point.

CTRL+HOME Places the cursor before the first character in the TextEditor.

SHIFT+CTRL+HOME Drops the selection anchor (if it is not already dropped), places the cursor

before the first character in the TextEditor, and selects all text between the

selection anchor and the insertion point.

END Removes the selection from any text and moves the insertion point to the

end of the line.

SHIFT+END Drops the selection anchor (if it is not already dropped), moves the insertion

point to the end of the line, and selects all text between the selection anchor

and the insertion point.

CTRL+END Places the cursor after the last character in the TextEditor.

SHIFT+CTRL+END Drops the selection anchor (if it is not already dropped), places the cursor

after the last character in the TextEditor, and selects all text between the

selection anchor and the insertion point.

DELETE If text is selected, deletes the text. Otherwise, deletes the character following

the insertion point.

BACKSPACE If text is selected, deletes the text. Otherwise, deletes the character preceding

the insertion point.

SHIFT+DELETE If text is selected, cuts the text to the clipboard. Otherwise, deletes the

character following the insertion point.

SHIFT+INSERT Pastes (inserts) the contents of the clipboard at the insertion point.

CTRL+INSERT Copies the selected text to the clipboard, but does not delete it.

PAGE UP Scrolls the text up one line less than the height of the TextEditor.

CONTROL+PAGE UP Scrolls the text left one character less than the width of the TextEditor.

PAGE DOWN Scrolls the text down one line less than the height of the TextEditor.

CONTROL+PAGE DOWN Scrolls the text right one character less than the width of the TextEditor.

(continued)

3-56 UIMS DATA/BASIC API, Reference Manual

TextEditor

Table 3-5 User Interface for Text Editor (continued)

Action Result

CTRL+ENTER If the TextEditor is in a DialogBox, or in a window with dialog box style, ends

the line and moves the cursor to the beginning of the next line.

CTRL+TAB If the TextEditor is in a DialogBox, or in a window with dialog box style, inserts

a tab character.

Note: When the user types a character, any selected text is automatically replaced by the
character typed.

Objects 3-57

TitledButton

TitledButton

A TitledButton contact is a push button that is used to initiate an action. For example, a
dialog box will normally contain a button with the legend 'OK'; when the user clicks on this
button, the contents of the dialog box will be returned to the application for processing.

The button is displayed with a rectangular border enclosing a text caption or graphic image.
If required, the border of the button can be shown thickened; this is used in dialog boxes to
indicate the default action (see page 3-19).

A TitledButton contact is created using the CreateTitledButton subroutine. It has the
following attributes, which can set or read by using the appropriate subroutines.

Attributes Title The text that will appear inside the button, or the name of a file containing
a graphic image. Note, however, that an image can only be attached to a
TitledButton when it is created (with CreateTitledButton) and that, once
attached, it cannot be changed.

Subroutines – TitledButtonSetTitle.

Style The style can be one of the following:

• Draw a normal (thin) border round the button.

• Draw a thickened border round the button.

Notes:

1. Within a DialogBox contact, the default button has a thickened
border.

2. If a TitledButton is created containing an image its style cannot
be changed.

Subroutines – TitledButtonSetStyle, DlgBoxSetDefButton,
AppWinSetDefButton, ChildWinSetDefButton.

Common Contact
Attributes

All common contact attributes (see page 3-2) except Border Style apply to a TitledButton
contact.

3-58 UIMS DATA/BASIC API, Reference Manual

TypeFace

TypeFace

TypeFace objects are created by UIMS from the typefaces available on the display platform.

A typeface is a set of characters (letters, numerals, punctuation marks and symbols) that
share a common design and character set. Each TypeFace object consists of a group of
typefaces that have similar stroke width and serif characteristics; in most cases a range of
point sizes and styles (bold, italic, etc.) will be available.

Note: The terms UIMS uses to describe fonts, typefaces and families of fonts do not
necessarily correspond to traditional typographic terms.

Type Styles Each typeface will also be available in one or more styles: normal, bold, italic, outline,
underline and strikeout. Figure 3-4 illustrates these different styles in the Helvetica font.

* For illustration only. Outline is not normally available in the
Helvetica typeface.

Figure 3-4. TypeFace Styles

Where a particular style is available for the typeface concerned, UIMS will use it; otherwise
UIMS will try to synthesise the style. If the style cannot be easily be synthesised, the nearest
equivalent will be selected.

Note: Some styles are particularly difficult to synthesise. In particular, outline cannot
generally be used unless the typeface concerned includes an outline style. Similarly,
for some typefaces, it may not be possible to use strikeout style.

Objects 3-59

TypeFace

TypeFaces and
Fonts

A typeface is made available to the application by attaching it to a Font object and selecting
a style (Bold, Italic, etc.) and point size from those that are available. The same typeface can
be attached to several different fonts.

The handles of the available typefaces can be obtained by calling the GetTypeFace and
GetTypeFaces subroutines.

Attributes Name The name of the typeface (Times Roman, Helvetica, etc.).

Subroutines – TypeFaceGetName.

Point Sizes The available point sizes.

Subroutines – TypeFaceGetPointSize, TypeFaceGetPointSizes.

3-60 UIMS DATA/BASIC API, Reference Manual

General Subroutines

General Subroutines

This section lists UIMS subroutines that have not been mentioned elsewhere in this chapter.

Management
Subroutines

GetMsg Retrieves the next message in the message queue for the session.

AddTimer Creates a timer which will generate a timer message when the timer
expires.

RemoveTimer Removes a timer created with AddTimer.

SetTeWindow Changes the window that is used as the application's 'terminal emulation'
(TE) window – that is the window in which output printed to the terminal
(using PRINT, CRT, etc.) will be displayed.

Object-Wide
Subroutines

Destroy Destroys an object or contact.

GetObjectParent
Returns the parent of an object.

NewView
Subroutines

NewView is described in detail in Chapter 5.

CreateNVContactGroup
Creates a NewView contact group.

CreateNVHotspotGroup
Creates a group of NewView hot-spots within the application's terminal
emulation window.

DestroyNVGroup
Destroys a NewView group created with CreateNVContactGroup or
CreateNVHotspotGroup.

SetEnabledNVGroup
Enables or disables a NewView group.

SetMappedNVGroup
Allows you to decide whether or not a NewView group is displayed on the
screen.

Objects 3-61

General Subroutines

ReMapNVLine25
Allows you to use a UIMS message box to display system messages which
the host sends to line 25 of the terminal screen.

ChangeNVContacts
Changes the response strings generated by contacts in a NewView group.

ChangeNVButtonGroup
Changes the titles of the buttons in a NewView button group and the
response strings generated by them. It can also be used to control whether
or not buttons in the group are visible.

DDE Subroutines DDE.PEEK Uses a dynamic-data exchange (DDE) conversation to request data from a
WIndows application.

DDE.POKE Uses a DDE conversation to send data to a WIndows application.

DDE.EXECUTE
Uses a DDE conversation to send a command or commands to a WIndows
application.

DDE.OPENADVISE
Establishes a 'permanent' DDE link to a Windows application.

DDE.ADVISE Obtains data from a permanent DDE link.

DDE.CLOSEADVISE
Closes a permanent DDE link.

Image
Management
Subroutines

StartImage Loads the image manager.

DisplayImage Displays an image in a specified window.

EraseImage Removes a displayed image.

StopImage Unloads the image manager.

Other Subroutines InitialiseUims Initialises the UIMS environment.

SignOn Signs on a UIMS session and creates an AppContext object for the new
session.

SignOff Signs off a UIMS session.

3-62 UIMS DATA/BASIC API, Reference Manual

General Subroutines

GetUimsVersion
Returns the UIMS version number and revision level.

SetSync Switches between synchronous and asynchronous UIMS function call error
response handling.

GetErrorText Returns the text associated with a specified error code.

BitTest Returns the state of a specified element in a composite value.

HiByte Returns the value of the most-significant byte of a word (2 byte) value.

LoByte Returns the value of the least-significant byte of a word (2 byte) value.

Execute Starts a program on the PC.

SystemCommand
Runs a DOS system command on the PC.

SendKeys Sends a sequence of key-presses to the active Windows application, as if
they had been typed at the keyboard.

SetUimsMode Restores message processing after NewView and application control
subroutines, and DATA/BASIC commands that send data to or receive
data from the terminal.

Objects 3-63

Messages

Chapter 4
Messages

This chapter describes how a UIMS application uses messages to receive

user input. It also lists the different types of message and gives details of

their parameters.

4-1

Overview

Overview

Every mouse or keyboard operation the user makes in using an application triggers a UIMS
event. When an event occurs, a message is generated which is initially directed to the
contact which currently has the focus. This then passes to its parent, which passes it to its
parent, and so on until it reaches the application.

Message Loop An essential part of any UIMS application is a message loop, containing a call to the
GetMsg subroutine – this fetches messages as they are passed to the application and thus
allows the application to respond to user actions. The GetMsg subroutine requires ten
parameters, as follows:

• A number representing how long (in tenths of a second) to wait for an message to occur.
This can allow an application to perform a background task while waiting for an event to
occur. If zero is specified, GetMsg will not return until a message is received.

• Variables in which to return the handles of the application context, window and contact
in which the event occurred.

• A variable in which to return the type of message.

• A variable in which to return a number representing the time the event occurred. This is
only valid for certain types of message.

• Four variables in which to return additional message-specific parameters.

Message processing is best organised as a series of embedded case statements, with each
level switching on a different message parameter. You are recommended to switch first on
the window in which the event occurred, and then on the type of message. You can then, if
necessary, test for the specific contact. It is unlikely that you will need to test the application
context, as very few applications will have more than one.

A message loop has the following basic structure:

Until (user wants to exit) do
Fetch the next message
Process message

Loop

4-2 UIMS DATA/BASIC API, Reference Manual

Overview

A simple message loop is shown in the following example:

USER.WANTS.TO.EXIT = FALSE
LOOP UNTIL USER.WANTS.TO.EXIT DO

CALL GetMsg(0, CONTEXT, WINDOW, CONTACT, MSGTYPE, TIMESTAMP,
 DATA1, DATA2, DATA3, DATA4)

BEGIN CASE

CASE WINDOW = WIN1
BEGIN CASE
CASE MSGTYPE = UIMS.MSG.MENUITEM

GOSUB HANDLE.WIN1.MENUS

CASE MSGTYPE = UIMS.MSG.EXIT
USER.WANTS.TO.EXIT = TRUE

END CASE
END CASE

REPEAT

Note that you only need to process those messages which directly affect your application –
in this case UIMS.MSG.MENUITEM and UIMS.MSG.EXIT messages. All others can be
ignored. The subroutine HANDLE.WIN1.MENU should test for the selected menu item.

Not all messages reach the application. At any stage in the propagation process, an object
may process the message – the result may be to convert one type of message into another or
to simply not pass the message on. An example of this occurs when the user clicks on a
button contact – the message generated is initially a mouse click message, but this is
converted by the button contact into a button press message.

Masking Messages A UIMS application can generate a great many messages which it does not need to process.
In particular, every time the mouse is moved, one or more pointer motion messages are
generated.

In order that the application should not be swamped with messages in which it is not
interested, UIMS provides an Event Mask mechanism which allows the programmer to
choose which types of message will be received by the application. An event mask can be
applied to the application as a whole, through the AppContext, or to individual contacts. If a
message is disabled at a contact, this does not prevent messages reaching the contact, but
stops them being passed on to its parent.

Messages 4-3

Overview

An event mask is set by calling the SetEventMask subroutine. A mask is constructed by
adding together the individual masks for the types of message you wish to receive. For
example:

MASK = UIMS.EM.BUTTONPRESS+UIMS.EM.KEYPRESS
CALL SetEventMask(CONTACT, MASK, ERR)

You can find out which types of message are enabled by calling the GetEventMask
subroutine. Note, however, if you need to change an existing mask, you cannot simply add
or subtract an individual mask – you must first check whether or not the individual mask is
already set. For example:

* First fetch the current event mask
CALL GetEventMask(CONTACT, MASK)

* Then pass the result to BitTest to find out if MENUITEM
* messages are enabled
CALL BitTest(STYLE, UIMS.EM.MENUITEM, ENABLED)

* If they are not already enabled, enable them
IF NOT(ENABLED) THEN

MASK = MASK + UIMS.EM.MENUITEM
CALL SetEventMask(CONTACT, MASK, ERR)

END

Default Event Masks When a UIMS application is started, the following messages are enabled at the application
context: UIMS.MSG.BUTTONPRESS, UIMS.MSG.CLOSE, UIMS.MSG.EXIT,
UIMS.MSG.KEYPRESS, UIMS.MSG.MENUITEM, UIMS.MSG.NOTIFY.

All newly created objects and contacts have all message types enabled, except
UIMS.MSG.IDLE.

Secondary Event
Mask

In addition to the event masks described above, the application context has a secondary
event mask. This is normally only required in applications which do not have a message
loop, such as NewView applications.

In a normal UIMS application with a message loop, the relationship between UIMS, the
application and the application's event masks is as follows:

4-4 UIMS DATA/BASIC API, Reference Manual

Overview

UIMS Application

Event Mask

Events

When using NewView, however, there are two additional components in the system:
NewView itself, and the terminal window.

UIMS Application
Events

NewView Terminal
Window

Event Mask
Primary

In this case, the primary event mask (that set for the application context using
SetEventMask) determines which types of message should be passed to NewView. A pre-
defined NewView event mask, UIMS.EM.NEWVIEW, should be used to ensure that
NewView receives the correct types of message. Many of the messages are processed by
NewView, but some are passed on to the terminal window, and these can in turn be passed
on to the application. If the application has no message loop to process these, they will be
interpreted as text to be displayed, and will be printed in the terminal window.

The secondary event mask overcomes this problem by masking-out these messages before
they reach the application, as follows:

UIMS Application
Events

NewView Terminal
Window

Event Mask
Secondary

Event Mask
Primary

Messages 4-5

Overview

To set a secondary event mask, use the SetSecondaryEventMask subroutine. The following
example disables all types of message:

SECMASK = 0 ;* disable all messages
NONMASK = FALSE ;* disable non-maskable messages
CALL SetSecondaryEventMask(CONTEXT, SECMASK, NONMASK, FALSE, ERR)

The second parameter to SetSecondaryEventMask is an event mask with the same format
as used for SetEventMask, while the third controls UIMS.MSG.CREATE and
UIMS.MSG.DESTROY messages, which cannot be disabled with a normal event mask.

The fourth parameter is provided for use in future versions of UIMS. Its value will be
ignored.

If you are writing a full UIMS application with a message loop, you will not normally need
to set a secondary event mask. The default setting enables all maskable messages, and
disables UIMS.MSG.CREATE and UIMS.MSG.DESTROY messages. You can find out
the current setting of the secondary event mask by calling the GetSecondaryEventMask
subroutine.

4-6 UIMS DATA/BASIC API, Reference Manual

Message Categories

Message Categories

Messages can be grouped in to six categories:

Keyboard Messages
A keyboard message is generated is generated whenever the user presses a
key on the keyboard.

Message types – UIMS.MSG.KEYPRESS.

Focus Messages
Focus messages are generated when the input focus changes from contact
to contact. Keyboard messages are always passed initially to the contact
which has the focus. Focus messages should be used by the application to
initiate housekeeping tasks, such as displaying or removing a text cursor.

Message types – UIMS.MSG.ENTER, UIMS.MSG.LEAVE.

Pointer Messages
Pointer messages are generated when the mouse is moved and when the
mouse buttons are pressed and released. Note that there are two levels of
pointer messages: at the lower level (motion, press and release), every
separate mouse move, and button press and release is reported; at the
higher level (click, double-click and drag), some pre-processing is carried
out in order to simplify an application's message handling.

Message types – UIMS.MSG.CLICK, UIMS.MSG.DBLCLICK,
UIMS.MSG.DRAG, UIMS.MSG.MOTION, UIMS.MSG.PRESS,
UIMS.MSG.RELEASE.

Window Messages
A window message is generated when the state of an App or Child window
changes.

Message types – UIMS.MSG.CLOSE, UIMS.MSG.CREATE,
UIMS.MSG.DESTROY, UIMS.MSG.HSCROLL, UIMS.MSG.KILL,
UIMS.MSG.MOVE, UIMS.MSG.SIZE, UIMS.MSG.UPDATE,
UIMS.MSG.VSCROLL.

Control Messages
Control messages are generated by user operation of contacts.

Messages 4-7

Message Categories

Message types – UIMS.MSG.BUTTONPRESS,
UIMS.MSG.LBOX.DESELECT, UIMS.MSG.LBOX.SELECT,
UIMS.MSG.MENUITEM, UIMS.MSG.SCROLL,
UIMS.MSG.SELECT.

Application Messages
These are general messages which are not connected with any particular
window or contact. They report such occurrences as errors and requests to
close the application.

Message types – UIMS.MSG.EXIT, UIMS.MSG.IDLE,
UIMS.MSG.NOTIFY, UIMS.MSG.TIMER.

4-8 UIMS DATA/BASIC API, Reference Manual

Message Descriptions

Message Descriptions

The sections which follow list the UIMS messages in alphabetical order. Each description
includes details of the conditions under which the message is generated, the value of the
message code, any message-specific parameters returned by GetMsg, the corresponding
event mask and any additional information.

The descriptions refer to the GetMsg parameters (vContact, vData1, vData2, etc.) in which
message data is returned. These parameter names are the same as those given in the
description of the GetMsg subroutine in Chapter 6.

Parameters The following basic parameters are common to all UIMS messages:

• The message type (vMsgType). This determines the format of any message-specific data.

• The event context (vContext) – the handle of the application context in which the event
occurred.

• The event window (vWindow) – the handle of the window in which the event occurred.

• The event contact (vContact) – the handle of the contact in which the event occurred.

• A time stamp (vTimeStamp) – this is a number which gives some indication of the order
in which events occurred. At present, this information is only returned by pointer
messages.

In addition, there are four parameters (vData1 to vData4) which return message-specific
data.

In many cases the event window and the event contact will be the same. Note, however, that
for some types of message, the event context, window and/or contact may not be
meaningful.

Messages 4-9

UIMS.MSG.BUTTONPRESS

UIMS.MSG.BUTTONPRESS

A button press message is generated when the user operates a TitledButton, OptionButton
or CheckButton contact.

Value 24

Message-specific
Parameters

None.

Event Mask UIMS.EM.BUTTONPRESS

4-10 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.CLICK

UIMS.MSG.CLICK

This type of message is generated when a Release event follows a Press event in the same
contact, with no intervening Motion events.

Value 5

Message-specific
Parameters

vData1 The horizontal coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

Note: The value returned in vData1 is offset by 65536. To obtain the
true value, use the following code:

vData1 = INT(vData1 / 65536)

vData2 The vertical coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

vData3 This contains the states of any mouse buttons which have not changed, and
the states of the keyboard modifier keys (SHIFT, CTRL, ALT, etc.). The value
returned is a combination of the pointer and keyboard modifier states listed
in Appendix A.

vData4 The number of the mouse button which has been clicked. Note that the
values produced by the different mouse button combinations are hardware
dependent.

Event Mask UIMS.EM.CLICK

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

An indication of the time at which the event occurred is given by a value returned in the
vTimeStamp parameter.

Messages 4-11

UIMS.MSG.CLOSE

UIMS.MSG.CLOSE

A Close message is generated when the user closes a window.

Value 11

Message-specific
Parameters

None.

Event Mask UIMS.EM.CLOSE

Comments This message asks the application to close the specified window – this can be done by
calling the Destroy subroutine or, if preferred, by using UnMap to make the window
invisible.

A Close message may be followed by additional messages.

Note that when the user closes the application's Root window, an Exit message is generated
instead of a Close message.

4-12 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.CREATE

UIMS.MSG.CREATE

A Create message is generated when an App window is created.

Value 97

Message-specific
Parameters

None.

Event Mask None.

Comments Create messages are normally disabled, but can be enabled by using the
SetSecondaryEventMask subroutine – see page 4-4 for details.

Create messages are not generated when other types of contact are created.

Messages 4-13

UIMS.MSG.DBLCLICK

UIMS.MSG.DBLCLICK

A Double click message is generated when two Click events occur in the same contact, with
no intervening Motion events and within the multi-click period set for the GUI platform.

Value 6

Message-specific
Parameters

vData1 The horizontal coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

Note: The value returned in vData1 is offset by 65536. To obtain the
true value, use the following code:

vData1 = INT(vData1 / 65536)

vData2 The vertical coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

vData3 This contains the states of any mouse buttons which have not changed, and
the states of the modifier keys (SHIFT, CTRL, ALT, etc.). The value returned
is a combination of the pointer and key modifier states listed in
Appendix A.

vData4 The number of the mouse button which has been double-clicked. Note that
the values produced by the different mouse button combinations are
hardware dependent.

Event Mask UIMS.EM.DBLCLICK

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

An indication of the time at which the event occurred is given by a value returned in the
vTimeStamp parameter.

If the second click occurs after the multi-click period has expired, separate Click or Press
and Release messages will be generated.

Enabling Double-click messages also enables Click messages.

4-14 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.DESTROY

UIMS.MSG.DESTROY

A Destroy message is generated when an App window is destroyed.

Value 98

Message-specific
Parameters

None.

Event Mask None.

Comments Destroy messages are normally disabled, but can be enabled by using the
SetSecondaryEventMask subroutine – see page 4-4 for details.

Destroy messages are not generated when other types of contact are destroyed.

Messages 4-15

UIMS.MSG.DRAG

UIMS.MSG.DRAG

There are two types of Drag message:

• A drag-start message is generated when a primary button (button 1) Press event is
followed immediately by a Motion event in the same contact.

• A drag-end message occurs when a Motion event with the drag and button 1 modifiers
set is followed by a button 1 release in the same contact.

Value 8

Message-specific
Parameters

vData1 The horizontal coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

Note: The value returned in vData1 is offset by 65536. To obtain the
true value, use the following code:

vData1 = INT(vData1 / 65536)

vData2 The vertical coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

vData3 This contains the states of any mouse buttons which have not changed, and
the states of the modifier keys (SHIFT, CTRL, ALT, etc.). The value returned
is a combination of the pointer and key modifier states listed in
Appendix A.

The presence of the UIK.P.DRAG pointer modifier indicates a drag-start
message. If this modifier is not present, the message results from ending a
drag operation.

vData4 Always set to 1.

Event Mask UIMS.EM.DRAG

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

An indication of the time at which the event occurred is given by a value returned in the
vTimeStamp parameter.

4-16 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.DRAG

A drag-start message is always be preceded by a Press message in the same contact.

Drag messages are generated for the primary button (button 1) only. Drag operations with
other buttons must be identified by means of the Press, Release and Motion pointer
messages.

Messages 4-17

UIMS.MSG.ENTER

UIMS.MSG.ENTER

This message is generated when the input focus is passed to a contact. The event contact is
the contact that is receiving the focus.

Value 1

Message-specific
Parameters

None.

Event Mask UIMS.EM.ENTER

Comments The vContact parameter returns the handle of the contact which is receiving the focus.

4-18 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.EXIT

UIMS.MSG.EXIT

An Exit message is generated when the user closes the application.

Value 16

Message-specific
Parameters

None.

Event Mask UIMS.EM.EXIT

Comments This message asks the application to close itself down. It should be used to initiate house-
keeping tasks such as saving un-saved documents.

Note that this message will be generated if UIMS runs out of resources. Under these
circumstances it may not be possible to display any dialogs which request confirmation from
the user.

Messages 4-19

UIMS.MSG.HSCROLL

UIMS.MSG.HSCROLL

This message is generated when the user operates any of the controls on an App or Child
window's horizontal scroll bar.

Value 15

Message-specific
Parameters

vData1 Not applicable.

vData2 The scroll bar operation. This will be one of the following values.

UIMS.SB.LEFT The user clicked the scroll-bar Left
arrow.

UIMS.SB.RIGHT The user clicked the scroll-bar Right
arrow.

UIMS.SB.PAGELEFT The user clicked the scroll-bar thumb-
track to the left of the thumb.

UIMS.SB.PAGERIGHT The user clicked the scroll-bar thumb-
track to the right of the thumb.

UIMS.SB.THUMB The user has stopped dragging the
thumb.

UIMS.SB.THUMBTRACK The user is dragging the thumb.

vData3 Not applicable.

vData4 A value representing the new thumb position.

Event Mask UIMS.EM.HSCROLL

Comments On some display platforms, thumb-track scroll messages may not be generated.

This message is only generated when the user operates a horizontal scroll bar which forms
part of an App or Child window. Operating a horizontal ScrollBar contact generates
UIMS.MSG.SCROLL messages.

4-20 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.IDLE

UIMS.MSG.IDLE

An Idle message is generated by UIMS when there are no events to report.

Value 19

Message-specific
Parameters

None.

Event Mask UIMS.EM.IDLE

Comments Idle messages are initially sent to the application context, with the result that the vWindow
and vContact parameters will be NULL. The application's message loop should be written to
allow for this.

This message can only be enabled for the AppContext object.

This message can be used by the application to control the background processing of lengthy
tasks.

Messages 4-21

UIMS.MSG.KEYPRESS

UIMS.MSG.KEYPRESS

This type of message is generated whenever the user presses a key on the keyboard.

Value 9

Message-specific
Parameters

vData1 The keyboard modifier state (SHIFT, CTRL and ALT key states).

vData2 The virtual key code of the key (see Appendix A).

vData3, vData4 Unused (returned set to zero).

Event Mask UIMS.EM.KEYPRESS

Comments The vContact parameter returns the handle of the contact which had the input focus at the
time the key was pressed.

4-22 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.KILL

UIMS.MSG.KILL

A Kill message is generated when a contact ceases to exist.

Value 12

Message-specific
Parameters

None.

Event Mask UIMS.EM.KILL

Comments An application can destroy a specified contact by calling the Destroy subroutine. Note,
however, that if the contact has any children, these will also be destroyed.

Messages 4-23

UIMS.MSG.LBOX.DESELECT

UIMS.MSG.LBOX.DESELECT

A list-box deselect message is generated when a selected item in the list is deselected.

Value 26

Message-specific
Parameters

vData2 The position of the deselected item within the list box. The list is
numbered starting from zero.

vData1, vData3, vData4
Not applicable.

Event Mask UIMS.EM.LBOX.DESELECT

4-24 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.LBOX.SELECT

UIMS.MSG.LBOX.SELECT

A list-box select message is generated when an item is selected from the list.

Value 25

Message-specific
Parameters

vData2 The position of the selected item within the list box. The list is numbered
starting from zero.

vData1, vData3, vData4
Not applicable.

Event Mask UIMS.EM.LBOX.SELECT

Messages 4-25

UIMS.MSG.LEAVE

UIMS.MSG.LEAVE

This type of message is generated when a contact loses the input focus. The event contact is
the contact that is losing the focus.

Value 2

Message-specific
Parameters

None.

Event Mask UIMS.EM.LEAVE

Comments The vContact parameter returns the handle of the contact which is losing the focus.

4-26 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.MENUITEM

UIMS.MSG.MENUITEM

This type of message is generated when an item on a menu or menu bar is selected.

Value 21

Message-specific
Parameters

None.

Event Mask UIMS.EM.MENUITEM

Messages 4-27

UIMS.MSG.MOTION

UIMS.MSG.MOTION

This type of message is generated whenever the pointer is moved. The number of Motion
messages generated for a given amount of movement may vary, since this depends on
hardware interrupts. However, an application which has requested Motion messages is
guaranteed at least one Motion message whenever the pointer moves and comes to rest.

Value 7

Message-specific
Parameters

vData1 The horizontal coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

Note: The value returned in vData1 is offset by 65536. To obtain the
true value, use the following code:

vData1 = INT(vData1 / 65536)

vData2 The vertical coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

vData3 This contains the states of the mouse buttons and the keyboard modifier
keys (SHIFT, CTRL, ALT, etc.). The value returned is a combination of the
pointer and keyboard modifier states listed in Appendix A.

vData4 Always zero.

Event Mask UIMS.EM.MOTION

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

An indication of the time at which the event occurred is given by a value returned in the
vTimeStamp parameter.

If the pointer has been constrained with the GrabPointer subroutine, Motion messages are
generated periodically, even if the pointer does not move.

4-28 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.MOVE

UIMS.MSG.MOVE

A Move message is generated when a contact is moved, either by the user, or by the
application.

Value 27

Message-specific
Parameters

vData1 The horizontal coordinate of the contact's new position in coordinate units.

vData2 The vertical coordinate of the contact's new position in coordinate units.

vData3 The overall width of the contact in coordinate units.

vData4 The overall height of the contact in coordinate units.

Note: The values returned in vData1 and vData3 are offset by 65536. To obtain the true
values, use the following code:

vData1 = INT(vData1 / 65536)
vData3 = INT(vData3 / 65536)

Event Mask UIMS.EM.MOVE

Comments The values returned in vData1 and vData2 specify the position of the top left-hand corner of
the contact, relative to the top left-hand corner of its parent's client area (position 0,0). Note,
however, that for contacts that are children of the application context, the position returned
is relative to the top, left-hand corner of the display (position 0,0).

The values returned in vData1, vData2, vData3 and vData4 will depend on the coordinate
mode (text or graphics) currently selected for the application context.

Note: Contacts that can be moved by the user can be positioned to the nearest pixel,
whichever coordinate mode is selected. In text mode, therefore, the values returned
by a UIMS.MSG.MOVE message are accurate only to the nearest character
position.

Messages 4-29

UIMS.MSG.NOTIFY

UIMS.MSG.NOTIFY

This type of message is generated when UIMS wishes to notify the application of an error.
In particular, notify messages are used in asynchronous error mode to inform the application
of errors which in synchronous mode would be returned in the subroutines' vErr parameters.

Value 17

Message-specific
Parameters

vData1 Not applicable.

vData2 The name of the subroutine in which the error occurred.

vData3 Not applicable.

vData4 The error number.

Event Mask UIMS.EM.NOTIFY

Comments Notify messages are always sent directly to the application, with the result that the vContext,
vWindow and vContact parameters are returned set to NULL.

A textual description of the error can be obtained by calling the GetErrorText subroutine.

4-30 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.PRESS

UIMS.MSG.PRESS

This type of message is generated when one of the buttons on the mouse is pressed.

Value 3

Message-specific
Parameters

vData1 The horizontal coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

Note: The value returned in vData1 is offset by 65536. To obtain the
true value, use the following code:

vData1 = INT(vData1 / 65536)

vData2 The vertical coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

vData3 This contains the states of any mouse buttons which have not changed, and
the states of the keyboard modifier keys (SHIFT, CTRL, ALT, etc.). The value
returned is a combination of the pointer and keyboard modifier states listed
in Appendix A.

vData4 The number of the mouse button which has been pressed. Note that the
values produced by the different mouse button combinations are hardware
dependent.

Event Mask UIMS.EM.PRESS

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

An indication of the time at which the event occurred is given by a value returned in the
vTimeStamp parameter.

It should not be assumed that a Press message will be followed by a Release message, unless
the pointer has been constrained with the GrabPointer subroutine. This is because the
release could occur in a different contact which might consume the message (for example, if
a dialog box is popped up on a Press event, the release might occur in the dialog box). If the
release occurs in another application, the Release event will not be reported.

Messages 4-31

UIMS.MSG.RELEASE

UIMS.MSG.RELEASE

This type of message is generated when a mouse button is released.

Value 4

Message-specific
Parameters

vData1 The horizontal coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

Note: The value returned in vData1 is offset by 65536. To obtain the
true value, use the following code:

vData1 = INT(vData1 / 65536)

vData2 The vertical coordinate of the pointer location, relative to the left-hand
edge of the event window's client area.

vData3 This contains the states of any mouse buttons which have not changed, and
the states of the keyboard modifier keys (SHIFT, CTRL, ALT, etc.). The value
returned is a combination of the pointer and keyboard modifier states listed
in Appendix A.

vData4 The number of the mouse button which was released. Note that the values
produced by the different mouse button combinations are hardware
dependent.

Event Mask UIMS.EM.RELEASE

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

An indication of the time at which the event occurred is given by a value returned in the
vTimeStamp parameter.

It should not be assumed that a Press message will be followed by a Release message, unless
the pointer has been constrained with the GrabPointer subroutine. This is because the
release could occur in a different contact which might consume the message (for example, if
a dialog box is popped up on a Press event, the release might occur in the dialog box). If the
release occurs in another application, the Release event will not be reported.

4-32 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.SCROLL

UIMS.MSG.SCROLL

This type of message is generated when the user operates any of the controls on a ScrollBar
contact.

Value 22

Message-specific
Parameters

vData1 Not applicable.

vData2 The scroll bar operation. This will be one of the following values.

UIMS.SB.LEFT The user clicked the scroll-bar Left
arrow (horizontal scroll bar).

UIMS.SB.UP The user clicked the scroll-bar Up
arrow (vertical scroll bar).

UIMS.SB.RIGHT The user clicked the scroll-bar Right
arrow (horizontal scroll bar).

UIMS.SB.DOWN The user clicked the scroll-bar Down
arrow (vertical scroll bar).

UIMS.SB.PAGELEFT The user clicked the scroll-bar thumb-
track to the left of the thumb
(horizontal scroll bar).

UIMS.SB.PAGEUP The user clicked the scroll-bar thumb-
track above the thumb (vertical scroll
bar).

UIMS.SB.PAGERIGHT The user clicked the scroll-bar thumb-
track to the right of the thumb
(horizontal scroll bar).

UIMS.SB.PAGEDOWN The user clicked the scroll-bar thumb-
track below the thumb (vertical scroll
bar).

UIMS.SB.THUMB The user has stopped dragging the
thumb.

UIMS.SB.THUMBTRACK The user is dragging the thumb.

vData3 Not applicable.

vData4 A value representing the new thumb position.

Event Mask UIMS.EM.SCROLL

Messages 4-33

UIMS.MSG.SCROLL

Comments On some display platforms, thumb-track scroll messages may not be generated.

This message is only generated when the user operates a ScrollBar contact. Operating a
scroll bars which forms part of an App or Child window generates UIMS.MSG.HSCROLL
or UIMS.MSG.VSCROLL messages as appropriate.

4-34 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.SELECT

UIMS.MSG.SELECT

This type of message is generated when text or a graphic object is selected.

Value 23

Message-specific
Parameters

The message-specific parameters returned in a Select message depend on the type of contact
in which the select operation occurred. At present the only contacts that can receive select
messages are the EditBox and TextEditor, and the only data type that may be selected is
text.

Note: The values returned in vData1 and vData3 are offset by 65536. To obtain the true
values, use the following code:

vData1 = INT(vData1 / 65536)
vData3 = INT(vData3 / 65536)

vData1 The number of the line containing the start position.

vData2 The character number of the start position, within the line specified in
vData1. The first character in the line is numbered zero.

vData3 The number of the line containing the end position.

vData4 The number of the character following the end position, within the line
specified in vData3.

The first line in a TextEditor is numbered 0. For an EditBox contact, vData1 and vData3
are always zero.

Deselecting text generates a Select message with all four data parameters set to zero.

Event Mask UIMS.EM.SELECT

Messages 4-35

UIMS.MSG.SIZE

UIMS.MSG.SIZE

A Size message is generated when a contact is changed in size, either by the user, or by the
application.

Value 13

Message-specific
Parameters

vData1 The new width of the contact's client area in coordinate units.

Note that the value returned in vData1 is offset by 65536. To obtain the
true value, use the following:

vData1 = INT(vData1 / 65536)

vData2 The new height of the contact's client area in coordinate units.

vData4 The state of the window. This will be one of the following values:

UIMS.WS.MAX The window has been maximised.
UIMS.WS.MIN The window has been minimised.
UIMS.WS.NORMAL The window has been resized, but has not been

maximised or minimised.

Event Mask UIMS.EM.SIZE

Comments The values returned in vData1 and vData2 will depend on the coordinate mode (text or
graphics) currently selected for the application context.

Note: Contacts that can be changed in size by the user can be sized to the nearest pixel,
whichever coordinate mode is selected. In text mode, therefore, the values returned
in vData1 and vData2 are accurate only to the nearest character position.

4-36 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.TIMER

UIMS.MSG.TIMER

A timer message is generated by UIMS when a timeout value specified by the application
has expired.

Value 18

Message-specific
Parameters

None.

Event Mask UIMS.EM.TIMER

Comments The vContact parameter returns the handle of the timer.

For a Timer message the vWindow parameter will be NULL. The application's message loop
should be written to allow for this.

Messages 4-37

UIMS.MSG.UPDATE

UIMS.MSG.UPDATE

An Update message is generated when part or all of a contact becomes exposed – this
usually occurs when the contact is made visible or when another contact is moved. The
exposed region of the contact is divided into non-overlapping rectangles and an Update
message is generated for each. Several Update messages may be generated as the result of a
single user action.

Value 10

Message-specific
Parameters

vData1 The position of the left-hand edge of the exposed region, relative to the
left-hand edge of the contact's client area.

vData2 The position of the top edge of the exposed region, relative to the top edge
of the contact's client area.

vData3 The position of the right-hand edge of the exposed region, relative to the
left-hand edge of the contact's client area.

vData4 The position of the bottom edge of the exposed region, relative to the top
edge of the contact's client area.

Note: The values returned in vData1 and vData3 are offset by 65536. To obtain the true
values, use the following code:

vData1 = INT(vData1 / 65536)
vData3 = INT(vData3 / 65536)

Event Mask UIMS.EM.UPDATE

Comments The values returned in vData1, vData2, vData3 and vData4 will depend on the coordinate
mode (text or graphics) currently selected for the application context.

The application will normally only receive Update messages for App and Child windows.
Update messages for other types of contact are processed by the contact concerned.

4-38 UIMS DATA/BASIC API, Reference Manual

UIMS.MSG.VSCROLL

UIMS.MSG.VSCROLL

This type of message is generated when the user operates any of the controls on an App or
Child window's vertical scroll bar.

Value 14

Message-specific
Parameters

vData1 Not applicable.

vData2 The scroll bar operation. This will be one of the following values.

UIMS.SB.UP The user clicked the scroll-bar Up
arrow.

UIMS.SB.DOWN The user clicked the scroll-bar Down
arrow.

UIMS.SB.PAGEUP The user clicked the scroll-bar thumb-
track above the thumb.

UIMS.SB.PAGEDOWN The user clicked the scroll-bar thumb-
track below the thumb.

UIMS.SB.THUMB The user has stopped dragging the
thumb.

UIMS.SB.THUMBTRACK The user is dragging the thumb.

vData3 Not applicable.

vData4 A value representing the new thumb position.

Event Mask UIMS.EM.VSCROLL

Comments On some display platforms, thumb-track scroll messages may not be generated.

This message is only generated when the user operates a vertical scroll bar which forms part
of an App or Child window. Operating a vertical ScrollBar contact generates
UIMS.MSG.SCROLL messages.

Messages 4-39

NewView

Chapter 5
NewView

This chapter describes the UIMS NewView subsystem for enhancing

existing applications.

5-1

Introduction

Introduction

NewView allows existing character applications to be easily converted so that the user can
use a mouse in addition to the normal keyboard interface. There are two ways in which this
can be done:

• Certain types of contact can be made to generate text when clicked with the mouse. This
text is passed to application as if it had been typed at the keyboard.

For example, if to save a file, the user must type the character F and then press RETURN,
a button with the title 'Save' might be created and set up to generate F followed by
carriage return. The user could then click the button to save the file as an alternative to
using the keyboard.

• Areas of the screen can be designated as 'hot-spots'. These also generate text when
clicked with the mouse.

For example, an application might display a menu consisting of three items, each
selected by typing a letter. With NewView, the screen area containing each menu item
could be set up as a hot-spot and made to generate the corresponding letter. The user
could then select an item from this menu by simply pointing to the item required and
clicking with the mouse.

The user can identify hot-spots by the shape of the mouse pointer; when pointing to a
hot-spot, it changes to a hand shape.

Assigning Text
Strings

Text strings are assigned to contacts and hot-spots by creating NewView groups. In the case
of hot-spots, defining a group also sets the sizes and positions of the hot-spots. A hot-spot
group would normally be needed for each screen displayed by an application, while a single
contact group could be shared by several screens. Groups can be enabled and disabled
according to which screen is displayed.

The text strings assigned to the contacts in a group can be changed if necessary as required
by different application screens. Similarly, the titles of the contacts can be changed at any
time (by calling the appropriate UIMS subroutine).

5-2 UIMS DATA/BASIC API, Reference Manual

Introduction

The Terminal
Window

While hot-spots can be set up in the RealLink window, any NewView contacts are likely to
obscure the text displayed by the application. It is therefore recommended that an
application which uses NewView contacts should create its own application window and a
separate child window to act as the terminal window. If the child window is made smaller
than the application window, the unused parts of its client area can be used for buttons. In
addition, the AppWindow can be given application-specific menus.

Running NewView
Applications on
Normal Terminals

A NewView application can be written so that the NewView features are only used when
running on RealLink. This means that only a single version of each application is needed on
the host.

NewView 5-3

NewView Groups

NewView Groups

Only the following types of contact can be used in NewView groups:

MenuItem
TitledButton

The following types of contact can also be used in NewView applications, but cannot be
used in groups:

AppWindow
ChildWindow
MenuBar
Menu
Text
Line
Rectangle

NewView contacts can be created within an application, or compiled on the PC from a
resource script (see Chapter 7) and loaded using the LoadAppRes subroutine. The use of
compiled resources will minimise changes to the application; alternatively, a separate
cataloged DATA/BASIC subroutine could be used to create the contacts.

RealLink uses graphics coordinate mode internally – NewView applications must therefore
be set into this mode (by calling the SetCoordMode subroutine and specifying
UIMS.COORD.GRAPHIC) before any UIMS resources are created. Note, however. that
the size and position of a hot-spot is always specified in character positions.

Controlling the
State of a Group

The state of a NewView group can be controlled by two subroutines: SetEnabledNVGroup
and SetMappedNVGroup. These set all the contacts or hot-spots in the group to the same
state.

When a group is created, its state is set to that of the first contact or hot-spot in the group.
Note, however, that the states of the individual contacts are not changed. It is therefore
important to ensure that all contacts in a group are initially in the same enabled and mapped
state.

NewView
Subroutines

The following subroutines are available to create and control NewView groups:

CreateNVContactGroup
Creates a NewView contact group.

5-4 UIMS DATA/BASIC API, Reference Manual

NewView Groups

CreateNVHotspotGroup
Creates a group of NewView hot-spots within the application's terminal
emulation window.

ChangeNVContacts
Changes the response strings generated by contacts in a NewView group.

ChangeNVButtonGroup
Changes the titles of the buttons in a NewView button group and the
response strings generated by them. It can also be used to control whether
or not buttons in the group are visible.

DestroyNVGroup
Destroys a NewView group created with CreateNVContactGroup or
CreateNVHotspotGroup.

SetEnabledNVGroup
Enables or disables a NewView group.

SetMappedNVGroup
Allows you to decide whether or not a NewView group is displayed on the
screen.

These subroutines are described in detail in Chapter 6.

NewView 5-5

Setting the Terminal Window

Setting the Terminal Window

All output that is printed to the terminal by an application (using PRINT, CRT, etc.) is
displayed in the terminal window. In addition, NewView hot-spots are always defined as
areas within this window.

The terminal window is normally the RealLink window, but it can be changed, if required,
to an AppWindow or ChildWindow created by the application, by calling the subroutine
SetTeWindow. If a child window is used, it must have an AppWindow as its parent, but it
can be made smaller than the AppWindow, leaving room for other contacts.

Notes:

1. At present it is not possible to automatically change the size of a child when its
parent is changed. It is therefore recommended that, if a child window is used as the
terminal window in this way, its parent AppWindow should not be sizable.

2. The application is responsible for returning the terminal window to the RealLink
window on exit. If this is not done, RealLink will be unable to continue, and an
Unrecoverable Application Error may occur.

Menus An AppWindow created by the application, whether used as the terminal window or not, can
be given application-specific menus. These must be created in the same way as the menus in
a UIMS application:

• A MenuBar must be created and attached to the AppWindow.

• Menu contacts must be created and made children of the MenuBar.

• MenuItem contacts must be created and made children of the appropriate menus. The
items can be of two types:

1. Application-specific menu items which form part of a NewView contact group, and
which return text strings to the application.

2. RealLink print, edit and help menu items. The items listed in Table 5-1 are
available.

If a menu item is created with one of the identifiers listed in the table, it will have
the same function as the corresponding RealLink menu item. It can, however, be
attached to any menu, or to the menu bar, and it can be given a different title if
required.

5-6 UIMS DATA/BASIC API, Reference Manual

Setting the Terminal Window

Table 5-1. NewView RealLink Menu Items

Menu Menu Item Identifier/Handle

File Print Selection ID.FILEPRINT

File Printer Setup ID.FILEPRINTERSETUP

File Print Window ID.FILEPRINTWINDOW

Edit Copy ID.EDITCOPY

Edit Paste ID.EDITPASTE

Edit Copy Window ID.EDITCOPYWINDOW

Help Index ID.HELPINDEX

Help Commands ID.HELPCOMMANDS

Help Keyboard ID.HELPKEYBOARD

Help Application ID.HELPAPP

These constants are defined in the item RFWDEFS in the file UIMS-TOOLS. This
item must be included at beginning of your application.

Note: If you use the Resource Compiler to create your menus, you will need to
include these definitions in your resource script. This can be done by
coping RFWDEFS onto your PC using one of the RealLink file transfer
utilities (LanFTU or HOST-WS – see the RealLink for Windows User
Manual for details); you can then use a #include command to incorporate
the contents of the file. You must give the include file on your PC the
extension '.H'.

The menu bar, menus and menu items can be created by calling the appropriate UIMS
subroutines from within the application, or on the PC by compiling a resource script (see
Chapter 7).

System Messages If required, system messages that the host sends to line 25 of a normal terminal can be
redirected to a UIMS message box by calling the ReMapNVLine25 subroutine. This should
not be done, however, in applications which use line 25 for a continuous display of status
information.

NewView 5-7

On-line Help

On-line Help

If required you can create a Help file specific to your NewView application as described in
Chapter 8. This file can then be loaded using the SetNVHelp subroutine and displayed by
giving the user access to the ID.HELPAPP menu item (see page 5-6 for details).

5-8 UIMS DATA/BASIC API, Reference Manual

A NewView Application

A NewView Application

The following details the steps that must be added to an application, so that it can use
NewView.

1. INCLUDE statements which specify the RealLink and UIMS constant definitions:

INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

The second and third of these are not required if only hot-spots are being used.

2. A call to the InitialiseUims subroutine. This is not required if only hot-spots are being
used.

Once this call has been made, the common variable UIMS.CAPABLE can be tested to
determine whether the application is running on RealLink or on a normal terminal. The
remaining steps must only be carried out if running on RealLink.

3. A call to the SignOn subroutine. This is not required if only hot-spots are being used.

4. A call to the SetEventMask subroutine, specifying UIMS.EM.NEWVIEW as the new
event mask.

5. A call to the SetCoordMode subroutine, specifying UIMS.COORD.GRAPHIC as the
coordinate mode.

6. Subroutine calls to create the UIMS resources (windows, buttons, menu items and other
contacts). To minimise changes to the application, these could be located in a separate
cataloged subroutine, or loaded with LoadAppRes from a compiled resource script on
the PC.

7. If a window other than the RealLink window is to be used as the terminal window, a
call to SetTeWindow will be required.

8. If you have written a help file for your application and have created a menu item to
display it, you must call the SetNVHelp subroutine to load the help file.

9. Subroutine calls to create NewView contact and hot-spot groups.

NewView 5-9

A NewView Application

10. Each time the application displays a different screen, the appropriate NewView groups
must be enabled and disabled by calls to SetMappedNVGroup and
SetEnabledNVGroup.

11. When the application terminates, if it is running on RealLink, the following must be
done:

• Use DestroyNVGroup to destroy all NewView contact and hot-spot groups.

• If a window other than the RealLink window has been used as the terminal window,
call SetTeWindow to return the terminal window to RealLink (see Chapter 6 for
details). This must be done before signing off from UIMS.

• Call the SignOff subroutine to sign off from UIMS. This is not required if the
application has not signed on to UIMS.

5-10 UIMS DATA/BASIC API, Reference Manual

Subroutine Reference

Chapter 6
Subroutine Reference

This chapter describes each of the UIMS DATA/BASIC subroutines in

detail. They are listed in alphabetical order, with related routines grouped

together.

6-1

Introduction

Introduction

Each UIMS and NewView subroutine must be called as an external cataloged DATA/BASIC
subroutine with the CALL command; for example:

CALL SetEnabled(CONTEXT, EDIT.PASTE, TRUE, ERR)

Because DATA/BASIC is case sensitive, the subroutine names must be typed exactly as
shown in the syntax descriptions. Using the wrong case for even one letter will result in a
fatal error at run time and entry to the DATA/BASIC debugger. Note that there will be no
visual indication of this unless either the RealLink window is visible, or you have set the
Terminal window to your own App or Child window; you can, however, return to the
RealLink window by pressing the Restore key (refer to the RealLink for Windows User
Manual for details).

Include Items The UIMS and NewView constants are defined in the file UIMS-TOOLS. There are four
items in this file which must be included at the beginning of your application. These are:

UIMSDEFS Defines constants and error messages.

UIMSCOMMON Declares COMMON variables.

These items will be required for most applications, but can be omitted if the application uses
only NewView hot-spots and the Execute, SystemCommand and SendKeys subroutines.

RFWDEFS Defines constants and error messages for NewView applications, and the
Execute, SystemCommand and SendKeys subroutines. Only required if
these features are used in the application.

RFWKEYS Contains key definitions for the SendKeys subroutine. Only required if
SendKeys is used in the application.

UIMS-DDE Contains definitions for the Dynamic Data Exchange (DDE) subroutines.
Only required if DDE is used in the application.

Numeric
Parameters

All numeric parameters must be passed as integer values. If a value which includes a
decimal point is used, this will be converted to zero.

6-2 UIMS DATA/BASIC API, Reference Manual

Introduction

Returned Values In most cases, when a UIMS or NewView subroutine is called, a result is returned – a
completion code, for example, or the states of one or more attributes. Since DATA/BASIC
does not support user-defined functions, in all cases the programmer must supply one or
more variables in which to return these values. The parameters in which results are returned
are indicated in the subroutine descriptions by a lower case 'v' prefixing the parameter name;
for example, vDisplay.

Errors UIMS can handle errors in two ways: synchronously or asynchronously. The SetSync
subroutine is used to select the required mode. The default is asynchronous.

Asynchronous Error
Handling

In asynchronous mode, errors are handled as follows:

• Unless otherwise stated, subroutines which return only a completion status code return
immediately. The value returned in vErr is always zero (UIMS.SUCCESS).

• If a subroutine which creates an object is passed a non-zero identifier (Ident parameter),
the subroutine returns immediately; the handle returned will be set to the value of the
supplied identifier. If the identifier is zero, errors are handled synchronously (see above).

• All other subroutines do not return until completion. Any value(s) returned should be
checked for validity.

In asynchronous mode, if an error occurs, a UIMS.MSG.NOTIFY message is generated
(see Chapter 4 for details). This should be processed by the application's message loop in the
same way as other types of message.

Synchronous Error
Handling

In synchronous mode, errors are handled as follows:

• Subroutines which return a completion status code do not return until it is known
whether the call was successful. If an error has occurred, the error code is returned in the
vErr parameter.

• Subroutines which create objects do not return until the object has been created; if an
error occurs, a null handle is returned.

• All other subroutines do not return until completion. Any value(s) returned should be
checked for validity.

Note: Some subroutines always return errors synchronously. This is mentioned in the
descriptions of the subroutines concerned.

Subroutine Reference 6-3

AddChild, AddChildren

AddChild, AddChildren

These subroutines attach children to an object.

• AddChild adds a single child.

• AddChildren adds a number of children.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AddChild(Context, Object, Index, Child, vErr)

CALL AddChildren(Context, Object, Index, aChildren, vErr)

Syntax Elements Context The handle of the application context.

Object The handle of the object to which you wish to add the children.

Index The point in the list of children at which the new child or children are to be
added. The list is numbered starting from 0 and new entries are added
before the specified existing entry. An index of -1 adds the new entry to
the end of the list.

Child The handle of the contact that is to be made a child of the object.

aChildren A dynamic array containing the handles of the contacts that are to be made
children of the object.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments When AddChild or AddChildren are called, the objects added will be drawn immediately,
provided the objects concerned are mappable and the parent is currently displayed.

If only one child is being added to an object, AddChild is faster than AddChildren.

See Also GetChild, GetChildren, RemoveChild, RemoveChildren, GetObjectParent.

6-4 UIMS DATA/BASIC API, Reference Manual

AddTimer

AddTimer

This subroutine creates a timer and sets it running.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AddTimer(Context, Interval, vHandle)

Syntax Elements Context The handle of the application context.

Interval The time in milliseconds between timer messages.

vHandle A variable in which to return a handle to the newly created timer.

Comments Each time the timer expires a UIMS.MSG.TIMER message is generated.

The timer created runs repeatedly until removed with the RemoveTimer subroutine. If a
one-shot timer is required it must be removed after the first timer message.

See Also RemoveTimer.

Subroutine Reference 6-5

AppHelp

AppHelp

This subroutine displays application help text.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AppHelp(Context, Section, vErr)

Syntax Elements Context The handle of the AppContext.

Section The help-id of the required section of the help file. If this parameter is 0,
the index will be displayed.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also SetHelpFile, GetHelpFile, SetHelpIndex, GetHelpIndex.

6-6 UIMS DATA/BASIC API, Reference Manual

AppWinGetDisplay - AppWinGetVScroll

AppWinGetDisplay – AppWinGetVScroll

These subroutines return the different attributes of an AppWindow contact.

• AppWinGetDisplay returns the handle of the screen on which the App window is being
displayed.

• AppWinGetHScroll returns the handle of the App window's horizontal scroll-bar, if
any.

• AppWinGetMenuBar returns the handle of an App window's MenuBar contact, if any.

• AppWinGetStyle returns the style of the App window.

• AppWinGetVScroll returns the handle of the App window's vertical scroll-bar, if any.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AppWinGetDisplay(Context, AppWindow, vDisplay)

CALL AppWinGetHScroll(Context, AppWindow, vHScrollBar)

CALL AppWinGetMenuBar(Context, AppWindow, vMenuBar)

CALL AppWinGetStyle(Context, AppWindow, vWinStyle)

CALL AppWinGetVScroll(Context, AppWindow, vVScrollBar)

Syntax Elements Context The handle of the application context.

AppWindow The handle of the AppWindow contact.

vDisplay A variable in which to return the handle of the Display object on which the
window is being shown.

vHScrollBar A variable in which to return the handle of the window's horizontal scroll-
bar. If zero is returned, the window either does not have a horizontal
scroll-bar or its horizontal scroll-bar is hidden.

Subroutine Reference 6-7

AppWinGetDisplay - AppWinGetVScroll

See CreateAppWin for a more detailed description of App window scroll-
bars.

vMenuBar A variable in which to return the handle of the window's menu bar. If zero
is returned, the window does not have a menu bar.

vWinStyle A variable in which a value representing the style of the window will be
returned. This value will be a combination of one or more of the following:

UIMS.WIN.CLOSABLE The window can be closed by the user.
UIMS.WIN.DIALOG Permits movement from child to child

with the TAB and SHIFT+TAB keys, as in
a dialog box.

UIMS.WIN.HSCROLL The window has a horizontal scroll-bar.
UIMS.WIN.ICONISABLE The window has a minimise box.
UIMS.WIN.MOVABLE The window can be moved by the user.
UIMS.WIN.SIZABLE The size of the window can be changed

by the user.
UIMS.WIN.TEXT The window has a text canvas attached.
UIMS.WIN.VSCROLL The window has a vertical scroll-bar.

The BitTest subroutine can be used to test the individual elements which
make up the returned value.

See CreateAppWin for a more detailed description of these styles.

vVScrollBar A variable in which to return the handle of the window's vertical scroll-bar.
If zero is returned, the window either does not have a vertical scroll-bar or
its vertical scroll-bar is hidden.

See CreateAppWin for a more detailed description of App window scroll-
bars.

See Also AppWinSetMenuBar, AppWinRemoveMenuBar, AppWinSetStyle, AppWinSetTitle.

6-8 UIMS DATA/BASIC API, Reference Manual

AppWinMaximize, AppWinMinimize

AppWinMaximize, AppWinMinimize

These subroutines allow the programmer to maximise and minimise an AppWindow
contact.

• AppWinMaximize enlarges an App window to its maximum size, usually the size of the
display.

• AppWinMinimize reduces an App window to an icon.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AppWinMaximize(Context, AppWindow, vErr)

CALL AppWinMinimize(Context, AppWindow, vErr)

Syntax Elements Context The handle of the application context.

AppWindow The handle of the AppWindow contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments An App window cannot be maximised unless it has a border style of UIMS.BORDER and a
window style of UIMS.SIZABLE.

An App window cannot be minimised unless it has a border style of UIMS.BORDER and a
window style of UIMS.ICONISABLE.

See Also AppWinSetSizing, AppWinRestore.

Subroutine Reference 6-9

AppWinRemoveMenuBar

AppWinRemoveMenuBar

This subroutine removes the MenuBar (if any) which is currently attached to an
AppWindow contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AppWinRemoveMenuBar(Context, AppWindow, vErr)

Syntax Elements Context The handle of the application context.

AppWindow The handle of the AppWindow contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also AppWinSetMenuBar, AppWinGetMenuBar.

6-10 UIMS DATA/BASIC API, Reference Manual

AppWinRestore

AppWinRestore

This subroutine restores a maximised or minimised AppWindow contact to its previous size.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AppWinRestore(Context, AppWindow, vErr)

Syntax Elements Context The handle of the application context.

AppWindow The handle of the AppWindow contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments AppWinRestore has no effect if the App window is not maximised or minimised.

See Also AppWinMinimize, AppWinMaximize, AppWinSetSizing.

Subroutine Reference 6-11

AppWinSetDefButton - AppWinSetTitle

AppWinSetDefButton – AppWinSetTitle

These subroutines change the different attributes of an AppWindow contact.

• AppWinSetDefButton sets which titled button within the window is the default.

• AppWinSetMenuBar attaches a menu bar to the App window.

• AppWinSetSizing sets whether the window is maximised, minimised or normal size.

• AppWinSetStyle changes the style of the window.

• AppWinSetTitle changes the title which appears at the top of the window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL AppWinSetDefButton(Context, AppWindow, Button, vErr)

CALL AppWinSetMenuBar(Context, AppWindow, MenuBar, vErr)

CALL AppWinSetSizing(Context, AppWindow, Sizing, vErr)

CALL AppWinSetStyle(Context, AppWindow, WinStyle, vErr)

CALL AppWinSetTitle(Context, AppWindow, Title, vErr)

Syntax Elements Context The handle of the application context.

AppWindow The handle of the AppWindow contact.

Button The handle of the TitledButton contact that is to be the default.

MenuBar The handle of the MenuBar contact to be attached to the window. The
new menu bar will replace that which is currently attached (if any).

Sizing The required sizing state for the window. This must be one of the
following values:

UIMS.WS.MAX Maximise.
UIMS.WS.MIN Minimise.
UIMS.WS.NORMAL Normal/restored.

6-12 UIMS DATA/BASIC API, Reference Manual

AppWinSetDefButton - AppWinSetTitle

WinStyle The style of the window. This must be a combination of the following
values:

UIMS.WIN.CLOSABLE The window can be closed by the user.
UIMS.WIN.DIALOG Permits movement from child to child

with the TAB and SHIFT+TAB keys, as in
a dialog box.

UIMS.WIN.HSCROLL The window has a horizontal scroll-bar.
UIMS.WIN.ICONISABLE The window has a minimise box.
UIMS.WIN.MOVABLE The window can be moved by the user.
UIMS.WIN.SIZABLE The size of the window can be changed

by the user.
UIMS.WIN.VSCROLL The window has a vertical scroll-bar.

The following pre-defined styles are also available:

UIMS.WIN.ALL The combination of all of the above.
UIMS.NONE None of the above.

See CreateAppWin for a more detailed description of these styles and of
App window scroll-bars.

Title The title to be displayed at the top of the window. Note that if the window
has no title bar, the title will not be displayed.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also AppWinGetMenuBar, AppWinRemoveMenuBar, CreateMenuBar, AppWinMaximize,
AppWinMinimize, AppWinRestore, AppWinGetStyle, CreateAppWin.

Subroutine Reference 6-13

BitTest

BitTest

This subroutine returns the state of a specified element in a composite value.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL BitTest(Value, Bit, vState)

Syntax Elements Value The value containing the element you wish to test.

Bit The element you wish to test.

vState A variable in which to return the state of the element. This will be 1 if the
element concerned is selected or 0 if the element is not selected.

Comments BitTest allows the programmer to determine the settings of individual elements in the
composite values returned by certain UIMS subroutines.

Value will normally be a composite value returned by a UIMS subroutine.

Bit will normally be a value defined in UIMSDEFS.

Example The following fragment of code determines whether or not a dialog box can be moved.

* First fetch the style of the dialog box

CALL DlgBoxGetStyle(DLGBOX�, STYLE)

* Then pass the result to BitTest to find out if it is movable

CALL BitTest(STYLE, UIMS.WIN.MOVABLE�, MOVABLE)

IF MOVABLE THEN PRINT "This dialog box can be moved."

In this example:

� DLGBOX is a variable containing the handle of the dialog box.

� UIMS.WIN.MOVABLE is a constant defined in UIMSDEFS.

6-14 UIMS DATA/BASIC API, Reference Manual

BrushGetColour

BrushGetColour

This subroutine returns the foreground colour of a Brush object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL BrushGetColour(Context, Brush, vColour)

Syntax Elements Context The handle of the application context.

Brush The handle of the Brush object.

vColour A variable in which a value representing the colour of the brush will be
returned. This value will be a UIMS logical colour or an RGB value (see
Appendix B).

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also BrushSetColour.

Subroutine Reference 6-15

BrushSetColour

BrushSetColour

This subroutine changes the colour of a Brush object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL BrushSetColour(Context, Brush, Colour, vErr)

Syntax Elements Context The handle of the application context.

Brush The handle of the Brush object.

Colour The colour of the brush. This must be a UIMS logical colour or an RGB
value (see Appendix B). If zero is specified a default of black will be used.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also BrushGetColour.

6-16 UIMS DATA/BASIC API, Reference Manual

ChangeNVButtonGroup

ChangeNVButtonGroup

This subroutine changes the titles of the buttons in a NewView button group and the
response strings generated by them. It can also be used to control whether or not buttons in
the group are visible.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS
INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL ChangeNVButtonGroup(Context, Group, Control, aTitles, aResponses, vErr)

Syntax Elements Context The handle of the application context.

Group The identifier of the required contact group.

Control Whether or not the mapped states of the buttons will be changed. This
must be one of the following values:

NV.CHANGE.MAP Change the mapped states of the buttons, as
specified in the aTitles parameter.

UIMS.NONE Change only the titles and responses.

aTitles A dynamic array, each attribute of which must contain a string to be
displayed as the title of one of the buttons in the group. If any attribute
contains a null string, the title of the corresponding button will remain
unchanged.

If the Control parameter is set to NV.CHANGE.MAP, buttons for which
there are attributes in this array will be mapped (made visible) and the
remainder unmapped (hidden).

aResponses A dynamic array, each attribute of which must contain a string that will be
returned to the application when a button in the group is operated. If any
attribute contains a null string, the response generated by the
corresponding button will remain unchanged.

Only the characters with the ASCII values X'08' to X'0D', and X'20'
(space) to X'7E' (tilde) can be used in a response string. If other characters
are required, they must be specified as follows:

CHAR(11): 'XX'

Subroutine Reference 6-17

ChangeNVButtonGroup

where 'XX' is a hexadecimal value made up of two ASCII characters in the
range '0' to '9' and 'A' to 'F' (upper case only).

For example, the BEL character (ASCII 7) is specified as follows:

CHAR(11):'07'

Note that if the VT character (X'0B') is required, it must be specified as
CHAR(11):'0B'.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Example The NewView button group BGRP1 contains five buttons, all of which are currently
displayed. Only three buttons are now required, and the titles and responses of these are to
be changed.

EQUATE AM TO CHAR(254)
.
.
.
TITLES = "Main":...
 AM:...
 AM:"Back"
RESPONSES = "M":CHAR(13):...
 AM:"K":CHAR(13):...
 AM
CALL ChangeNVButtonGroup(CONTEXT, ...
 BGRP1, ...
 NV.CHANGE.MAP, ...
 TITLES, ...
 RESPONSES, ...
 ERR)

When the above code has executed, the following changes will have been made:

• Only the first three buttons in the group will be displayed (the other two will still exist,
but will be hidden).

• The first button will have the title "Main" and it will generate the response string "M",
followed by a carriage return.

6-18 UIMS DATA/BASIC API, Reference Manual

ChangeNVButtonGroup

• The second button's title will be unchanged, but it will now generate the response string
"K", followed by a carriage return.

• The third button's response string will be unchanged, but its title will now be "Back".

See Also ChangeNVButtonGroup, ChangeNVContacts, CreateNVContactGroup,
DestroyNVGroup.

Subroutine Reference 6-19

ChangeNVContacts

ChangeNVContacts

This subroutine changes the response strings generated by contacts in a NewView group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS
INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL ChangeNVContacts(Context, Group, FirstContact, Number, aResponses, vErr)

Syntax Elements Context The handle of the application context.

Group The identifier of the required contact group.

FirstContact The handle of the first contact in the group to be changed.

Number The number of contacts to be changed.

aResponses A dynamic array, each attribute of which must contain a string that will be
returned to the application when a contact in the group is operated. The
number of attributes in the array must be the same as the number
parameter.

Only the characters with the ASCII values X'08' to X'0D', and X'20'
(space) to X'7E' (tilde) can be used in a response string. If other characters
are required, they must be specified as follows:

CHAR(11): 'XX'

where 'XX' is a hexadecimal value made up of two ASCII characters in the
range '0' to '9' and 'A' to 'F' (upper case only).

For example, the BEL character (ASCII 7) is specified as follows:

CHAR(11):'07'

Note that if the VT character (X'0B') is required, it must be specified as
CHAR(11):'0B'.

6-20 UIMS DATA/BASIC API, Reference Manual

ChangeNVContacts

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateNVContactGroup, DestroyNVGroup.

Subroutine Reference 6-21

CheckButtonDeselect

CheckButtonDeselect

This subroutine deselects the specified CheckButton contact, clearing the 'X' (if any)
displayed in its check box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CheckButtonDeselect(Context, Button, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the CheckButton contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CheckButtonSelect, CheckButtonSetSelected, CheckButtonGetSelected.

6-22 UIMS DATA/BASIC API, Reference Manual

CheckButtonGetSelected

CheckButtonGetSelected

This subroutine returns the current state (selected or deselected) of a CheckButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CheckButtonGetSelected(Context, Button, vSelected)

Syntax Elements Context The handle of the application context.

Button The handle of the CheckButton contact.

vSelected A variable in which to return the state (selected or deselected) of the
button. This will be one of the following values:

TRUE The button is selected.
FALSE The button is not selected.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CheckButtonSetSelected, CheckButtonSetTitle, CheckButtonSetToggle.

Subroutine Reference 6-23

CheckButtonSelect

CheckButtonSelect

This subroutine selects the specified CheckButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CheckButtonSelect(Context, Button, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the CheckButton contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments When a check button is selected an 'X' is displayed in its check box.

See Also CheckButtonDeselect, CheckButtonSetSelected, CheckButtonGetSelected.

6-24 UIMS DATA/BASIC API, Reference Manual

CheckButtonSetSelected - CheckButtonSetToggle

CheckButtonSetSelected – CheckButtonSetToggle

These subroutines change the attributes of a specified CheckButton contact.

• CheckButtonSetSelected sets the button to selected or deselected.

• CheckButtonSetTitle changes the title displayed beside the button.

• CheckButtonSetToggle changes the auto-toggle state of the button.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CheckButtonSetSelected(Context, Button, Selected, vErr)

CALL CheckButtonSetTitle(Context, Button, Title, vErr)

CALL CheckButtonSetToggle(Context, Button, Toggle, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the CheckButton contact.

Selected The required button state. This must be one of the following values:

TRUE Select the button.
FALSE Deselect the button.

Title The new title for the button.

Toggle The required auto-toggle state. This must be one of the following values:

TRUE Enable auto-toggle.
FALSE Disable auto-toggle.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Subroutine Reference 6-25

CheckButtonSetSelected - CheckButtonSetToggle

Comments When a check button is selected an 'X' is displayed in its check box.

See Also CheckButtonGetSelected.

6-26 UIMS DATA/BASIC API, Reference Manual

ChildWinGetHScroll - ChildWinGetVScroll

ChildWinGetHScroll – ChildWinGetVScroll

These subroutines return the different attributes of a ChildWindow contact.

• ChildWinGetHScroll returns the handle of the Child window's horizontal scroll-bar, if
any.

• ChildWinGetStyle returns the style of the Child window.

• ChildWinGetVScroll returns the handle of the Child window's vertical scroll-bar, if any.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ChildWinGetHScroll(Context, ChildWindow, vHScrollBar)

CALL ChildWinGetStyle(Context, ChildWindow, vWinStyle)

CALL ChildWinGetVScroll(Context, ChildWindow, vVScrollBar)

Syntax Elements Context The handle of the application context.

ChildWindow The handle of the ChildWindow contact.

vHScrollBar A variable in which to return the handle of the window's horizontal scroll-
bar. If zero is returned, the window either does not have a horizontal
scroll-bar or its horizontal scroll-bar is hidden.

See CreateChildWin for a more detailed description of Child window
scroll-bars.

vWinStyle A variable in which a value representing the style of the window will be
returned. This value will be a combination of one or more of the following:

UIMS.WIN.DIALOG Permits movement from child to child
with the TAB and SHIFT+TAB keys, as in
a dialog box.

UIMS.WIN.HSCROLL The window has a horizontal scroll-bar.
UIMS.WIN.TEXT The window has a text canvas attached.
UIMS.WIN.VSCROLL The window has a vertical scroll-bar.

Subroutine Reference 6-27

ChildWinGetHScroll - ChildWinGetVScroll

The BitTest subroutine can be used to test the individual elements which
make up the returned value.

See CreateChildWin for a more detailed description of these styles.

vVScrollBar A variable in which to return the handle of the window's vertical scroll-bar.
If zero is returned, the window either does not have a vertical scroll-bar or
its vertical scroll-bar is hidden.

See CreateChildWin for a more detailed description of Child window
scroll-bars.

See Also ChildWinSetStyle.

6-28 UIMS DATA/BASIC API, Reference Manual

ChildWinSetDefButton, ChildWinSetStyle

ChildWinSetDefButton, ChildWinSetStyle

These subroutines change the different attributes of an ChildWindow contact.

• ChildWinSetDefButton sets which titled button within the window is the default.

• ChildWinSetStyle changes the style of the Child window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ChildWinSetDefButton(Context, ChildWindow, Button, vErr)

CALL ChildWinSetStyle(Context, ChildWindow, WinStyle, vErr)

Syntax Elements Context The handle of the application context.

ChildWindow The handle of the ChildWindow.

Button The handle of the TitledButton contact that is to be the default.

WinStyle The style of the window. This must be a combination of the following
values:

UIMS.WIN.DIALOG Permits movement from child to child
with the TAB and SHIFT+TAB keys, as in
a dialog box.

UIMS.WIN.HSCROLL The window has a horizontal scroll-bar.
UIMS.WIN.VSCROLL The window has a vertical scroll-bar.

The following pre-defined style is also available:

UIMS.NONE None of the above.

See CreateChildWin for a more detailed description of these styles and of
Child window scroll-bars.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also ChildWinGetStyle.

Subroutine Reference 6-29

ClipboardGetContent, ClipboardGetSize

ClipboardGetContent, ClipboardGetSize

These subroutines provide access to the clipboard.

• ClipboardGetContent returns the contents of the clipboard.

• ClipboardGetSize returns the amount of data on the clipboard.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ClipboardGetContent(DataFormat, vContent, vLength)

CALL ClipboardGetSize(Format, vSize)

Syntax Elements DataFormat The format in which to return the data from the clipboard. This must be a
string up to four characters long. The following are recognised formats:

"TEXT" ASCII text.
"PICT" Reserved for future use.

Other, application defined, formats can also be used.

vContent A variable in which to return the data from the clipboard.

vLength A variable in which to return the number of bytes of data returned in
vContent.

Format The format (see above) for which the size of the data is required.

vSize A variable in which to return the length of the clipboard data. If the data
on the clipboard is not in the requested format, zero is returned.

Comments An alternative method of retrieving the clipboard contents is with the Paste subroutine.

See Also Copy, Cut, ClipboardSetContent, Paste.

6-30 UIMS DATA/BASIC API, Reference Manual

ClipboardSetContent

ClipboardSetContent

This subroutine places data on the clipboard.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ClipboardSetContent(Format, Content, Length, vErr)

Syntax Elements Format The format of the data to be placed on the clipboard. The following text
strings are recognised formats:

"TEXT" ASCII text.
"PICT" Reserved for future use.

Other, application defined, text strings can also be used.

Content The data to place on the clipboard.

Length The length of the data to be placed on the clipboard.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Alternative methods of placing data on the clipboard are the Copy and Cut subroutines.

See Also Copy, Cut, Paste, ClipboardGetContent, ClipboardGetSize.

Subroutine Reference 6-31

Copy

Copy

This subroutine is used to place on the clipboard, part or all of the data from an EditBox or
TextEditor contact. The contents of the contact remain unchanged.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Copy(Context, Contact, StartChar, StartLine, EndChar, EndLine, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

StartChar The character position of the start of the copy. The position must be
specified as the number of characters from the start of the line specified in
StartLine.

StartLine The number of the line containing the position of the start of the copy. If
Contact is the handle of an EditBox, this parameter will be ignored.

EndChar The character position of the end of the copy. The position must be
specified as the number of characters from the start of the line specified in
EndLine.

EndLine The number of the line containing the position of the end of the copy. If
Contact is the handle of an EditBox, this parameter will be ignored.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If StartChar, StartLine, EndChar and EndLine are all zero, all the data in the contact will be
copied to the clipboard.

If StartChar, StartLine, EndChar and EndLine are all -1, the currently selected data will be
copied to the clipboard.

If Contact is handle of a contact other than an EditBox or TextEditor, an error will be
returned.

See Also Cut, Paste, ClipboardSetContent, ClipboardGetContent, ClipboardGetState.

6-32 UIMS DATA/BASIC API, Reference Manual

CreateAppWin

CreateAppWin

This subroutine creates an AppWindow contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateAppWin(Context, Ident, Title, HPos, VPos, Width, Height, Style,
BorderStyle, Parent, vAppWindow)

Syntax Elements Context The handle of the context to which the App window will belong.

Ident An integer value to use as the handle for the AppWindow contact. If this
parameter is zero a handle will be assigned by UIMS and returned in the
vAppWindow parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title to be displayed at the top of the window. Note that if the window
has no title bar, the title will not be displayed.

HPos The horizontal position of the window in coordinate units. This specifies
the position of the left-hand edge of the window, relative to the left-hand
edge of the screen.

VPos The vertical position of the window in coordinate units. This specifies the
position of the top edge of the window, relative to the top edge of the
screen.

Width The overall width of the window in coordinate units.

Height The overall height of the window in coordinate units.

Style The style of the window. This must be a combination of the following
values:

UIMS.WIN.CLOSABLE The window can be closed by the user.
UIMS.WIN.DIALOG Permits movement from child to child

with the TAB and SHIFT+TAB keys, as in
a dialog box.

UIMS.WIN.HSCROLL The window has a horizontal scroll-bar.

Subroutine Reference 6-33

CreateAppWin

UIMS.WIN.ICONISABLE The window has a minimise box.
UIMS.WIN.MOVABLE The window can be moved by the user.
UIMS.WIN.SIZABLE The size of the window can be changed

by the user.
UIMS.WIN.TEXT The window has a text canvas attached.
UIMS.WIN.VSCROLL The window has a vertical scroll-bar.

The following pre-defined styles are also available:

UIMS.WIN.ALL The combination of all of the above, except
UIMS.WIN.TEXT.

UIMS.NONE None of the above.

BorderStyle The style of the window's border. This must be one of the following
values:

UIMS.BORDER Give the window a border.
UIMS.NONE No border.

Parent The handle of the parent of the window, if required. The parent must be
the application context. If a parent is specified, the window will be drawn
immediately.

If Parent is a null string, the window is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vAppWindow A variable in which to return the handle of the newly-created App window.
If it could not be created for any reason, zero is returned. Note, however,
that if asynchronous error handling is selected and a handle has been
supplied in the Ident parameter, this handle will always be returned, and
any error will be reported by means of a UIMS.MSG.NOTIFY message.
See SetSync for more details.

Comments

Window Styles The different window and border styles have the following effects:

UIMS.WIN.CLOSABLE
Generates a single border (overriding the border style), a title bar, and a
system menu with the Close and Move commands enabled.

6-34 UIMS DATA/BASIC API, Reference Manual

CreateAppWin

UIMS.WIN.ICONISABLE
Generates a single border (overriding the border style), a title bar, a
minimise box, and a system menu with the Move and Minimize commands
enabled.

UIMS.WIN.MOVABLE
Generates a single border (overriding the border style), a title bar, and a
system menu with the Move command enabled.

UIMS.WIN.SIZABLE
Generates a double border (overriding the border style and any other
window styles), a title bar, a maximise box, and a system menu with the
Size, Maximize and Move commands enabled.

UIMS.WIN.HSCROLL and UIMS.WIN.VSCROLL
Generate a single border (overriding the border style) and the appropriate
scroll-bar.

UIMS.WIN.TEXT
This creates a text canvas on which text strings and their positions in the
client area are stored.

Notes:

1. A window with a system menu, title bar and border can always be moved by the
user, whether or not style UIMS.WIN.MOVABLE is selected.

2. If a window is to have no border, or a border but no title bar, its style cannot
include style elements UIMS.WIN.MOVABLE, UIMS.WIN.CLOSABLE,
UIMS.WIN.ICONISABLE or UIMS.WIN.SIZABLE.

3. If the window does not have a title bar, the title of the window is not displayed.

Window Size and
Position

HPos, VPos, Width and Height will be interpreted according to the coordinate mode (text or
graphics) currently selected for the application context.

The position of the window is specified in screen-relative coordinates (position 0,0 is the top
left-hand corner of the screen).

See Also AppWinSetMenuBar, AppWinSetSizing, AppWinSetStyle, AppWinSetTitle,
CreateChildWin.

Subroutine Reference 6-35

CreateCheckButton

CreateCheckButton

This subroutine creates a CheckButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateCheckButton(Context, Ident, Title, HPos, VPos, Width, Height, Parent,
vButton)

Syntax Elements Context The handle of the context to which the check button will belong.

Ident An integer value to use as the handle for the CheckButton contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vButton parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title to be displayed next to the check button.

HPos The horizontal position of the button in coordinate units, relative to the
left-hand edge of its parent's client area.

VPos The vertical position of the button in coordinate units, relative to the top
edge of its parent's client area.

Width The width of the button in coordinate units. This specifies the total width
of the button graphics and the title. If Width is specified as zero, a button
will be created just wide enough to contain the graphic and the title.

Height The height of the button in coordinate units. If Height is specified as zero,
a button will be created just tall enough to contain the graphic or the title,
whichever is the taller.

Parent The handle of the parent of the titled button, if required. This can be any
type of window. If the parent is currently displayed the button will be
drawn immediately.

If Parent is a null string, the button is created without a parent and can be
attached at a later time using AddChild or AddChildren.

6-36 UIMS DATA/BASIC API, Reference Manual

CreateCheckButton

vButton A variable in which to return the handle of the newly-created button. If it
could not be created for any reason, zero is returned. Note, however, that if
asynchronous error handling is selected and a handle has been supplied in
the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

Comments The Width and Height parameters will be interpreted according to the coordinate mode (text
or graphics) currently selected for the application context.

HPos and VPos specify the position of the top left-hand corner of the button, relative to the
top left-hand corner of its parent's client area (position 0,0).

See Also CheckButtonSetSelected, CheckButtonSetTitle, CheckButtonSetToggle,
CreateOptionButton, CreateTitledButton.

Subroutine Reference 6-37

CreateChildWin

CreateChildWin

This subroutine creates a ChildWindow contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateChildWin(Context, Ident, HPos, VPos, Width, Height, Style, BorderStyle,
Parent, vChildWindow)

Syntax Elements Context The handle of the context to which the Child window will belong.

Ident An integer value to use as the handle for the ChildWindow contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vChildWindow parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

HPos The horizontal position of the window in coordinate units. This specifies
the position of the left-hand edge of the window, relative to the left-hand
edge of its parent's client area.

VPos The vertical position of the window in coordinate units. This specifies the
position of the top edge of the window, relative to the top edge of its
parent's client area.

Width The overall width of the window in coordinate units.

Height The overall height of the window in coordinate units.

Style The style of the window. This must be a combination of the following
values:

UIMS.WIN.DIALOG Permits movement from child to child
with the TAB and SHIFT+TAB keys, as in
a dialog box.

UIMS.WIN.HSCROLL The window has a horizontal scroll-bar.
UIMS.WIN.TEXT The window has a text canvas attached.
UIMS.WIN.VSCROLL The window has a vertical scroll-bar.

6-38 UIMS DATA/BASIC API, Reference Manual

CreateChildWin

The following pre-defined style is also available:

UIMS.NONE None of the above.

BorderStyle The style of the window's border. This must be one of the following
values:

UIMS.BORDER Give the window a border.
UIMS.NONE No border.

Parent The handle of the parent of the window, if required. This must be an
AppWindow, a ChildWindow, a DialogBox or an InclusiveGroup. If the
parent is currently displayed the window will be drawn immediately.

If Parent is a null string, the window is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vChildWindow A variable in which to return the handle of the newly-created Child
window. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

Comments HPos, VPos, Width and Height will be interpreted according to the coordinate mode (text or
graphics) currently selected for the application context.

The position of the window is specified in screen-relative coordinates (position 0,0 is the top
left-hand corner of the screen).

See Also ChildWinSetStyle, CreateAppWin.

Subroutine Reference 6-39

CreateDlgBox

CreateDlgBox

This subroutine creates a DialogBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateDlgBox(Context, Ident, Title, HPos, VPos, Width, Height, Style, Parent,
vDlgBox)

Syntax Elements Context The handle of the context to which the dialog box will belong.

Ident An integer value to use as the handle for the DialogBox contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vDlgBox parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title to be displayed at the top of the dialog box. Note that if the dialog
box has no title bar, the title will not be displayed.

HPos The horizontal position in coordinate units of the left-hand edge of the
dialog box, relative to the left-hand edge of its parent's client area.

VPos The vertical position in coordinate units of the top edge of the dialog box,
relative to the top edge of its parent's client area.

Width The overall width of the dialog box in coordinate units.

Height The overall height of the dialog box in coordinate units.

Style The required style for the dialog box. This must be a combination of the
following values:

UIMS.WIN.CLOSABLE The dialog box can be closed by the
user.

UIMS.WIN.MOVABLE The dialog box can be moved by the
user.

6-40 UIMS DATA/BASIC API, Reference Manual

CreateDlgBox

The following pre-defined styles are also available:

UIMS.NONE No system menu or title bar; not movable or
closable.

UIMS.DEFAULT The default setting (movable and closable).

Parent The handle of the parent of the dialog box, if required. This can be the
application context or an AppWindow. If the parent is currently displayed
the dialog box will be drawn immediately.

If Parent is a null string, the dialog box is created without a parent and can
be attached at a later time using AddChild or AddChildren.

vDlgBox A variable in which to return the handle of the newly-created dialog box. If
it could not be created for any reason, zero is returned. Note, however, that
if asynchronous error handling is selected and a handle has been supplied
in the Ident parameter, this handle will always be returned, and any error
will be reported by means of a UIMS.MSG.NOTIFY message. See
SetSync for more details.

Comments

Size and Position HPos, VPos, Width and Height will be interpreted according to the coordinate mode (text or
graphics) currently selected for the application context.

The position of the window is specified in parent-relative coordinates (position 0,0 is the top
left-hand corner of the parent's client area). Note, however, that if the parent of the dialog
box is the application context, the position must be specified relative to the top left-hand
corner of the screen.

Mode When first created, a dialog box is application modal. This can be changed with
DlgBoxSetMode if required.

See Also DlgBoxSetDefButton, DlgBoxSetMode, DlgBoxSetStyle, DlgBoxSetTitle,
CreateMessageBox.

Subroutine Reference 6-41

CreateDrawBrush

CreateDrawBrush

This subroutine creates a Brush object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateDrawBrush(Context, Ident, Colour, Style, vBrush)

Syntax Elements Context The handle of the context to which the brush object will belong.

Ident An integer value to use as the handle for the Brush object. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vBrush parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Colour The colour of the brush. This must be a UIMS logical colour or an RGB
value (see Appendix B). If zero is specified a default of black will be used.

Style The style of the brush. This must be one of the following values:

UIMS.BRUSH.SOLID Solid colour.
UIMS.BRUSH.HOLLOW Transparent.

vBrush A variable in which to return the handle of the newly-created Brush
object. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

See Also BrushSetColour, CreateDrawPen.

6-42 UIMS DATA/BASIC API, Reference Manual

CreateDrawFont

CreateDrawFont

This subroutine creates a Font object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateDrawFont(Context, Ident, Style, TypeFace, PointSize, vFont)

Syntax Elements Context The handle of the context to which the font will belong.

Ident An integer value to use as the handle for the Font object. If this parameter
is zero, a handle will be assigned by UIMS and returned in the vFont
parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Style The style of the font. This must be a combination of the following:

UIMS.FONT.BOLD
UIMS.FONT.ITALIC
UIMS.FONT.OUTLINE
UIMS.FONT.UNDERLINE
UIMS.FONT.STRIKEOUT

If none of the above are required, the style should be set to UIMS.NONE.

In some typefaces not all the above are available. If a style that is not
available is selected, UIMS will use the nearest equivalent.

TypeFace The handle of a TypeFace object. If this parameter is zero, the default
typeface is used.

PointSize The required point size for the font.

The point size should one of those which is available for the selected
typeface - use TypeFaceGetPointSizes to find out which sizes are
available. If the requested size is not available, UIMS will try to create it
by scaling one of the available sizes; if this cannot easily be done, the

Subroutine Reference 6-43

CreateDrawFont

nearest equivalent will be selected. Note that some typefaces can be scaled
to any size.

If this parameter is zero, the first size in the typeface's list is used.

vFont A variable in which to return the handle of the newly-created Font object.
If it could not be created for any reason, zero is returned. Note, however,
that if asynchronous error handling is selected and a handle has been
supplied in the Ident parameter, this handle will always be returned, and
any error will be reported by means of a UIMS.MSG.NOTIFY message.
See SetSync for more details.

See Also FontSetPointSize, TypeFaceGetPointSize, TypeFaceGetPointSizes, FontSetStyle,
FontSetTypeFace, GetTypeFace, GetTypeFaces.

6-44 UIMS DATA/BASIC API, Reference Manual

CreateDrawPen

CreateDrawPen

This subroutine creates a Pen object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateDrawPen(Context, Ident, Colour, Width, Style, vPen)

Syntax Elements Context The handle of the context to which the pen will belong.

Ident An integer value to use as the handle for the Pen object. If this parameter
is zero, a handle will be assigned by UIMS and returned in the vPen
parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Colour The colour of the pen. This must be a UIMS logical colour or an RGB
value (see Appendix B).

Width The width, in pixels, of lines drawn by the pen.

If the width is set to zero, the pen will draw the thinnest and/or most
efficient lines available on the display platform.

Style The style of the pen. This must be one of the following values:

UIMS.PEN.SOLID A continuous line.
UIMS.PEN.HOLLOW An invisible line.

If this parameter is zero, the style is set to UIMS.PEN.SOLID.

vPen A variable in which to return the handle of the newly-created Pen object.
If it could not be created for any reason, zero is returned. Note, however,
that if asynchronous error handling is selected and a handle has been
supplied in the Ident parameter, this handle will always be returned, and
any error will be reported by means of a UIMS.MSG.NOTIFY message.
See SetSync for more details.

See Also PenSetColour, PenSetWidth, CreateDrawBrush.

Subroutine Reference 6-45

CreateDrawrule

CreateDrawrule

This subroutine creates a Drawrule object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateDrawrule(Context, Ident, Foreground, Background, DrawMode, TextMode,
vDrawrule)

Syntax Elements Context The handle of the context to which the drawrule will belong.

Ident An integer value to use as the handle for the Drawrule object. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vDrawrule parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Foreground The foreground colour for text output. This must be a UIMS logical colour
or an RGB value (see Appendix B).

If this parameter is set to UIMS.DEFAULT, the foreground colour is set
to that of the default Drawrule.

Background The background colour for text and graphics output. This must be a UIMS
logical colour or an RGB value (see Appendix B).

If this parameter is set to UIMS.DEFAULT, the background colour is set
to that of the default Drawrule.

DrawMode The drawing mode used for graphics (pen and brush) output. This must be
one of the following values:

UIMS.DRAW.CLEAR
UIMS.DRAW.COPY
UIMS.DRAW.NOTCLEAR
UIMS.DRAW.NOTCOPY
UIMS.DRAW.NOTOR
UIMS.DRAW.NOTXOR

6-46 UIMS DATA/BASIC API, Reference Manual

CreateDrawrule

UIMS.DRAW.OR
UIMS.DRAW.XOR

If this parameter is zero, the drawing mode will be set to
UIMS.DRAW.COPY.

The effects of the different graphics drawing modes are described in
Appendix B.

TextMode The drawing mode used for text output. This must be one of the following
values:

UIMS.TEXT.OPAQUE Fill the text background with the selected
background colour.

UIMS.TEXT.HOLLOW Do not fill the text background.

If this parameter is zero, text mode will be set to UIMS.TEXT.OPAQUE.

vDrawrule A variable in which to return the handle of the newly-created Drawrule
object. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

Comments The default Brush, Font and Pen objects for the application context will be attached to the
newly-created drawrule. These can be changed with the appropriate subroutines.

See Also DrawruleSetBrush, DrawruleSetColour, DrawruleSetFont, DrawruleSetPen.

Subroutine Reference 6-47

CreateEditBox

CreateEditBox

This subroutine creates an EditBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateEditBox(Context, Ident, HPos, VPos, Width, Height, Style, Mask, Parent,
vEditBox)

Syntax Elements Context The handle of the application context to which the edit box will belong.

Ident An integer value to use as the handle for the EditBox contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vEditBox parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

HPos The horizontal position in coordinate units of the left-hand edge of the edit
box, relative to the left-hand edge of its parent's client area.

VPos The vertical position in coordinate units of the top of the edit box, relative
to the top edge of its parent's client area.

Width The width of the edit box in coordinate units.

Height The height of the edit box in coordinate units.

Style The required style for the edit box. This must be one of the following
values:

UIMS.EBOX.BORDER Enclose the edit field in a box.
UIMS.NONE Do not enclose the edit field in a box.

Mask This parameter is for future use. It must be set to a string when calling
CreateEditBox, but its value will be ignored.

Parent The handle of the parent of the edit box, if required. This can be any type
of window or an inclusive group. If the parent is currently displayed the
edit box will be drawn immediately.

6-48 UIMS DATA/BASIC API, Reference Manual

CreateEditBox

If Parent is a null string, the edit box is created without a parent and can
be attached at a later time using AddChild or AddChildren.

vEditBox A variable in which to return the handle of the newly-created edit box. If it
could not be created for any reason, zero is returned. Note, however, that if
asynchronous error handling is selected and a handle has been supplied in
the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

The position of the edit box is specified in parent-relative coordinates (position 0,0 is the top
left-hand corner of the parent's client area).

The EditBox contact allows only a single line of text to be edited. To edit text with more
than one line, use the TextEditor contact.

See Also EditBoxSetContent, EditBoxSetSelected, CreateTextEditor.

Subroutine Reference 6-49

CreateExGroup

CreateExGroup

This subroutine creates an ExclusiveGroup contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateExGroup(Context, Ident, Title, HPos, VPos, Width, Height, Style, Parent,
vGroup)

Syntax Elements Context The handle of the application context to which the exclusive group will
belong.

Ident An integer value to use as the handle for the ExclusiveGroup contact. If
this parameter is zero, a handle will be assigned by UIMS and returned in
the vGroup parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title of the exclusive group.

HPos The horizontal position in coordinate units of the left-hand edge of the
group, relative to the left-hand edge of its parent's client area.

VPos The vertical position in coordinate units of the top of the group, relative to
the top edge of its parent's client area. Note that the top of the group is
aligned with the top of the title text, not with the top of the bounding box.

Width The width of the group in coordinate units.

Height The height of the group in coordinate units. Note that this value must allow
for the group title, which extends above the bounding box.

Style The required style for the group. This can be either of the following
values:

UIMS.BORDER Enclose the group in a box.
UIMS.NONE Do not enclose the group in a box.

6-50 UIMS DATA/BASIC API, Reference Manual

CreateExGroup

Parent The handle of the parent of the exclusive group, if required. This can be
any type of window. If the parent is currently displayed the group will be
drawn immediately.

If Parent is a null string, the group is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vGroup A variable in which to return the handle of the newly-created exclusive
group. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

The position of the group is specified in parent-relative coordinates (position 0,0 is the top
left-hand corner of the parent's client area).

If the group has no bounding box, the title will not be displayed.

The children of an exclusive group must be OptionButton contacts. If any are not, the
contact will not be created and zero will be returned.

See Also CreateOptionButton, CreateIncGroup.

Subroutine Reference 6-51

CreateIncGroup

CreateIncGroup

This subroutine creates an InclusiveGroup contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateIncGroup(Context, Ident, Title, HPos, VPos, Width, Height, Style, Parent,
vGroup)

Syntax Elements Context The handle of the application context to which the inclusive group will
belong.

Ident An integer value to use as the handle for the InclusiveGroup contact. If
this parameter is zero, a handle will be assigned by UIMS and returned in
the vGroup parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title of the inclusive group.

HPos The horizontal position in coordinate units of the left-hand edge of the
group, relative to the left-hand edge of its parent's client area.

VPos The vertical position in coordinate units of the top of the group, relative to
the top edge of its parent's client area. Note that the top of the group is
aligned with the top of the title text, not with the top of the bounding box.

Width The width of the group in coordinate units.

Height The height of the group in coordinate units. Note that this value must allow
for the group title, which extends above the bounding box.

Style The required style for the group. This can be either of the following
values:

UIMS.BORDER Enclose the group in a box.
UIMS.NONE Do not enclose the group in a box.

6-52 UIMS DATA/BASIC API, Reference Manual

CreateIncGroup

Parent The handle of the parent of the inclusive group, if required. This can be
any type of window. If the parent is currently displayed the group will be
drawn immediately.

If Parent is a null string, the group is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vGroup A variable in which to return the handle of the newly-created inclusive
group. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

The position of the window is specified in parent-relative coordinates (position 0,0 is the top
left-hand corner of the parent's client area).

If the group has no bounding box, the title will not be displayed.

Only the following types of contact can be attached as children of an inclusive group:

CheckButton
ChildWindow
EditBox
ExclusiveGroup
InclusiveGroup
Line

ListBox
OptionButton
Rectangle
ScrollBar
Text
TextEditor

See Also CreateExGroup, IncGroupSetStyle, IncGroupSetTitle.

Subroutine Reference 6-53

CreateLine

CreateLine

This subroutine creates a Line contact. The line is drawn between two specified points on
the client area of the parent window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateLine(Context, Ident, HStart, VStart, HEnd, VEnd, EndStyles, Parent, vLine)

Syntax Elements Context The handle of the application context to which the Line contact will
belong.

Ident An integer value to use as the handle for the Line contact. If this parameter
is zero, a handle will be assigned by UIMS and returned in the vLine
parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

HStart The horizontal position in coordinate units of the start of the line.

VStart The vertical position in coordinate units of the start of the line.

HEnd The horizontal position in coordinate units of the end of the line, relative
to the start of the line.

VEnd The vertical position in coordinate units of the end of the line, relative to
the start of the line.

EndStyles This parameter is for future use. It must be set to a numeric value when
calling CreateLine, but its value will be ignored.

Parent The handle of the parent of the line contact, if required. This can be any
type of window. If the parent is currently displayed the line will be drawn
immediately.

If Parent is a null string, the line is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vLine A variable in which to return the handle of the newly-created Line contact.
If it could not be created for any reason, zero is returned. Note, however,

6-54 UIMS DATA/BASIC API, Reference Manual

CreateLine

that if asynchronous error handling is selected and a handle has been
supplied in the Ident parameter, this handle will always be returned, and
any error will be reported by means of a UIMS.MSG.NOTIFY message.
See SetSync for more details.

Comments The position of the start of the line is specified in parent-relative coordinates (position 0,0 is
the top left-hand corner of the parent's client area), using the coordinate mode (text or
graphics) currently selected for the application context.

Other line attributes (width, colour, etc.) are set by means of a Drawrule object attached to
the Line contact. Initially the drawing rule is that attached to the parent object, but this can
be changed by calling the SetDrawrule subroutine.

See Also SetDrawrule, CreateRect, CreateText.

Subroutine Reference 6-55

CreateListBox

CreateListBox

This subroutine creates a ListBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateListBox(Context, Ident, HPos, VPos, Width, Height, Controls, Parent,
vListBox)

Syntax Elements Context The handle of the application context to which the list box will belong.

Ident An integer value to use as the handle for the ListBox contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vListBox parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

HPos The horizontal position of the list box in coordinate units, relative to the
left-hand edge of its parent's client area (position 0).

VPos The vertical position of the list box in coordinate units, relative to the top
edge of its parent's client area (position 0).

Width The width of the list box in coordinate units.

Height The height of the list box in coordinate units.

Controls The required control settings for the list box. This can be either of the
following values:

UIMS.LBOX.MULTISELECT Multiple selections allowed.
UIMS.NONE Allow only one item to be selected

at a time.

Parent The handle of the parent of the list box, if required. This can be any type
of window. If the parent is currently displayed the list box will be drawn
immediately.

6-56 UIMS DATA/BASIC API, Reference Manual

CreateListBox

If Parent is a null string, the list box is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vListBox A variable in which to return the handle of the newly-created list box. If it
could not be created for any reason, zero is returned. Note, however, that if
asynchronous error handling is selected and a handle has been supplied in
the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

See Also ListBoxAddContent, ListBoxAddContents, ListBoxAddSelection,
ListBoxAddSelections, ListBoxSetLink.

Subroutine Reference 6-57

CreateMenuBar

CreateMenuBar

This subroutine creates a MenuBar contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateMenuBar(Context, Ident, Parent, vMenuBar)

Syntax Elements Context The handle of the application context to which the menu bar will belong.

Ident An integer value to use as the handle for the MenuBar contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vMenuBar parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Parent The handle of the parent of the MenuBar if required. If specified, this
must be an AppWindow. If the parent is currently displayed the menu bar
will be drawn immediately.

If Parent is a null string, the contact is created without a parent and can be
attached at a later time using AppWinSetMenuBar.

vMenuBar A variable in which to return the handle of the newly-created MenuBar. If
it could not be created for any reason, zero is returned. Note, however, that
if asynchronous error handling is selected and a handle has been supplied
in the Ident parameter, this handle will always be returned, and any error
will be reported by means of a UIMS.MSG.NOTIFY message. See
SetSync for more details.

See Also CreatePullDownMenu, MakePullDownMenu, CreateMenuItem, AppWinSetMenuBar.

6-58 UIMS DATA/BASIC API, Reference Manual

CreateMenuItem

CreateMenuItem

This subroutine creates a MenuItem contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateMenuItem(Context, Ident, Title, Parent, vMenuItem)

Syntax Elements Context The handle of the application context to which the menu item will belong.

Ident An integer value to use as the handle for the MenuItem contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vMenuItem parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title of the menu item. An ampersand (&) preceding a character in this
string designates that character as the selector key for the menu item.

If a single hyphen is used as the title, a separator item is created. This
appears as a continuous line across the width of its parent menu. A
separator item cannot be selected by the user and should be used to
visually group related menu items. Note that a separator item cannot be
attached to a menu bar.

Parent The handle of the parent of the menu item, if required. If specified, this
must be either a Menu or a MenuBar. If the parent is currently displayed
the menu item will be drawn immediately.

If Parent is a null string, the contact is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vMenuItem A variable in which to return the handle of the newly-created MenuItem.
If it could not be created for any reason, zero is returned. Note, however,
that if asynchronous error handling is selected and a handle has been
supplied in the Ident parameter, this handle will always be returned, and
any error will be reported by means of a UIMS.MSG.NOTIFY message.
See SetSync for more details.

Subroutine Reference 6-59

CreateMenuItem

See Also CreateMenuBar, CreatePullDownMenu, MakePullDownMenu, AddChild,
AddChildren.

6-60 UIMS DATA/BASIC API, Reference Manual

CreateMessageBox

CreateMessageBox

This subroutine creates and displays a MessageBox.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateMessageBox(Context, Style, Title, Message, aButtonTitles, vResponse, vErr)

Syntax Elements Context The handle of the context to which the message box is to belong.

Style The style of the message box; that is, the number of buttons, the type of
icon and which button is to be the default. This must be a combination of
values, formed by adding together one from each of the following groups:

Number of Buttons

0 Use pre-defined style.

1 One button.

2 Two buttons.

3 Three buttons.

Icon

0 Use pre-defined styles.

16 Information icon.

32 Warning icon.

48 Alert icon.

64 Query icon.

Default button

0 The left-most button is the default.

256 The second button is the default.

512 The third button is the default.

Subroutine Reference 6-61

CreateMessageBox

If the number of buttons is zero, the Icon value selects a pre-defined style,
as follows:

Icon value

16 Information icon and single OK button

32 Warning icon; OK and Cancel buttons

48 Alert icon; Retry and Cancel buttons

64 Query icon; OK and Cancel buttons

If no icon is specified, a pre-defined style is used. The following styles are
available:

Pre-defined styles

UIMS.INFO Information icon and single OK button

UIMS.WARN2 Warning icon; OK and Cancel buttons

UIMS.WARN3 Warning icon; Yes, No and Cancel buttons

UIMS.ALERT2 Alert icon; Retry and Cancel buttons

UIMS.ALERT3 Alert icon; Abort, Retry and Ignore buttons

UIMS.QUERY2 Query icon; OK and Cancel buttons

UIMS.QUERY3 Query icon; Yes, No and Cancel buttons

Examples:

STYLE = 2 + 48

specifies two buttons and an Alert Icon. The first button is the default.

STYLE = UIMS.WARN3 + 256

specifies a Warning icon, and Yes, No and Cancel buttons. The No button
is the default.

Title The title to be displayed at the top of the message box.

6-62 UIMS DATA/BASIC API, Reference Manual

CreateMessageBox

Message The message to be displayed. A newline character – CHAR(10) – can be
used to start new a line where required.

aButtonTitles A dynamic array containing a list of button names (one in each attribute).
If any attribute is a null string, a default button name will be used for the
corresponding button (see Style parameter).

Note: If you are using a pre-defined style, this parameter should
normally be a null string.

vResponse A variable in which to return a value representing the button that has been
operated. The value will be one of the following:

Return value Button operated

0 Leftmost button.

1 Next button.

2 Next button.

-1 ESC key

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments In addition to the message, the message box will contain a graphic icon appropriate to the
type of message box specified.

A message box is always application modal.

See Also CreateDlgBox.

Subroutine Reference 6-63

CreateNVContactGroup

CreateNVContactGroup

This subroutine creates a NewView contact group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS
INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL CreateNVContactGroup(Context, Group, FirstContact, Number, aResponses, vErr)

Syntax Elements Context The handle of the application context.

Group A unique user-assigned integer which will subsequently be used to identify
the contact group.

FirstContact The handle of the first contact in the group.

Number The number of contacts in the group.

aResponses A dynamic array, each attribute of which must contain a string that will be
returned to the application when a contact in the group is operated. The
number of attributes in the array must be the same as the Number
parameter.

Only the characters with the ASCII values X'08' to X'0D', and X'20'
(space) to X'7E' (tilde) can be used in a response string. If other characters
are required, they must be specified as follows:

CHAR(11): 'XX'

where 'XX' is a hexadecimal value made up of two ASCII characters in the
range '0' to '9' and 'A' to 'F' (upper case only).

For example, the BEL character (ASCII 7) is specified as follows:

CHAR(11):'07'

Note that if the VT character (X'0B') is required, it must be specified as
CHAR(11):'0B'.

6-64 UIMS DATA/BASIC API, Reference Manual

CreateNVContactGroup

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The contact making up the group must have been previously created, or loaded using
LoadAppRes.

The handles of the contacts in the group must be consecutive.

Only the following types of contact can be used in a NewView contact group:

MenuItem
TitledButton
CheckButton
OptionButton

Note that CheckButton and OptionButton contacts must have auto-toggling enabled. The
required initial states of these types of button should be set before using the group.

See Also ChangeNVButtonGroup, ChangeNVContacts, SetEnabledNVGroup,
SetMappedNVGroup, DestroyNVGroup, CheckButtonSetToggle,
OptionButtonSetToggle, CheckButtonSetSelected, OptionButtonSetSelected.

Subroutine Reference 6-65

CreateNVHotspotGroup

CreateNVHotspotGroup

This subroutine creates a group of NewView hot-spots within the application's terminal
emulation window.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL CreateNVHotspotGroup(Context, Group, Number, aHPos, aVPos, aWidth,
aHeight, aResponses, vErr)

Syntax Elements Context The handle of the application context.

Group A unique user-assigned integer which will subsequently be used to identify
the hot-spot group.

Number The number of hot-spots in the group.

aHPos A dynamic array, each attribute of which contains the horizontal position
in text coordinates of one of the hot-spots in the group. Each position is
relative to the left-hand edge of the TE window's terminal area.

aVPos A dynamic array, each attribute of which contains the vertical position in
text coordinates of one of the hot-spots in the group. Each position is
relative to the top edge of the TE window's terminal area.

aWidth A dynamic array, each attribute of which contains the width in text
coordinates of one of the hot-spots in the group.

aHeight A dynamic array, each attribute of which contains the height in text
coordinates of one of the hot-spots in the group.

aResponses A dynamic array, each attribute of which must contain a string that will be
returned to the application when a hot-spot in the group is clicked with the
mouse.

Only the characters with the ASCII values X'08' to X'0D', and X'20'
(space) to X'7E' (tilde) can be used in a response string. If other characters
are required, they must be specified as follows:

CHAR(11): 'XX'

6-66 UIMS DATA/BASIC API, Reference Manual

CreateNVHotspotGroup

where 'XX' is a hexadecimal value made up of two ASCII characters in the
range '0' to '9' and 'A' to 'F' (upper case only).

For example, the BEL character (ASCII 7) is specified as follows:

CHAR(11):'07'

Note that if the VT character (X'0B') is required, it must be specified as
CHAR(11):'0B'.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The TE window's terminal area is the current display page – that is, the area which receives
all terminal output generated by the host. The size of the terminal area is defined in the
RealLink Terminal Preferences and is unaffected by changes in the size of the TE window.
HPos and VPos specify the positions of the top left-hand corners of the hot-spots, relative to
the top left-hand corner (position 0,0) of this terminal area.

The aHPos, aVPos, aWidth, aHeight and aResponses arrays must contain exactly the same
number of attributes as there are hot-spots.

See Also DestroyNVGroup, SetTeWindow.

Subroutine Reference 6-67

CreateOptionButton

CreateOptionButton

This subroutine creates an OptionButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateOptionButton(Context, Ident, Title, HPos, VPos, Width, Height, Parent,
vButton)

Syntax Elements Context This is the handle of the context that the option button will belong to.

Ident An integer value to use as the handle for the OptionButton contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vButton parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title to be displayed next to the OptionButton graphics.

HPos The horizontal position in coordinate units of the left-hand edge of the
button, relative to the left-hand edge of its parent's client area (position 0).

VPos The vertical position in coordinate units of the top edge of the button,
relative to the top edge of its parent's client area (position 0).

Width The width of the button in coordinate units. This specifies the total width
of the button graphics and the title. If Width is specified as zero, a button
will be created just wide enough to contain the graphic and the title.

Height The height of the button in coordinate units. If Height is specified as zero,
a button will be created just tall enough to contain the graphic or the title,
whichever is the taller.

Parent The handle of the parent of the option button. This may be any one of the
window types. If the parent is currently displayed the button will be drawn
immediately.

vButton A variable in which to return the handle of the newly-created button. If it
could not be created for any reason, zero is returned. Note, however, that if
asynchronous error handling is selected and a handle has been supplied in

6-68 UIMS DATA/BASIC API, Reference Manual

CreateOptionButton

the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

See Also OptionButtonSetSelected, OptionButtonSetTitle, OptionButtonSetToggle,
CreateCheckButton, CreateTitledButton.

Subroutine Reference 6-69

CreatePointer

CreatePointer

This subroutine creates a mouse Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreatePointer(Context, Ident, Type, vPointer)

Syntax Elements Context The handle of the context to which the pointer will belong.

Ident An integer value to use as the handle for the Pointer object. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vPointer parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Type The shape of the pointer. This must be one of the following values:

UIMS.PTR.ARROW Standard arrow pointer.
UIMS.PTR.IBEAM Text I-beam pointer.
UIMS.PTR.CROSS Diagonal cross-hair pointer.
UIMS.PTR.PLUS Horizontal and vertical cross-hair pointer.
UIMS.PTR.WAIT Wait pointer - normally an hourglass.

vPointer A variable in which to return the handle of the newly-created Pointer
object. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

See Also PointerSetType.

6-70 UIMS DATA/BASIC API, Reference Manual

CreatePullDownMenu

CreatePullDownMenu

This subroutine creates a Menu contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreatePullDownMenu(Context, Ident, Title, Parent, vMenu)

Syntax Elements Context The handle of the application context to which the menu will belong.

Ident An integer value to use as the handle for the Menu contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vMenu parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title of the menu. An ampersand (&) preceding a character in this
string designates that character as the selector key for the menu.

Parent The handle of the parent of the menu, if required. If specified, this must be
either a MenuBar or another Menu. If the parent is currently displayed the
menu will be drawn immediately.

If Parent is a null string, the contact is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vMenu A variable in which to return the handle of the newly-created Menu. If it
could not be created for any reason, zero is returned. Note, however, that if
asynchronous error handling is selected and a handle has been supplied in
the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

See Also MakePullDownMenu, CreateMenuBar, CreateMenuItem, AddChild, AddChildren.

Subroutine Reference 6-71

CreateRect

CreateRect

This subroutine creates a Rectangle contact. The rectangle is drawn at a specified position
on the client area of the parent window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateRect(Context, Ident, HPos, VPos, Width, Height, Style, Parent, vRect)

Syntax Elements Context The handle of the application context to which the rectangle contact will
belong.

Ident An integer value to use as the handle for the Rectangle contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vRect parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

HPos The position of the left-hand edge of the rectangle in coordinate units,
relative to the left-hand edge of its parent's client area (position 0).

VPos The position of the top edge of the rectangle in coordinate units, relative to
the top edge of its parent's client area. (position 0).

Width The width of the rectangle in coordinate units.

Height The height of the rectangle in coordinate units.

Style The required style for the rectangle. This must be one of the following
values:

UIMS.RECT.BORDER Draw a rectangle with square corners.
UIMS.NONE No border.

Parent The handle of the parent of the rectangle contact, if required. This can be
any type of window. If the parent is currently displayed the rectangle will
be drawn immediately.

6-72 UIMS DATA/BASIC API, Reference Manual

CreateRect

If Parent is a null string, the rectangle is created without a parent and can
be attached at a later time using AddChild or AddChildren.

vRect A variable in which to return the handle of the newly-created Rectangle
contact. If it could not be created for any reason, zero is returned. Note,
however, that if asynchronous error handling is selected and a handle has
been supplied in the Ident parameter, this handle will always be returned,
and any error will be reported by means of a UIMS.MSG.NOTIFY
message. See SetSync for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

Other attributes (line width, foreground and background colours, etc.) are set by means of a
Drawrule object attached to the Rectangle contact. Initially the drawrule is that attached to
the parent object, but this can be changed by calling the SetDrawrule subroutine.

See Also SetDrawrule, CreateLine, CreateText.

Subroutine Reference 6-73

CreateScrollBar

CreateScrollBar

This subroutine creates a ScrollBar contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateScrollBar(Context, Ident, Type, HPos, VPos, Width, Height, Parent,
vScrollBar)

Syntax Elements Context The handle of the application context to which the scroll-bar will belong.

Ident An integer value to use as the handle for the ScrollBar contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vScrollBar parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Type The orientation of the scroll-bar. This must be one of the following values:

UIMS.SCROLLBAR.VERT Vertical scroll-bar.
UIMS.SCROLLBAR.HORZ Horizontal scroll-bar.

HPos The horizontal position in coordinate units of the left-hand edge of the
scroll-bar, relative to the left-hand edge of its parent's client area (position
0).

VPos The vertical position in coordinate units of the top of the scroll-bar,
relative to the top edge of its parent's client area (position 0).

Width The width of the scroll-bar in coordinate units.

Height The height of the scroll-bar in coordinate units.

Parent The handle of the parent of the scroll-bar, if required. This can be any type
of window. If the parent is currently displayed the scroll-bar will be drawn
immediately.

If Parent is a null string, the scroll-bar is created without a parent and can
be attached at a later time using AddChild or AddChildren.

6-74 UIMS DATA/BASIC API, Reference Manual

CreateScrollBar

vScrollBar A variable in which to return the handle of the newly-created scroll-bar. If
it could not be created for any reason, zero is returned. Note, however, that
if asynchronous error handling is selected and a handle has been supplied
in the Ident parameter, this handle will always be returned, and any error
will be reported by means of a UIMS.MSG.NOTIFY message. See
SetSync for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

When the scroll-bar is created its range, thumb position, and line and page increments will
all be set to zero. Also, tracking will be off. Each of these attributes must be set by calling
the appropriate subroutine (see below).

See Also ScrollBarSetInc, ScrollBarSetRange, ScrollBarSetThumb, ScrollBarSetTracking.

Subroutine Reference 6-75

CreateText

CreateText

This subroutine creates a Text contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateText(Context, Ident, String, HPos, VPos, Width, Height, Parent, vText)

Syntax Elements Context The handle of the application context to which the Text contact will
belong.

Ident An integer value to use as the handle for the Text contact. If this parameter
is zero, a handle will be assigned by UIMS and returned in the vText
parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

String The text string to be displayed.

HPos The horizontal position of the text in coordinate units, relative to the left-
hand edge of its parent's client area.

VPos The vertical position of the text in coordinate units, relative to the top edge
of its parent's client area.

Width The width of the containing window in coordinate units. If Width is
specified as zero, a window wide enough to fit all the text onto a single
line will be created.

Height The height of the containing window in coordinate units. If Height is
specified as zero, the text will be divided into separate lines, each Width or
under in length, and the Text contact will be made tall enough to display
all of the text.

Parent The handle of the parent of the text contact, if required. This can be any
type of window or an inclusive group. If the parent is currently displayed
the text will be drawn immediately.

6-76 UIMS DATA/BASIC API, Reference Manual

CreateText

If Parent is a null string, the text is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vText A variable in which to return the handle of the newly-created Text contact.
If it could not be created for any reason, zero is returned. Note, however,
that if asynchronous error handling is selected and a handle has been
supplied in the Ident parameter, this handle will always be returned, and
any error will be reported by means of a UIMS.MSG.NOTIFY message.
See SetSync for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

HPos and VPos specify the position of the top left-hand corner of the text, relative to the top
left-hand corner of its parent's client area (position 0,0).

The text is initially left aligned. This can be changed with the TextSetJustification
subroutine.

The text style (font, etc.) is specified in the associated drawrule (initially that attached to the
parent window). This can be changed by using SetDrawrule.

Automatic Sizing If Width and/or Height are specified as zero, the metrics of the font must be known in order
to calculate the size of the contact. The contact's size is therefore set when it is attached to
its parent. If its parent does not have a drawrule, the size is not set until its parent is itself
given a parent. Refer also to the description of the Drawrule object in Chapter 3.

If both Width and Height are specified as zero, a window will be created large enough to fit
all the text onto a single line.

The size of a Text contact can be recalculated by making it an orphan, setting its width
and/or height to zero and then reattaching it to its parent.

See Also DrawTextString, TextSetContent, TextSetJustification, SetDrawrule.

Subroutine Reference 6-77

CreateTextEditor

CreateTextEditor

This subroutine creates a TextEditor contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateTextEditor(Context, Ident, HPos, VPos, Width, Height, Style, Parent,
vEditor)

Syntax Elements Context The handle of the application context to which the text editor will belong.

Ident An integer value to use as the handle for the TextEditor contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vEditor parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

HPos The horizontal position in coordinate units of the left-hand edge of the text
editor, relative to the left-hand edge of its parent's client area.

VPos The vertical position in coordinate units of the top of the text editor,
relative to the top edge of its parent's client area.

Width The width of the text editor in coordinate units.

Height The height of the text editor in coordinate units.

Style The required style for the text editor. This must be a combination of the
following values:

UIMS.TXED.AUTOSCROLL Autoscroll when the mouse is dragged
outside the text editor window.

UIMS.TXED.BORDER Enclose the text editor in a box.
UIMS.TXED.HSCROLLBAR Provide a horizontal scroll-bar.
UIMS.TXED.READONLY Display-only field; no editing allowed.
UIMS.TXED.VSCROLLBAR Provide a vertical scroll-bar.

The value representing the required style is produced by adding the
appropriate values together.

6-78 UIMS DATA/BASIC API, Reference Manual

CreateTextEditor

The following pre-defined styles are also available:

UIMS.DEFAULT The default setting (all style components
disabled).

UIMS.NONE All style components disabled.

Parent The handle of the parent of the text editor, if required. This can be any
type of window. If the parent is currently displayed the text editor will be
drawn immediately.

If Parent is a null string, the text editor is created without a parent and can
be attached at a later time using AddChild or AddChildren.

vEditor A variable in which to return the handle of the newly-created text editor. If
it could not be created for any reason, zero is returned. Note, however, that
if asynchronous error handling is selected and a handle has been supplied
in the Ident parameter, this handle will always be returned, and any error
will be reported by means of a UIMS.MSG.NOTIFY message. See
SetSync for more details.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

The top left-hand corner of the parent's client area is position 0,0.

See Also TextEditorSetContent, CreateEditBox.

Subroutine Reference 6-79

CreateTitledButton

CreateTitledButton

This subroutine creates a TitledButton contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL CreateTitledButton(Context, Ident, Title, HPos, VPos, Width, Height, Parent,
vButton)

Syntax Elements Context The handle of the application context to which the button will belong.

Ident An integer value to use as the handle for the TitledButton contact. If this
parameter is zero, a handle will be assigned by UIMS and returned in the
vButton parameter.

UIMS reserves handles 8000 to 9999 for its own use – these must not be
used by the application.

Title The title to be displayed within the button, or the name of a file containing
a bitmapped image.

HPos The horizontal position of the button in coordinate units, relative to the
left-hand edge of its parent's client area.

VPos The vertical position of the button in coordinate units, relative to the top
edge of its parent's client area.

Width The width of the button in coordinate units. If Width is specified as zero, a
button will be created just wide enough to contain the title or image.

Height The height of the button in coordinate units. If Height is specified as zero,
a button will be created just tall enough to contain the title or image.

Parent The handle of the parent of the titled button, if required. This can be any
type of window. If the parent is currently displayed the button will be
drawn immediately.

If Parent is a null string, the button is created without a parent and can be
attached at a later time using AddChild or AddChildren.

6-80 UIMS DATA/BASIC API, Reference Manual

CreateTitledButton

vButton A variable in which to return the handle of the newly-created button. If it
could not be created for any reason, zero is returned. Note, however, that if
asynchronous error handling is selected and a handle has been supplied in
the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

Image files Image files can be of the following types:

• Windows bitmaps (.BMP).

• Windows icon files (.ICO).

• Windows programs (.EXE).

• Windows dynamic link libraries (.DLL).

When specifying an image file, the full pathname should normally be given, including the
drive letter and file-type extension. Note, however, that in the case of bitmap and icon files,
the path can be omitted – the file will then be assumed to be in the directory specified in the
Bitmaps entry in the [RealLink] section of the RFW.INI file on the PC.

Where a program, DLL or icon file contains more than one bitmap, the first will be
displayed.

Comments The HPos, VPos, Width and Height parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

HPos and VPos specify the position of the top left-hand corner of the button, relative to the
top left-hand corner of its parent's client area (position 0,0).

The following limitations apply to TitledButton contacts that contain images:

• TitledButton contacts containing images can only be created with the
CreateTitledButton subroutine. It is not possible to specify an image in a resource
script.

• The TitledButtonSetStyle and TitledButtonSetTitle subroutines cannot be used to
change the appearance of a titled button that contains an image.

• TitledButtonSetTitle cannot be used to substitute an image for the title of an existing
button.

Subroutine Reference 6-81

CreateTitledButton

See Also TitledButtonSetStyle, TitledButtonSetTitle, CreateCheckButton, CreateOptionButton.

6-82 UIMS DATA/BASIC API, Reference Manual

Cut

Cut

This subroutine is used to cut and place on the clipboard, part or all of the data from an
EditBox or TextEditor contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Cut(Context, Contact, StartChar, StartLine, EndChar, EndLine, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

StartChar The character position of the start of the cut. The position must be
specified as the number of characters from the start of the line specified in
StartLine.

StartLine The number of the line containing the position of the start of the cut. If
Contact is the handle of an EditBox, this parameter will be ignored.

EndChar The character position of the end of the cut. The position must be specified
as the number of characters from the start of the line specified in EndLine.

EndLine The number of the line containing the position of the end of the cut. If
Contact is the handle of an EditBox, this parameter will be ignored.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If StartChar, StartLine, EndChar and EndLine are all zero, all the data in the contact will be
cut to the clipboard.

If StartChar, StartLine, EndChar and EndLine are all -1, the currently selected data will be
cut to the clipboard.

If Contact is handle of a contact other than an EditBox or TextEditor, an error will be
returned.

See Also Copy, ClipboardSetContent, Paste, ClipboardGetContent, ClipboardGetState.

Subroutine Reference 6-83

DDE.ADVISE

DDE.ADVISE

Obtains data from an 'advise' dynamic-data exchange (DDE) link established with
DDE.OPENADVISE.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL DDE.ADVISE(LinkIdent, vData, vStatus)

Syntax Elements LinkIdent A value, returned by the DDE.OPENADVISE subroutine, that identifies
the required DDE conversation.

vData A variable in which to return the contents of the conversation item.

vStatus This is a variable that must be supplied to return the completion status of
the subroutine. The value returned will be one of the following:

ADV.NODATA The conversation item has not changed since
DDE.ADVISE was last called. The contents of
vData should be ignored.

ADV.MOREDATA The conversation item has changed more than once
since DDE.ADVISE was last called. vData contains
the result of the first change. To obtain the result of
the next change, DDE.ADVISE must be called
again.

ADV.LASTDATA The conversation item has changed once since
DDE.ADVISE was last called. vData contains the
result of this change.

Any other value indicates an error. Refer to Appendix D for a list of DDE
error codes.

Comments An 'advise' DDE conversation maintains a link to the application, topic and item specified in
the call to DDE.OPENADVISE. Each time the item changes, the result is returned to
UIMS, which adds it to a first-in-first-out buffer. DDE.ADVISE removes one item from this
buffer and returns it to the calling application. The value returned in the vStatus parameter
indicates whether the stack was empty, contained only a single item, or contains more data.

See Also DDE.OPENADVISE, DDE.CLOSEADVISE, DDE.PEEK.

6-84 UIMS DATA/BASIC API, Reference Manual

DDE.CLOSEADVISE

DDE.CLOSEADVISE

Closes an 'advise' dynamic-data exchange (DDE) link that was established with
DDE.OPENADVISE.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL DDE.CLOSEADVISE(LinkIdent, vErr)

Syntax Elements LinkIdent A value, returned by the DDE.OPENADVISE subroutine, that identifies
the required DDE conversation

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion; if
an error occurs, one of the DDE error codes listed in Appendix D is
returned.

Note: DDE.CLOSEADVISE errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

Comments The server application is not closed by DDE.CLOSEADVISE.

See Also DDE.OPENADVISE, DDE.ADVISE.

Subroutine Reference 6-85

DDE.EXECUTE

DDE.EXECUTE

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows
application and then sends the specified command or commands to that application. The
application is started if it is not already running. On completion, the DDE conversation is
terminated.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL DDE.EXECUTE(Application, Topic, Command, vErr)

Syntax Elements Application The name used to specify a Windows application that supports DDE as a
DDE server. This is usually the name of the application's .EXE file without
the .EXE filename extension.

Topic The name of a topic recognised by Application. An open document is a
typical topic (if Topic is a document name, the document must be open). If
Application does not recognise Topic, DDE.EXECUTE returns an error
code.

Command The command or commands to be executed by the server application.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion. If
the DDE conversation could not be initiated, one of the DDE error codes
listed in Appendix D is returned.

Note: DDE.EXECUTE errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

Comments Many applications that support DDE recognise a topic named System, which is always
available and can be used to find out which other topics are available. For more information
on the System topic, see DDE.PEEK.

If a DDE.EXECUTE command string contains an invalid command, an error will occur in
the server application (if the application is minimised, its icon will flash). The
DDE.EXECUTE function will not return until this error message has been acknowledged by
the user.

If Application is started by DDE.EXECUTE, it continues running when the subroutine
returns.

6-86 UIMS DATA/BASIC API, Reference Manual

DDE.EXECUTE

See Also DDE.POKE.

Subroutine Reference 6-87

DDE.OPENADVISE

DDE.OPENADVISE

Establishes an 'advise' dynamic-data exchange (DDE) link to a Windows application. The
application is started if it is not already running.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL DDE.OPENADVISE(Application, Topic, Item, vLinkIdent, vErr)

Syntax Elements Application The name used to specify a Windows application that supports DDE as a
DDE server. This is usually the name of the application's .EXE file without
the .EXE filename extension.

Topic The name of a topic recognised by Application. An open document is a
typical topic. (If Topic is a document name, the document must be open.)
If Application does not recognise Topic, DDE.OPENADVISE returns an
error code.

Item An item within a DDE topic recognised by the server application.
DDE.OPENADVISE returns the entire contents of the specified item. If
the server application does not recognise Item, an error code is returned.

vLinkIdent A variable in which to return a value that identifies the DDE link. This
identifier must be used when calling the DDE.ADVISE and
DDE.CLOSEADVISE subroutines.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion. If
the DDE conversation could not be initiated, one of the DDE error codes
listed in Appendix D is returned.

Note: DDE.OPENADVISE errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

Comments The result of any change to the conversation item can be obtained by calling the
DDE.ADVISE subroutine.

See Also DDE.CLOSEADVISE, DDE.ADVISE.

6-88 UIMS DATA/BASIC API, Reference Manual

DDE.PEEK

DDE.PEEK

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows
application and then requests an item of information from that application. The application
is started if it is not already running. On completion, the DDE conversation is terminated.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL DDE.PEEK(Application, Topic, Item, vData, vErr)

Syntax Elements Application The name used to specify a Windows application that supports DDE as a
DDE server. This is usually the name of the application's .EXE file without
the .EXE filename extension.

Topic The name of a topic recognised by Application. An open document is a
typical topic. (If Topic is a document name, the document must be open.)
If Application does not recognise Topic, DDE.PEEK returns an error code.

Item An item within a DDE topic recognised by the server application.
DDE.PEEK returns the entire contents of the specified item. If the server
application does not recognise Item, an error code is returned.

vData A variable in which to return the contents of the specified item.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion. If
the DDE conversation could not be initiated, one of the DDE error codes
listed in Appendix D is returned.

Note: DDE.PEEK errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

The System Topic Microsoft Excel and other applications that support DDE recognise a topic named System.
The following lists three standard items in the System topic.

SysItems Returns a list of all items in the System topic.

Topics Returns a list of available topics.

Formats Returns a list of all the supported Clipboard formats.

Subroutine Reference 6-89

DDE.PEEK

Note that you can get a list of the other items in the System topic by using the item
SysItems.

Comments If Application is started by DDE.PEEK, it continues running when the subroutine returns.

If the item is not recognised by the server, no data is returned.

See Also DDE.ADVISE.

6-90 UIMS DATA/BASIC API, Reference Manual

DDE.POKE

DDE.POKE

This subroutine initiates a dynamic-data exchange (DDE) conversation with a Windows
application and then sends data to that application. The application is started if it is not
already running. On completion, the DDE conversation is terminated.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL DDE.POKE(Application, Topic, Item, Data, vErr)

Syntax Elements Application The name used to specify a Windows application that supports DDE as a
DDE server. This is usually the name of the application's .EXE file without
the .EXE filename extension.

Topic The name of a topic recognised by Application. An open document is a
typical topic. (If Topic is a document name, the document must be open.)
If Application does not recognise Topic, DDE.POKE returns an error
code.

Item An item within a DDE topic recognised by the server application. If the
server application does not recognise Item, an error code is returned.

Data The data to send to the server application.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion. If
the DDE conversation could not be initiated, one of the DDE error codes
listed in Appendix D is returned.

Notes:

1. DDE.POKE errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

2. If you specify a non-existent item in a call to DDE.POKE, no
error is returned.

Comments If Application is started by DDE.POKE, it continues running when the subroutine returns.

See Also DDE.EXECUTE.

Subroutine Reference 6-91

Destroy

Destroy

This subroutine destroys an object or contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Destroy(Context, Object, vErr)

Syntax Elements Context The handle of the application context.

Object The handle of the object or contact you wish to destroy.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Any children attached to the object will also be destroyed.

If you destroy an application's root window this will have the effect of making the
application invisible.

6-92 UIMS DATA/BASIC API, Reference Manual

DestroyNVGroup

DestroyNVGroup

This subroutine destroys a NewView group created with CreateNVContactGroup or
CreateNVHotspotGroup.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMSDEFS FROM UIMS-TOOLS ;* Only required for contact groups.
INCLUDE UIMSCOMMON FROM UIMS-TOOLS ;* Only required for contact groups.

CALL DestroyNVGroup(Context, Group, vErr)

Syntax Elements Context The handle of the application context.

Group The identifier for the group to be destroyed.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateNVContactGroup, CreateNVHotspotGroup.

Subroutine Reference 6-93

Disable

Disable

This subroutine disables a specified contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Disable(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact you wish to disable.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A disabled contact remains displayed, but cannot be selected by the user. The disabled state
is indicated by a greying effect, the exact form of which is platform dependent.

See Also Destroy, Enable, SetEnabled, GetState.

6-94 UIMS DATA/BASIC API, Reference Manual

DisplayGetMetrics, DisplayGetPixelSize

DisplayGetMetrics, DisplayGetPixelSize

These subroutines return the different attributes of a Display object.

• DisplayGetMetrics returns information about the size of various window elements when
shown on the specified display.

• DisplayGetPixelSize returns the size in pixels of the display image.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DisplayGetMetrics(Context, Display, vBdrWidth, vBdrHeight, vSizeBdrWidth,
vSizeBdrHeight, vTitleBarHeight, vMenuBarHeight,
vVScrollWidth, vHScrollHeight, vErr)

CALL DisplayGetPixelSize(Context, Display, vPWidth, vPHeight, vErr)

Syntax Elements Context The handle of the application context.

Display The handle of the Display object.

vBdrWidth A variable in which to return the width in pixels of a non-sizeable (single-
width) border.

vBdrHeight A variable in which to return the height in pixels of a non-sizeable (single-
width) border.

vSizeBdrWidth A variable in which to return the width in pixels of a sizeable (double-
width) border.

vSizeBdrHeight A variable in which to return the height in pixels of a sizeable (double-
width) border.

vTitleBarHeight A variable in which to return the height in pixels of a title bar.

vMenuBarHeight
A variable in which to return the height in pixels of a menu bar.

vVScrollWidth A variable in which to return the width in pixels of a vertical scroll-bar.

vHScrollHeight A variable in which to return the height in pixels of a horizontal scroll-bar.

Subroutine Reference 6-95

DisplayGetMetrics, DisplayGetPixelSize

vPWidth A variable in which to return the width in pixels of the display device.

vPHeight A variable in which to return the height in pixels of the display device.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments While all the attributes of a Display object can be read with these subroutines, different
platforms may offer differing capabilities. For those attributes that are not supported on a
particular display platform, the subroutine concerned should return the appropriate error
code (see Appendix D). Note, however, that this is not guaranteed, and that the values
returned may be invalid.

See Also AppWinGetDisplay, GetDefaults.

6-96 UIMS DATA/BASIC API, Reference Manual

DisplayImage

DisplayImage

This subroutine displays the contents of a specified image file in the RealLink window, or in
an App or Child window. The image can be in any one of the following formats:

• Windows bitmap (.BMP).

• Windows Metafile (.WMF).

• Tagged Image File Format (.TIF).

• PC Paintbrush (.PCX).

• CompuServe GIF (.GIF).

• Truevision Targa (.TGA).

Syntax INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DisplayImage(ImageMan, Left, Top, Right, Bottom, ImageFile, ScaleFactor,
Window, Context, vImage)

Syntax Elements ImageMan The handle of the image manager, returned by the StartImage subroutine.

Left The position of the left-hand edge of the image, relative to the left-hand
edge of the containing window's client area.

Top The position of the top edge of the image, relative to the top edge of the
containing window's client area.

Right The position of the right-hand edge of the image, relative to the left-hand
edge of the containing window's client area.

Bottom The position of the bottom edge of the image, relative to the top edge of
the containing window's client area.

ImageFile A string containing the path and name of the image file.

ScaleFactor This parameter is for future use. A value must be supplied, but will be
ignored.

Subroutine Reference 6-97

DisplayImage

Window The handle of the window in which to display the image. If this parameter
is zero, the image is displayed in the currently active 'terminal emulation'
(TE) window.

Context The handle of the application context. If the Window parameter is zero,
this must also be set to zero.

vImage A variable in which to return the handle of the displayed image. If, for any
reason, it could not be created, zero is returned.

Comments If Window is zero, the HPos, VPos, Width and Height parameters must be specified in text
coordinates. Otherwise they must be in graphics coordinates.

The image is scaled to fit within the area defined by the Left, Top, Right and Bottom
parameters. It is not possible to crop the image.

If the image file cannot be found, a message is displayed and vImage is returned set to 0. If
you do not wish the user to see this message, you should use the SystemCommand
subroutine to check that the image file exists before calling DisplayImage.

Dynamic Imaging
Libraries

For each supported image format the RealLink directory contains a Dynamic Imaging
Library (DIL) file. The names of the DIL files are constructed as follows:

IMG format .DIL

where format is, in most cases, the same as the file name extension of the image file to be
displayed – for example, the PCX DIL is called IMGPCX.DIL. (At present, the only
exception to this rule is the TIFF DIL, where the image file name extension is TIF, but the
format part of the DIL file name is TIFF.)

If, when you call DisplayImage the image file name extension does not correspond to any of
the available DILs, a message is displayed and the vImage parameter is returned set to 0. If
you do not wish the user to see this message, you should use the SystemCommand
subroutine to check that the appropriate DIL exists before calling DisplayImage.

See Also EraseImage, StartImage, StopImage.

6-98 UIMS DATA/BASIC API, Reference Manual

DlgBoxGetMode, DlgBoxGetStyle

DlgBoxGetMode, DlgBoxGetStyle

These subroutines return the different attributes of a DialogBox contact.

• DlgBoxGetMode returns the mode of the dialog box.

• DlgBoxGetStyle returns the style of the dialog box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DlgBoxGetMode(Context, DlgBox, vMode)

CALL DlgBoxGetStyle(Context, DlgBox, vStyle)

Syntax Elements Context The handle of the application context.

DlgBox The handle of the DialogBox contact.

vMode A variable in which to return the mode of the dialog box. The value
returned will be one of the following:

UIMS.MODE.ALLAPPS UIMS application modal.
UIMS.MODE.APP Application modal.
UIMS.MODE.LESS Modeless.
UIMS.MODE.SYS System modal.

vStyle A variable in which the style of the dialog box will be returned. The value
returned is a combination of one or more of the following:

UIMS.WIN.CLOSABLE The dialog box can be closed by the
user.

UIMS.WIN.MOVABLE The dialog box can be moved by the
user.

The BitTest subroutine can be used to test the individual elements which
make up the returned value.

See CreateDlgBox for a more detailed description of these styles.

See Also DlgBoxSetMode, DlgBoxSetStyle.

Subroutine Reference 6-99

DlgBoxSetDefButton - DlgBoxSetTitle

DlgBoxSetDefButton – DlgBoxSetTitle

These subroutines change the different attributes of a DialogBox contact.

• DlgBoxSetDefButton sets which titled button within the dialog box is the default.

• DlgBoxSetMode sets the mode of the dialog box.

• DlgBoxSetStyle changes the style of the dialog box.

• DlgBoxSetTitle changes the title which appears at the top of the dialog box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DlgBoxSetDefButton(Context, DlgBox, Button, vErr)

CALL DlgBoxSetMode(Context, DlgBox, Mode, vErr)

CALL DlgBoxSetStyle(Context, DlgBox, Style, vErr)

CALL DlgBoxSetTitle(Context, DlgBox, Title, vErr)

Syntax Elements Context The handle of the application context.

DlgBox The handle of the DialogBox contact.

Button The handle of the TitledButton contact that is to be the default.

Mode The required mode for the dialog box. This must be one of the following
values:

UIMS.MODE.ALLAPPS UIMS application modal – applications
launched from the current instance of
RealLink cannot be used until the dialog
box is cleared.

UIMS.MODE.APP Application modal – the current UIMS
application cannot be used until the dialog
box is cleared.

UIMS.MODE.LESS Modeless – does not prevent the use of the
current or any other application.

6-100 UIMS DATA/BASIC API, Reference Manual

DlgBoxSetDefButton - DlgBoxSetTitle

UIMS.MODE.SYS System modal – no application can be used
until the dialog box is cleared.

When first created, a dialog box is application modal.

Style The required style for the dialog box. This must be a combination of the
following values:

UIMS.WIN.CLOSABLE The dialog box can be closed by the
user.

UIMS.WIN.MOVABLE The dialog box can be moved by the
user.

The following pre-defined styles are also available:

UIMS.NONE No system menu or title bar; not movable or
closable.

UIMS.DEFAULT The default setting (movable and closable).

See CreateDlgBox for a more detailed description of these styles.

Title The title to be displayed above the dialog box. Note that if the style of the
dialog box is UIMS.NONE, the title will not be displayed.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateDlgBox, DlgBoxGetMode, DlgBoxGetStyle.

Subroutine Reference 6-101

Draw

Draw

This subroutine draws a contact on the display.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Draw(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact you wish to draw.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Draw bypasses the current update mode and immediately draws the contact.

The contact must be mappable and have a mappable parent before it can be drawn. If the
contact is an orphan, or it or its parent are unmappable, the draw operation will fail and an
error code will be returned.

See Also Move, Destroy, Resize.

6-102 UIMS DATA/BASIC API, Reference Manual

DrawLine, DrawRect

DrawLine, DrawRect

These subroutines draw graphics elements on the client area of the specified window.

• DrawLine draws a line. If required, the line can have arrowheads at the ends.

• DrawRect draws a rectangle.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DrawLine(Context, Contact, HStart, VStart, HEnd, VEnd, EndStyles, vErr)

CALL DrawRect(Context, Contact, Left, Top, Right, Bottom, RectStyle, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the window contact. This must be an App window, a Child
window, a dialog box or an inclusive group.

HStart The horizontal position in coordinate units of the start of the line.

VStart The vertical position in coordinate units of the start of the line.

HEnd The horizontal position in coordinate units of the end of the line.

VEnd The vertical position in coordinate units of the end of the line.

EndStyles This parameter is for future use. It must be set to a numeric value when
calling DrawLine, but its value will be ignored.

Left The position of the left-hand edge of the rectangle in coordinate units,
relative to the left-hand edge of its parent's client area.

Top The position of the top edge of the rectangle in coordinate units, relative to
the top edge of its parent's client area.

Right The position of the right-hand edge of the rectangle in coordinate units,
relative to the left-hand edge of its parent's client area.

Subroutine Reference 6-103

DrawLine, DrawRect

Bottom The position of the bottom edge of the rectangle in coordinate units,
relative to the top edge of its parent's client area.

RectStyle The required style for the rectangle. This must be one of the following
values:

UIMS.RECT.BORDER Draw a rectangle with square corners.
UIMS.NONE No border.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The positions of the start and end of the line, and the edges of the rectangle are specified in
parent-relative coordinates (position 0,0 is the top left-hand corner of the parent's client
area), using the coordinate mode (text or graphics) currently selected for the application
context.

Other attributes (line width, colours, etc.) are determined by the Drawrule object attached to
the window contact (see Chapter 3).

See Also CreateLine, CreateRect, DrawTextString.

6-104 UIMS DATA/BASIC API, Reference Manual

DrawruleGetBrush - DrawruleGetPen

DrawruleGetBrush – DrawruleGetPen

These subroutines return the different attributes of a Drawrule object.

• DrawruleGetBrush returns the handle of the Brush object that is attached to the
drawrule.

• DrawruleGetColour returns the foreground and background colours.

• DrawruleGetFont returns the handle of the Font object that is attached to the drawrule.

• DrawruleGetPen returns the handle of the Pen object that is attached to the drawrule.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DrawruleGetBrush(Context, Drawrule, vBrush)

CALL DrawruleGetColour(Context, Drawrule, vForeground, vBackground, vErr)

CALL DrawruleGetFont(Context, Drawrule, vFont)

CALL DrawruleGetPen(Context, Drawrule, vPen)

Syntax Elements Context The handle of the application context.

Drawrule The handle of the Drawrule object.

vBrush A variable in which to return the handle of the Brush object which is
attached to the drawrule.

vForeground A variable in which to return the foreground colour

vBackground A variable in which to return the background colour

vFont A variable in which to return the handle of the Font object which is
attached to the drawrule.

vPen A variable in which to return the handle of the Pen object which is
attached to the drawrule.

Subroutine Reference 6-105

DrawruleGetBrush - DrawruleGetPen

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also DrawruleSetBrush, DrawruleSetColour, DrawruleSetFont, DrawruleSetPen.

6-106 UIMS DATA/BASIC API, Reference Manual

DrawruleSetBrush - DrawruleSetPen

DrawruleSetBrush – DrawruleSetPen

These subroutines change the attributes of a specified Drawrule object.

• DrawruleSetBrush changes the Brush object attached to the drawrule.

• DrawruleSetColour changes the foreground and background colours.

• DrawruleSetFont changes the Font object attached to the drawrule.

• DrawruleSetPen changes the Pen object attached to the drawrule.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DrawruleSetBrush(Context, Drawrule, Brush, vErr)

CALL DrawruleSetColour(Context, Drawrule, Foreground, Background, vErr)

CALL DrawruleSetFont(Context, Drawrule, Font, vErr)

CALL DrawruleSetPen(Context, Drawrule, Pen, vErr)

Syntax Elements Context The handle of the application context.

Drawrule The handle of the Drawrule object.

Brush The handle of the Brush object to be attached to the drawrule. If this
parameter is zero, the application context default brush is attached. The
new brush replaces that previously attached

Foreground The foreground colour for text output. This must be a UIMS logical colour
or an RGB value (see Appendix B).

Background The background colour for text and graphics output. This must be a UIMS
logical colour or an RGB value (see Appendix B).

If this parameter is zero, the background colour will be set to white.

Subroutine Reference 6-107

DrawruleSetBrush - DrawruleSetPen

Font The handle of the Font object to be attached to the drawrule. If this
parameter is zero, the application context default font is attached. The new
font replaces that previously attached

Pen The handle of the Pen object to be attached to the drawrule. If this
parameter is zero, the application context default pen is attached. The new
pen replaces that previously attached

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateDrawrule, DrawruleGetBrush, DrawruleGetColour, DrawruleGetFont,
DrawruleGetPen.

6-108 UIMS DATA/BASIC API, Reference Manual

DrawTextString

DrawTextString

This subroutine draws text on the client area or text canvas of the specified window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL DrawTextString(Context, Contact, Text, HPos, VPos, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the window contact. This must be an App window, a Child
window, a dialog box or an inclusive group.

Text The text string to be drawn.

HPos The horizontal position of the text in coordinate units, relative to the left-
hand edge of its parent's client area.

VPos The vertical position of the text in coordinate units, relative to the top edge
of its parent's client area.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The HPos and VPos parameters will be interpreted according to the coordinate mode (text or
graphics) currently selected for the application context.

HPos and VPos specify the position of the top left-hand corner of the text, relative to the top
left-hand corner of its parent's client area (position 0,0).

The text style (font, etc.) is determined by the Drawrule attached to the window contact.

See Also CreateText, DrawLine, DrawRect.

Subroutine Reference 6-109

EditBoxGetContent

EditBoxGetContent

This subroutine returns the text contents of an EditBox contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL EditBoxGetContent(Context, EditBox, vText, vComplete, vErr)

Syntax Elements Context The handle of the application context.

EditBox The handle of the EditBox contact.

vText A variable in which to return the text currently contained in the edit box.

vComplete This parameter is for future use. A variable must be supplied, but it will
always be returned set to zero.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also EditBoxSetContent.

6-110 UIMS DATA/BASIC API, Reference Manual

EditBoxSetContent, EditBoxSetSelected

EditBoxSetContent, EditBoxSetSelected

These subroutines change the different attributes of an EditBox contact.

• EditBoxSetContent assigns a text string to the edit box for editing or display.

• EditBoxSetSelected selects all or part of the text in the edit box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL EditBoxSetContent(Context, EditBox, Text, vErr)

CALL EditBoxSetSelected(Context, EditBox, StartPos, EndPos, State, vErr)

Syntax Elements Context The handle of the application context.

EditBox The handle of the EditBox contact

Text The text string to be displayed for editing in the edit box window. The
characters are entered as if typed at the keyboard.

StartPos The position of the first selected character.

EndPos The position of the last selected character.

State Whether the text between StartPos and EndPos is to be selected or
deselected. This must be one of the following values:

TRUE Select the text.
FALSE Deselect the text.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The first (left-most) character in the edit box is at position 0.

When calling EditBoxSetSelected, if both StartPos and EndPos are set to zero, the entire
contents of the edit box will be selected.

Subroutine Reference 6-111

EditBoxSetContent, EditBoxSetSelected

See Also CreateEditBox, EditBoxGetContent.

6-112 UIMS DATA/BASIC API, Reference Manual

Enable

Enable

This subroutine enables a previously disabled contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Enable(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact to be enabled.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A disabled contact is displayed on the screen, but cannot be selected by the user. The
disabled state is indicated a greying effect, the exact form of which is platform dependent.
This subroutine removes the greying effect and permits the user to select the contact.

See Also Destroy, Disable, SetEnabled, GetState.

Subroutine Reference 6-113

Erase

Erase

This subroutine erases a part of a contact's the client area, or the whole of the text canvas (if
any). The erased area is filled with the current background colour, as specified by the
Drawrule attached to the contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Erase(Context, Contact, Left, Top, Right, Bottom, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

Left The position of the left-hand edge of the area to be erased.

Top The position of the top edge of the area to be erased.

Right The position of the right-hand edge of the area to be erased.

Bottom The position of the bottom edge of the area to be erased.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Contact must be the handle of an AppWindow, ChildWindow, DialogBox or
InclusiveGroup. If the handle of any other type of contact is specified, an error is returned.

If Contact specifies an App or Child window, Erase will clear the client area of the window.

If Left, Right, Top and Bottom are all zero, the whole of the client area will be erased.

If Left, Right, Top and Bottom are all set to -1, the text canvas (if any) and the whole of the
client area will be erased.

See Also DrawLine, DrawRect, DrawTextString.

6-114 UIMS DATA/BASIC API, Reference Manual

EraseImage

EraseImage

This subroutine removes an image displayed in the current TE window, or in an App or
Child window.

Syntax INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL EraseImage(ImageMan, Image, vErr)

Syntax Elements ImageMan The handle of the image manager, returned by the StartImage subroutine.

Image The handle of the displayed image, returned by the DisplayImage
subroutine.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion.
Otherwise, one of the error codes listed in Appendix D is returned.

Note: EraseImage errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

Comments If the image was displayed in the current TE window, this is redrawn. Otherwise the erased
area is filled with the current background colour, as specified by the Drawrule attached to
the window.

See Also DisplayImage, StartImage, StopImage.

Subroutine Reference 6-115

Execute

Execute

This subroutine starts a Windows application on the PC.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL Execute(CommandLine, WindowState, Control, vErr)

Syntax Elements CommandLine A string containing the name of the program, plus any optional parameters
and/or switches. If the program name does not contain a directory path,
UIMS will search the PC for the executable file as follows:

1. The currently selected directory on the PC.

2. The Windows program directory (that containing WIN.COM).

3. The Windows system directory (that containing KERNEL.COM).

4. The directories listed in the PATH environment variable.

WindowState Specifies how the window containing the program should appear. This
must be one of the following values:

EXECUTE.HIDE
Hides the window and passes activation to another
window.

EXECUTE.MAXIMIZE
The same as EXECUTE.SHOWMAXIMIZED.

EXECUTE.MINIMIZE
Minimises the specified window and activates the top-
level window in the window manager's list.

EXECUTE.NORMAL
The same as EXECUTE.SHOWNORMAL.

EXECUTE.RESTORE
The same as EXECUTE.SHOWNORMAL.

EXECUTE.SHOW
Activates a window and displays it in its current size and
position.

EXECUTE.SHOWMAXIMIZED
Activates the window and displays it as a maximised
window.

6-116 UIMS DATA/BASIC API, Reference Manual

Execute

EXECUTE.SHOWMINIMIZED
Activates the window and displays it as an icon.

EXECUTE.SHOWMINNOACTIVE
Displays the window as an icon. The window that is
currently active remains active.

EXECUTE.SHOWNA
Displays the window in its current state. The window that
is currently active remains active.

EXECUTE.SHOWNOACTIVATE
Displays a window in its most recent size and position.
The window that is currently active remains active.

EXECUTE.SHOWNORMAL
Activates and displays the window. If the window is
minimised or maximised, UIMS restores it to its original
size and position.

Control Specifies whether or not the subroutine should complete before returning
to the calling application. This value will be a combination of one or more
of the following:

EXECUTE.SINGLE
Do not start a second instance the program if it is already
running.

EXECUTE.REFOCUS
Return the focus to the calling application once the called
program is running.

EXECUTE.WAIT
Do not return until the called application has been closed.

RFW.NONE Do not return to the calling application.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will be set to ERR.RFW.SUCCESS for successful
completion or will contain one of the Execute error codes listed in
Appendix D.

Comments Execute cannot be used to start non-windows applications.

See Also SystemCommand, SendKeys.

Subroutine Reference 6-117

ExGroupGetSel

ExGroupGetSel

This subroutine returns the handle of the currently selected option button within an
ExclusiveGroup contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ExGroupGetSel(Context, Group, vSelection)

Syntax Elements Context The handle of the application context.

Group The handle of the ExclusiveGroup contact.

vSelection A variable in which to return the handle of the currently selected option
button.

See Also OptionButtonGetSelected.

6-118 UIMS DATA/BASIC API, Reference Manual

ExGroupSetStyle, ExGroupSetTitle

ExGroupSetStyle, ExGroupSetTitle

These subroutines change the different attributes of an ExclusiveGroup contact.

• ExGroupSetStyle changes the style of the group.

• ExGroupSetTitle changes the title displayed above the group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ExGroupSetStyle(Context, Group, Style, vErr)

CALL ExGroupSetTitle(Context, Group, Title, vErr)

Syntax Elements Context The handle of the application context.

Group The handle of the ExclusiveGroup contact.

Style The required style for the group. This can be either of the following
values:

UIMS.BORDER Enclose the group in a box.
UIMS.NONE Do not enclose the group in a box.

Title The new group title.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If the group has no bounding box, the title will not be displayed.

Subroutine Reference 6-119

FontGetMetrics - FontGetTypeFace

FontGetMetrics – FontGetTypeFace

These subroutines return the different attributes of a Font object.

• FontGetMetrics returns the metrics (dimensions) of the font.

• FontGetPointSize returns the font's point size.

• FontGetStyle returns the style of the font.

• FontGetTextLen returns the length of a string as it appears on the screen.

• FontGetTypeFace returns the typeface being used.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL FontGetMetrics(Context, Font, vHeight, vAscent, vDescent, vLeading, vLcWidth,
vUcWidth, vMaxWidth, vErr)

CALL FontGetPointSize(Context, Font, vPointSize)

CALL FontGetStyle(Context, Font, vStyle)

CALL FontGetTextLen(Context, Font, String, vLength)

CALL FontGetTypeFace(Context, Font, vTypeFace)

Syntax Elements Context The handle of the application context.

Font The handle of the Font object.

vHeight A variable in which to return the font height. The returned value is the sum
of the ascent and the descent.

vAscent A variable in which to return the height of the tallest character above the
baseline.

vDescent A variable in which to return the height of the longest descender below the
baseline.

6-120 UIMS DATA/BASIC API, Reference Manual

FontGetMetrics - FontGetTypeFace

vLeading A variable in which to return the distance between adjacent lines of type;
that is, the distance between the bottom of the longest descender and the
top of the tallest character when printed on adjacent lines.

vLcWidth A variable in which to return the average width of a lower case character.

vUcWidth A variable in which to return the average width of an upper case character.

vMaxWidth A variable in which to return the width of the widest character.

vPointSize A variable in which to return the selected point size.

vStyle A variable in which a value representing the selected font style will be
returned. This value will be a combination of one or more of the following:

UIMS.FONT.BOLD
UIMS.FONT.ITALIC
UIMS.FONT.OUTLINE
UIMS.FONT.UNDERLINE
UIMS.FONT.STRIKEOUT

The BitTest subroutine can be used to test the individual elements which
make up the returned value.

String A text string.

vLength A variable in which to return the length of String. The value returned is the
length in pixels, when String printed in the specified font.

vTypeFace A variable in which to return the handle of the selected TypeFace object.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The values returned in vHeight, vAscent, vDescent, vLeading, vLcWidth, vUcWidth and
vMaxWidth are all in pixels.

Refer to Chapter 3 for more details of font metrics.

See Also FontSetPointSize, FontSetStyle, FontSetTypeFace.

Subroutine Reference 6-121

FontSetPointSize - FontSetTypeFace

FontSetPointSize – FontSetTypeFace

These subroutines change the attributes of a specified Font object.

• FontSetPointSize sets the point size of the font.

• FontSetStyle changes the font style.

• FontSetTypeFace changes the typeface.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL FontSetPointSize(Context, Font, PointSize, vErr)

CALL FontSetStyle(Context, Font, Style, vErr)

CALL FontSetTypeFace(Context, Font, TypeFace, vErr)

Syntax Elements Context The handle of the application context.

Font The handle of the Font object.

PointSize The required point size for the font.

The point size should one of those which is available for the selected
typeface - use TypeFaceGetPointSizes to find out which sizes are
available. If a size that is not available is requested, the closest match will
be selected.

If this parameter is zero, the first size in the typeface's list is used.

Style The style of the font. This must be a combination of the following:

UIMS.FONT.BOLD
UIMS.FONT.ITALIC
UIMS.FONT.OUTLINE
UIMS.FONT.UNDERLINE
UIMS.FONT.STRIKEOUT

If none of the above are required, the style should be set to UIMS.NONE.

6-122 UIMS DATA/BASIC API, Reference Manual

FontSetPointSize - FontSetTypeFace

In some typefaces not all the above are available. If a style that is not
available is selected, UIMS will use the nearest equivalent.

TypeFace The handle of a TypeFace object. If this parameter is zero, the default
typeface is used.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also FontGetPointSize, TypeFaceGetPointSize, TypeFaceGetPointSizes, FontGetStyle,
FontGetTypeFace, CreateDrawFont.

Subroutine Reference 6-123

GetAppName

GetAppName

This subroutine returns the name of the application – that is, the name passed to the SignOn
subroutine.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetAppName(Context, vAppName, vErr)

Syntax Elements Context The handle of the application context.

vAppName A variable in which to return the name of the application.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also SignOn.

6-124 UIMS DATA/BASIC API, Reference Manual

GetBorderStyle

GetBorderStyle

This subroutine returns the border style of an App or Child window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetBorderStyle(Context, Contact, vStyle)

Syntax Elements Context The handle of the application context.

Contact The handle of the window.

vStyle A variable in which to return a value representing the border style. This
value will be one of the following:

UIMS.BORDER The window has a border.
UIMS.NONE The window does not have a border.

See Also SetBorderStyle.

Subroutine Reference 6-125

GetChild - GetChildFocus

GetChild – GetChildFocus

These subroutines return information about the children of an object.

• GetChild returns the handle of the child at a specified position in the list.

• GetChildCount returns the number of children attached to an object.

• GetChildren returns the complete list of children.

• GetChildFocus identifies which child within a contact currently has the focus.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetChild(Context, Object, Index, vChild)

CALL GetChildCount(Context, Object, vCount)

CALL GetChildren(Context, Object, vaChildren, vErr)

CALL GetChildFocus(Context, Contact, vFocus)

Syntax Elements Context The handle of the application context.

Object The handle of the parent object.

Index The position in the list of the child whose handle you require. The list is
numbered starting from 0.

vChild A variable in which to return the handle of the child.

vCount A variable in which to return the number of children the object has.

vaChildren A variable in which to return the list of children. The list will be returned
as a dynamic array, with one handle to each attribute.

Contact The handle of the parent contact.

6-126 UIMS DATA/BASIC API, Reference Manual

GetChild - GetChildFocus

vFocus A variable in which to return the handle of the child that currently has
focus. If zero is returned, none of the specified contact's children has a the
focus.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments GetChildFocus always returns the handle of a child of the specified contact. If the child has
children of its own, the focus may in fact lie with one of these latter children.

See Also AddChild, AddChildren, RemoveChild, RemoveChildren, GetObjectParent,
GetFrontWindow, SetContactFocus.

Subroutine Reference 6-127

GetClip

GetClip

This subroutine returns the boundary of a window's clipping region.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetClip(Context, Window, vTop, vLeft, vBottom, vRight, vErr)

Syntax Elements Context The handle of the application context.

Window The handle of the window.

vTop A variable in which to return the position of the top edge of the window's
clipping region.

vLeft A variable in which to return the position of the left-hand edge of the
window's clipping region.

vBottom A variable in which to return the position of the bottom edge of the
window's clipping region.

vRight A variable in which to return the position of the right-hand edge of the
window's clipping region.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The values returned in vTop, vLeft, vBottom and vRight will depend on the coordinate mode
(text or graphics) currently selected for the application context. In all cases the values are
relative to the top left-hand corner of the client area (position 0,0).

If vTop, vLeft, vBottom and vRight are all zero, no clipping region has been set.

See Also SetClip.

6-128 UIMS DATA/BASIC API, Reference Manual

GetCoordMode

GetCoordMode

This subroutine returns the coordinate mode by which screen positions are referenced.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetCoordMode(Context, vCoordMode)

Syntax Elements Context The handle of the AppContext object.

vCoordMode A variable in which to return a value representing the coordinate mode.
This value will be one of the following:

UIMS.COORD.TEXT Screen positions are referenced to the nearest
character position, where the size of a
character is that of an upper case character in
the default system typeface.

UIMS.COORD.GRAPHIC Screen positions are referenced to the nearest
pixel.

Comments When an application signs on to UIMS, text mode is selected.

See Also SetCoordMode.

Subroutine Reference 6-129

GetCursorPosition, GetCursorState

GetCursorPosition, GetCursorState

These subroutines return the different attributes of the cursor within an AppWindow or
ChildWindow contact.

• GetCursorPosition returns the position of the text cursor within the window.

• GetCursorState returns the type of text cursor that is currently selected and whether or
not the cursor is visible.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetCursorPosition(Context, Window, vHPos, vVPos, vErr)

CALL GetCursorState(Context, Window, vVisible, vCurType, vErr)

Syntax Elements Context The handle of the application context.

Window The handle of the AppWindow or ChildWindow contact.

vHPos A variable in which to return the horizontal position of the cursor, relative
to the left-hand edge of the client area.

vVPos A variable in which to return the vertical position of the cursor, relative to
the top edge of the client area.

vVisible A variable in which to return whether or not the cursor is visible. This will
be one of the following values:

TRUE The cursor is visible.
FALSE The cursor is invisible.

vCurType A variable in which to return a value representing the type of cursor being
used in the window. This value will be one of the following:

UIMS.BAR Vertical bar.
UIMS.BLOCK Block cursor.
UIMS.OUTLINE Outline cursor.
UIMS.UNDERLINE Underline cursor.

6-130 UIMS DATA/BASIC API, Reference Manual

GetCursorPosition, GetCursorState

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The values returned in vHPos and vVPos will depend on the coordinate mode (text or
graphics) currently selected for the application context. In all cases the values are relative to
the top left-hand corner of the client area (position 0,0).

See Also SetCursorPosition, SetCursorState.

Subroutine Reference 6-131

GetDefaults

GetDefaults

This subroutine returns the handles of the default Display, Printer and TypeFace objects
from the SystemDictionary.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetDefaults(vDisplay, vPrinter, vTypeFace, vErr)

Syntax Elements vDisplay A variable in which to return the handle of the default Display object.

vPrinter A variable in which to return the handle of the default Printer object.

Note: Printer display objects are not supported on this version of UIMS.
This parameter is provided for use on later releases.

vTypeFace A variable in which to return the handle of the default TypeFace object.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also GetDrawrule.

6-132 UIMS DATA/BASIC API, Reference Manual

GetDrawrule

GetDrawrule

This subroutine returns the handle of the Drawrule object that is attached to an object or
contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetDrawrule(Context, Object, vDrawrule)

Syntax Elements Context The handle of the application context.

Object The handle of an object or contact.

vDrawrule A variable in which to return the handle of the Drawrule object.

Comments A drawrule can be attached to only the following objects and contacts:

AppWindow
ChildWindow
Line
Rectangle
Text
AppContext

If an object or contact other than those listed above is specified, vDrawrule will be returned
set to zero.

See Also SetDrawrule.

Subroutine Reference 6-133

GetErrorText

GetErrorText

This subroutine returns a textual description of a specified UIMS error.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetErrorText(Error, vText, vErr)

Syntax Elements Error An error code returned by a UIMS subroutine.

vText A variable in which to return the textual description of the error.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

6-134 UIMS DATA/BASIC API, Reference Manual

GetEventMask

GetEventMask

This subroutine returns the event mask applied to a specified object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetEventMask(Context, Object, vEventMask)

Syntax Elements Context The handle of the application context.

Object The handle of an object.

vEventMask A variable in which to return a value representing the event mask setting
for the specified object. This value will be a combination of the event
mask constants listed in Chapter 4. The BitTest subroutine can be used to
test the individual elements which make up the returned value.

See Also SetEventMask, GetSecondaryEventMask.

Subroutine Reference 6-135

GetFrontWindow

GetFrontWindow

This subroutine returns the handle of the top window of an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetFrontWindow(Context, vTopWindow)

Syntax Elements Context The handle of the AppContext.

vTopWindow A variable in which to return the handle of the top window in the specified
AppContext.

Comments The top window is that AppWindow which either currently has the focus or which contains
the contact which currently has the focus. If some other application has the focus, the top
window is that which last had the focus.

See Also GetRootWindow, GetChildFocus.

6-136 UIMS DATA/BASIC API, Reference Manual

GetHelpFile - GetHelpKey

GetHelpFile – GetHelpKey

These subroutines return the settings of the application's AppHelp object.

• GetHelpFile returns the name of the application's help file.

• GetHelpIndex returns the help-id of the help file section that is associated with a
specified contact.

• GetHelpKey returns the virtual code of the key currently assigned as the help
accelerator.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetHelpFile(Context, vFilename, vErr)

CALL GetHelpIndex(Context, Contact, vSection)

CALL GetHelpKey(Context, vKey)

Syntax Elements Context The handle of the AppContext.

vFilename A variable in which to return the name of the help file.

Contact The handle of a contact.

vSection A variable in which to return the help-id of the section of the help file that
is associated with the specified contact.

vKey A variable in which to return the virtual key code of the key that is
assigned as the help accelerator.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also SetHelpFile, SetHelpIndex, SetHelpKey.

Subroutine Reference 6-137

GetMsg

GetMsg

This subroutine retrieves the next available message from the message queue.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetMsg(TimeOut, vContext, vWindow, vContact, vMsgType, vTimeStamp, vData1,
vData2, vData3, vData4)

Syntax Elements TimeOut The time, in tenths of a second, that GetMsg will wait for a message if the
queue is empty. If this parameter is zero, GetMsg will not return until a
message is available.

vContext A variable in which to return the handle of the application context in
which the event occurred.

vWindow A variable in which to return the handle of the window in which the event
occurred.

vContact A variable in which to return the handle of the contact in which the event
occurred.

vMsgType A variable in which to return the type of message. This will be one of the
message types listed in Chapter 4. If GetMsg has returned because no
message is available (see TimeOut parameter above), vMsgType will be
zero.

vTimeStamp A variable in which to return a value representing the time that the event
occurred. Note that not all messages return a time-stamp value (see
Chapter 4 for details).

vData1, vData2, vData3, vData4
Variables in which to return message-specific data.

Comments For some types of message, vContext, vWindow and/or vContact are returned set to zero -
refer to Chapter 4 for details.

See Also SetEventMask, GetEventMask.

6-138 UIMS DATA/BASIC API, Reference Manual

GetObjectParent

GetObjectParent

This subroutine returns the handle of a object's parent.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetObjectParent(Context, Object, vParent)

Syntax Elements Context The handle of the application context.

Object The handle of the object whose parent you require.

vParent A variable in which to return the handle of the parent. If the object has no
parent, zero will be returned.

See Also GetChild, GetChildren.

Subroutine Reference 6-139

GetPointer

GetPointer

This subroutine returns the handle of the Pointer object that is attached to an object or
contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetPointer(Context, Object, vPointer)

Syntax Elements Context The handle of the application context.

Object The handle of an object or contact.

vPointer A variable in which to return the handle of the Pointer object.

Comments A pointer can be attached to only the following objects and contacts:

AppWindow
ChildWindow
AppContext

If an object or contact other than those listed above is specified, vPointer will be returned set
to zero.

See Also SetPointer.

6-140 UIMS DATA/BASIC API, Reference Manual

GetPointerPos

GetPointerPos

This subroutine returns the position of the mouse pointer, relative to either the screen or a
specified contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetPointerPos(Context, Contact, vHPos, vVPos, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of a contact. If this parameter is zero the position is returned
relative to the screen.

vHPos A variable in which to return the horizontal coordinate of the pointer's
position.

vVPos A variable in which to return the vertical coordinate of the pointer's
position.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments GetPointerPos returns the position of the pointer's hot-spot. If a contact is specified, the
values returned specify the position relative to the top left-hand corner of the contact's client
area (position 0,0); otherwise the position is relative to the top left-hand corner of the screen.

The values returned will depend on the coordinate mode (text or graphics) currently selected
for the application context.

See Also SetPointerPos.

Subroutine Reference 6-141

GetPosition

GetPosition

This subroutine returns the position of a contact relative to its parent.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetPosition(Context, Contact, vHPos, vVPos, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact whose position you require.

vHPos A variable in which to return the horizontal coordinate of the position.

vVPos A variable in which to return the vertical coordinate of the position.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The values returned specify the position of the top left-hand corner of the contact, relative to
the top left-hand corner of its parent's client area (position 0,0). Note, however, that for
ExclusiveGroup and InclusiveGroup contacts, the vertical position returned is that of the
top of the title text (even if none is displayed), rather than the top of the enclosing box.

The values returned will depend on the coordinate mode (text or graphics) currently selected
for the application context.

Note: Contacts that can be moved by the user can be positioned to the nearest pixel,
whichever coordinate mode is selected. In text mode, therefore, the values returned
by GetPosition are accurate only to the nearest character position.

See Also Move.

6-142 UIMS DATA/BASIC API, Reference Manual

GetRootWindow

GetRootWindow

This subroutine returns the handle of the root window of an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetRootWindow(Context, vRootWindow)

Syntax Elements Context The handle of the AppContext.

vRootWindow A variable in which to return the handle of the application's root window.

Comments The root window is the first AppWindow contact created by the application.

See Also GetFrontWindow, GetChildFocus.

Subroutine Reference 6-143

GetSecondaryEventMask

GetSecondaryEventMask

This subroutine returns the secondary event mask which has been set for an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetSecondaryEventMask(Context, vEventMask, vUnmaskable, vAlert, vErr)

Syntax Elements Context The handle of the application context.

vEventMask A variable in which to return a value representing the secondary event
mask setting for the application. This value will be a combination of the
event mask constants listed in Chapter 4. The BitTest subroutine can be
used to test the individual elements which make up the returned value.

vUnmaskable A variable in which to return whether messages which cannot be masked
are allowed to reach the application. This must be one of the following
values:

TRUE Non-maskable messages are allowed to reach the
application.

FALSE Non-maskable messages are not allowed to reach the
application.

vAlert This parameter is for future use. A variable must be supplied, but it will
always be returned set to FALSE.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The secondary event mask is described in Chapter 4.

See Also SetSecondaryEventMask, GetEventMask.

6-144 UIMS DATA/BASIC API, Reference Manual

GetSize

GetSize

This subroutine returns the size of a contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetSize(Context, Contact, vWidth, vHeight, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact whose size you require.

vWidth A variable in which to return the width of the contact.

vHeight A variable in which to return the height of the contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments For ExclusiveGroup and InclusiveGroup contacts, the size returned includes the space
occupied by the border and the title text (even if none is displayed).

If the contact is minimised both values returned will be zero.

The values returned will depend on the coordinate mode (text or graphics) currently selected
for the application context.

Note: The user can resize a contact to the nearest pixel, whichever coordinate mode is
selected. In text mode, therefore, the values returned by GetSize are accurate only
to the nearest character position.

See Also Resize.

Subroutine Reference 6-145

GetSolidColour

GetSolidColour

This subroutine returns the solid colour which is the closest available to a specified red,
green and blue colour combination.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetSolidColour(Context, Colour, vSolidColour)

Syntax Elements Context The handle of the application context.

Colour A UIMS logical colour or an absolute colour, specified as a combination of
red, green and blue.

vSolidColour A variable in which to return the closest available solid colour. This will
be an absolute colour - that is a red, green and blue colour combination.

Comments This subroutine should be used to ensure that a solid colour is used as the background to text
or other foreground detail.

UIMS screen colours are described in detail in Appendix B.

6-146 UIMS DATA/BASIC API, Reference Manual

GetState

GetState

This subroutine returns the state of a contact - whether or not it is mappable and whether or
not it is enabled.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetState(Context, Contact, vState)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

vState A variable in which to return the state of the contact. The value returned is
a bit-significant value consisting of the following elements:

UIMS.ENABLED If set, the contact is enabled; if not, it is
disabled.

UIMS.MAPPABLE If set, the contact is mappable; if not, it is
unmappable.

The BitTest subroutine can be used to test the individual elements which
make up this value.

See Also SetMapped, Map, UnMap, SetEnabled, Enable, Disable.

Subroutine Reference 6-147

GetTeFontSize, GetTeFontSizes

GetTeFontSize, GetTeFontSizes

These subroutines return information about the fonts available for use in the RealLink or
currently active 'terminal emulation' (TE) window.

• GetTeFontSize returns the currently selected font size.

• GetTeFontSizes returns a list of the available font sizes.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetTeFontSize(vPointSize, vWidth, vHeight)

CALL GetTeFontSizes(vaPointSizes, vaWidths, vaHeights)

Syntax Elements vPointSize A variable in which to return the currently selected point size.

vWidth A variable in which to return the width in pixels of characters in the
currently selected point size.

vHeight A variable in which to return the height in pixels of characters in the
currently selected point size.

vaPointSizes A variable in which to return a list of numbers representing the available
point sizes. The list is returned as a dynamic array with one point size in
each attribute.

vaWidths A variable in which to return a list of numbers representing the widths in
pixels of characters in the available point sizes. The list is returned as a
dynamic array with one value in each attribute.

vaHeights A variable in which to return a list of numbers representing the heights in
pixels of characters in the available point sizes. The list is returned as a
dynamic array with one value in each attribute.

Comments The positions of the values returned in the vaWidths and vaHeights arrays correspond to the
positions of the point sizes returned in the vaPointSizes parameter.

See Also SetTeFontSize, SetTeWindow.

6-148 UIMS DATA/BASIC API, Reference Manual

GetTypeFace, GetTypeFaces

GetTypeFace, GetTypeFaces

These subroutines return the handles of TypeFace objects.

• GetTypeFace returns the handle of a specified typeface.

• GetTypeFaces returns a list of the typefaces available on the PC.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetTypeFace(Index, vTypeFace)

CALL GetTypeFaces(vaTypeFaces, vErr)

Syntax Elements Index The position in the list of the typeface whose handle you require. The list
is numbered starting from 0.

vTypeFace A variable in which to return the handle of the typeface.

vaTypeFaces A variable in which to return the list of typefaces. The list will be returned
as a dynamic array, with one handle to each attribute.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments It is not necessary to fetch the list of typefaces before calling GetTypeFace.

See Also GetDefaults.

Subroutine Reference 6-149

GetUimsVersion

GetUimsVersion

This subroutine returns the UIMS version number and revision level.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetUimsVersion(vMajor, vMinor, vRevision, vErr)

Syntax Elements vMajor A variable in which to return the UIMS version number.

vMinor A variable in which to return the UIMS release number.

vRevision A variable in which to return the UIMS revision level.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The version number of a UIMS release is made up as follows:

UIMS Major.Minor Revision Revision

For example: UIMS 1.0 Revision D.

6-150 UIMS DATA/BASIC API, Reference Manual

GetUpdate

GetUpdate

This subroutine returns the update mode of a contact; that is, when the contact will be
redrawn if a change occurs.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GetUpdate(Context, Contact, vUpdate)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact whose update mode you require.

vUpdate A variable in which to return the update mode. The value returned will be
one of the following:

UIMS.IMMEDIATE Redraw immediately.
UIMS.NONE Don't redraw; wait for a Draw command.

See Also SetUpdate.

Subroutine Reference 6-151

GrabPointer

GrabPointer

This subroutine causes mouse messages to be sent to a specified contact, regardless of the
position of the pointer.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL GrabPointer(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact to which messages will be sent.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments In normal operation, pointer messages are sent to the contact in which the pointer is
positioned. The position of the pointer is reported relative to the current contact. If the
mouse is not within a contact, no pointer messages are generated.

GrabPointer causes all pointer messages to be diverted to a specified contact and the
position of the pointer to be reported relative to that contact. In addition, pointer motion
messages are generated periodically, even if the pointer does not move.

When the contact no longer requires all pointer messages, the application should call the
UngrabPointer subroutine so that other contacts can receive pointer messages.

If pointer drag messages are enabled in a contact's event mask, when a drag event starts
within that contact, UIMS will automatically perform a GrabPointer, followed by an
UngrabPointer when the drag ends.

GrabPointer does not affect the movement of the pointer around the screen.

See Also UngrabPointer.

6-152 UIMS DATA/BASIC API, Reference Manual

HiByte

HiByte

This subroutine returns the value of the most-significant byte of a word (2 byte) value.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL HiByte(Word, vHiByte)

Syntax Elements Word The word value from which you require the most-significant byte.

vHiByte A variable in which to return the value of the most-significant byte.

Comments HiByte allows the programmer to determine the values of the individual bytes in the
composite word values returned by the GetMsg subroutine.

Word will normally be a composite value returned by GetMsg.

Example The following fragment of code determines whether any other mouse buttons were held
down when a mouse button was clicked.

* Wait for the next message
CALL GetMsg(0, ...
 CONTEXT, ...
 WINDOW, ...
 CONTACT, ...
 MSGTYPE, ...
 TIMESTAMP, ...
 DATA1, ...
 DATA2, ...
 DATA3, ...
 DATA4, ...
 ERR)

BEGIN CASE
CASE MSGTYPE = UIMS.MSG.CLICK

Subroutine Reference 6-153

HiByte

* Use HiByte to separate out the mouse buttons that are held down
CALL HiByte(DATA1, MOUSE.MOD)
IF MOUSE.MOD THEN

PRINT "Another mouse button was held down."
END ELSE

PRINT "No other mouse buttons held down."
END

END CASE

See Also GetMsg, LoByte.

6-154 UIMS DATA/BASIC API, Reference Manual

IncGroupSetStyle, IncGroupSetTitle

IncGroupSetStyle, IncGroupSetTitle

These subroutines change the different attributes of an InclusiveGroup contact.

• IncGroupSetStyle changes the style of the group.

• IncGroupSetTitle changes the title displayed above the group.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL IncGroupSetStyle(Context, Group, Style, vErr)

CALL IncGroupSetTitle(Context, Group, Title, vErr)

Syntax Elements Context The handle of the application context.

Group The handle of the InclusiveGroup contact.

Style The required style for the group. This can be either of the following
values:

UIMS.BORDER Enclose the group in a box.
UIMS.NONE Do not enclose the group in a box.

Title The new group title.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If the group has no bounding box, the title will not be displayed.

Subroutine Reference 6-155

InitialiseUims

InitialiseUims

This subroutine initialises the UIMS environment.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL InitialiseUims

Comments This subroutine must be called at the start of an application, before any other UIMS
subroutines are used.

InitialiseUims calls the IsUimsCapable subroutine and sets the COMMON variable
UIMS.CAPABLE to the result.

See Also IsUimsCapable.

6-156 UIMS DATA/BASIC API, Reference Manual

IsUimsCapable

IsUimsCapable

This subroutine returns whether or not the terminal supports UIMS.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL IsUimsCapable(vCapable)

Syntax Elements vCapable A variable in which to return whether or not the terminal supports UIMS.
This will be one of the following values:

TRUE The terminal supports UIMS.
FALSE The terminal does not support UIMS.

Comments This subroutine allows the programmer to determine whether or not the terminal supports
UIMS, without calling InitialiseUims.

If UIMS has already been initialised, interrogating the COMMON UIMS.CAPABLE
variable is quicker than calling IsUimsCapable.

Subroutine Reference 6-157

ListBoxAddContent - ListBoxAddSelections

ListBoxAddContent – ListBoxAddSelections

These subroutines change the attributes of a ListBox contact.

• ListBoxAddContent adds a single item to the contents of a list box.

• ListBoxAddContents adds a group of items to the contents of a list box.

• ListBoxAddSelection marks an item within the list box as selected.

• ListBoxAddSelections marks multiple items within the list box as selected.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ListBoxAddContent(Context, ListBox, Index, Item, vErr)

CALL ListBoxAddContents(Context, ListBox, Index, aItemList, vErr)

CALL ListBoxAddSelection(Context, ListBox, Selection, vErr)

CALL ListBoxAddSelections(Context, ListBox, aSelectList, vErr)

Syntax Elements Context The handle of the application context.

ListBox The handle of the ListBox contact.

Index The point in the list of contents at which the new items are to be added.
The list is numbered starting from 0 and new items are added before the
specified existing item. An index of -1 adds the new item to the end of the
list.

Item A string containing the text of the item which is to be added to the list box
contents.

aItemList A dynamic array containing the items that are to be added to the contents
of the list box, each item consisting of a text string that will be displayed
in the list box.

Selection The position of the item to be selected within the list box. The list is
numbered starting from zero.

6-158 UIMS DATA/BASIC API, Reference Manual

ListBoxAddContent - ListBoxAddSelections

aSelectList A dynamic array containing a list of indexes into the list box contents. The
items in this list will become marked as selected. The list is numbered
starting from zero.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If the list box allows only one selection, ListBoxAddSelection and ListBoxAddSelections
will cancel any previous selections.

If multiple selections are attempted in a list box that allows only one selection at a time,
only the first selection in the list will be made.

See Also ListBoxGetContent, ListBoxGetContents, ListBoxRemoveContent,
ListBoxRemoveContents, ListBoxGetSelections, ListBoxRemoveSelection,
ListBoxRemoveSelections.

Subroutine Reference 6-159

ListBoxGetContent - ListBoxGetSelections

ListBoxGetContent – ListBoxGetSelections

These subroutines return the different attributes of a ListBox contact.

• ListBoxGetContent returns the text of one item from a list box.

• ListBoxGetContents returns a list of all the items in a list box.

• ListBoxGetSelections returns the indexes of the currently selected items.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ListBoxGetContent(Context, ListBox, Index, vItem, vErr)

CALL ListBoxGetContents(Context, ListBox, vaItemList, vErr)

CALL ListBoxGetSelections(Context, ListBox, vaSelectList, vErr)

Syntax Elements Context The handle of the application context.

ListBox The handle of the ListBox contact.

Index The position in the list of the first item whose text you require. The list is
numbered starting from 0.

vItem A variable in which to return the requested item.

vaItemList A variable in which to return the requested items. If there is more than one
item, this variable will be returned as a dynamic array, with one item in
each attribute.

vaSelectList A variable in which to return the indexes of the selected items. If there is
more than one item selected, this variable will be returned as a dynamic
array, with one index number in each attribute.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

6-160 UIMS DATA/BASIC API, Reference Manual

ListBoxGetContent - ListBoxGetSelections

See Also ListBoxAddContent, ListBoxAddContents, ListBoxRemoveContent,
ListBoxRemoveContents, ListBoxSetLink, ListBoxAddSelection, ListBoxAddSelections,
ListBoxRemoveSelection, ListBoxRemoveSelections.

Subroutine Reference 6-161

ListBoxRemoveContent - ListBoxRemoveSelections

ListBoxRemoveContent – ListBoxRemoveSelections

These subroutines change the attributes of a ListBox contact.

• ListBoxRemoveContent deletes a named item from the contents of the list box.

• ListBoxRemoveContents deletes a number of items from the list box, starting at a
specified position.

• ListBoxRemoveSelection marks an item within the list box as not selected.

• ListBoxRemoveSelections marks items within the list box as not selected.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ListBoxRemoveContent(Context, ListBox, Item, vErr)

CALL ListBoxRemoveContents(Context, ListBox, Index, Count, vErr)

CALL ListBoxRemoveSelection(Context, Listbox, Selection, vErr)

CALL ListBoxRemoveSelections(Context, Listbox, aSelectList, vErr)

Syntax Elements Context The handle of the application context.

ListBox The handle of the ListBox contact.

Item The text of the item to be deleted from the list.

Index The position in the list of contents at which to start deleting items. The list
is numbered starting from 0.

Count The number of items to be deleted from the list. To remove every item
from the starting point (Index parameter) to the end of the list, specify a
count of -1.

Selection The position in the list of contents of the item which is to be deselected.

aSelectList A dynamic array containing the positions in the list of contents of the items
to be deselected.

6-162 UIMS DATA/BASIC API, Reference Manual

ListBoxRemoveContent - ListBoxRemoveSelections

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also ListBoxAddContent, ListBoxAddContents, ListBoxGetContent, ListBoxGetContents,
ListBoxAddSelection, ListBoxAddSelections, ListBoxGetSelections.

Subroutine Reference 6-163

ListBoxSetLink

ListBoxSetLink

This subroutine links a list box to an EditBox contact. A selection made in the list box will
then be automatically copied into the edit box.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ListBoxSetLink(Context, ListBox, EditBox, vErr)

Syntax Elements Context The handle of the application context.

ListBox The handle of the ListBox contact.

EditBox The handle of the EditBox contact to which the list box is to be linked.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

6-164 UIMS DATA/BASIC API, Reference Manual

LoadAppRes

LoadAppRes

This subroutine creates the objects and contacts defined in a compiled UIMS resource file.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL LoadAppRes(Context, FileName, vErr)

Syntax Elements Context The application context.

Filename A string containing the name of the resource file. If no path is specified,
the file is loaded from the disk and directory specified in the RFW.INI file
on the PC.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Subroutine Reference 6-165

LoByte

LoByte

This subroutine returns the value of the least-significant byte of a word (2 byte) value.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL LoByte(Word, vLoByte)

Syntax Elements Word The word value from which you require the least-significant byte.

vLoByte A variable in which to return the value of the least-significant byte.

Comments LoByte allows the programmer to determine the values of the individual bytes in the
composite word values returned by the GetMsg subroutine.

Word will normally be a composite value returned by GetMsg.

Example The following fragment of code determines whether any keyboard modifier keys (SHIFT,
CTRL, ALT) were held down when a mouse button was clicked.

* Wait for the next message
CALL GetMsg(0, ...
 CONTEXT, ...
 WINDOW, ...
 CONTACT, ...
 MSGTYPE, ...
 TIMESTAMP, ...
 DATA1, ...
 DATA2, ...
 DATA3, ...
 DATA4, ...
 ERR)

BEGIN CASE
CASE MSGTYPE = UIMS.MSG.CLICK

6-166 UIMS DATA/BASIC API, Reference Manual

LoByte

* Use LoByte to separate out the modifier keys
CALL LoByte(DATA1, MOD)
IF MOD THEN

PRINT "A keyboard modifier was held down."
END ELSE

PRINT "No keyboard modifiers were held down."
END

END CASE

See Also GetMsg, HiByte.

Subroutine Reference 6-167

MakePullDownMenu

MakePullDownMenu

This subroutine creates a complete menu, including all its menu items.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL MakePullDownMenu(Context, Ident, Title, FirstItem, aItemTitles, Parent, vMenu)

Syntax Elements Context The handle of the application context.

Ident An integer value to use as the handle for the Menu contact. If this
parameter is zero, a handle will be assigned by UIMS. In either case, the
handle of the newly-created menu is returned in the vMenu parameter.

Title The title of the menu. An ampersand (&) preceding a character in this
string denotes that character as the selector key for the menu.

FirstItem An integer value to use as the handle for the first MenuItem contact on the
menu. UIMS will assign handles to the remaining menu items by
incrementing this value by one for each subsequent menu item. If the
FirstItem parameter is zero, UIMS assign a handle for the first menu item,
by incrementing the handle of the Menu contact by one.

aItemTitles A dynamic array with each attribute containing the title of one of the items
on the menu. If a character in the string is preceded by an ampersand (&),
that character is assigned as the selector key for the menu item.

If a single hyphen is used as the title, a separator item is created. This
appears as a continuous line across the width of the menu. A separator item
cannot be selected by the user and should be used to visually group related
menu items. Note that a separator item cannot be attached to a menu bar.

Parent The handle of the parent of the menu, if required. If specified, this must be
either a MenuBar or another Menu. If the parent is currently displayed the
menu will be drawn immediately.

If Parent is a null string, the contact is created without a parent and can be
attached at a later time using AddChild or AddChildren.

vMenu A variable in which to return the handle of the newly-created Menu. If it
could not be created for any reason, zero is returned. Note, however, that if

6-168 UIMS DATA/BASIC API, Reference Manual

MakePullDownMenu

asynchronous error handling is selected and a handle has been supplied in
the Ident parameter, this handle will always be returned, and any error will
be reported by means of a UIMS.MSG.NOTIFY message. See SetSync
for more details.

Cascading Menus MakePullDownMenu can also be used to create cascading menus – menus that are children
of other menus, rather than of the menu bar. This is done by creating the parent menu with
space reserved for the child menu, and then filling this reserved space when creating the
child menu.

Space for a child menu is reserved by including a null title in the appropriate position in the
aItemTitles array. No MenuItem contact will be created, but the corresponding handle will
be set aside for later use. When MakePullDownMenu is used to create the child menu, the
Ident parameter must specify the handle assigned to the reserved space. Note, however, that
unless the reserved item is the last item on the parent menu, when creating the child the
FirstItem parameter cannot be zero; this is because, when MakePullDownMenu adds one to
Ident to create the handle for the child's first menu item, this handle will be the same as that
already assigned to the next item on the parent menu.

Note: The parent and child menus can be created in any order. If the child menu already
exists when its parent is created, the child will simply be inserted into its reserved
space.

Example The following example creates a Format menu with Character, Paragraph and Border items,
and two cascaded menus: Tabs and Page.

FORMATITEMS = "&Character..." ;* id = 101
FORMATITEMS<-1> = "&Paragraph..." ;* id = 102
FORMATITEMS<-1> = "" ;* tabs id = 103
FORMATITEMS<-1> = "" ;* page id = 104
FORMATITEMS<-1> = "-" ;* separator id = 105
FORMATITEMS<-1> = "&Border..." ;* id = 106

TABITEMS = "&Set..." ;* id = 200
TABITEMS<-1> = "&Clear..." ;* id = 201
TABITEMS<-1> = "&Reset all" ;* id = 202

PAGEITEMS = "&Size..." ;* id = 300
PAGEITEMS<-1> = "&Margins..." ;* id = 301
PAGEITEMS<-1> = "&Numbers..." ;* id = 302

CALL MakePullDownMenu(CONTEXT, ...
 100, ...

Subroutine Reference 6-169

MakePullDownMenu

 "&Format", ...
 0, ...
 FORMATITEMS, ...
 0, ...
 FILE)
CALL MakePullDownMenu(CONTEXT, ...
 103, ...
 "&Tabs", ...
 200, ...
 TABITEMS, ...
 File, ...
 FILETABS)
CALL MakePullDownMenu(CONTEXT, ...
 104, ...
 "&Page", ...
 300, ...
 PAGEITEMS, ...
 File, ...
 FILEPAGE)

Comments UIMS reserves handles 8000 to 9999 for its own use – these must not be used by the
application.

See Also CreatePullDownMenu, CreateMenuBar, CreateMenuItem.

6-170 UIMS DATA/BASIC API, Reference Manual

Map

Map

This subroutine makes a contact mappable; that is, it makes it possible to display the contact
on the screen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Map(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A mappable contact will only be visible if it has a parent and that parent is visible. Making a
contact with a visible parent mappable will make it and any mappable children visible.

Newly-created contacts are mappable.

See Also UnMap, SetMapped, GetState.

Subroutine Reference 6-171

MenuItemCheck

MenuItemCheck

This subroutine displays a check mark beside a MenuItem.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL MenuItemCheck(Context, MenuItem, vErr)

Syntax Elements Context The handle of the application context.

MenuItem The handle of the MenuItem contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The type of check mark displayed is platform dependent. On a PC running Microsoft
Windows, a tick (ü) is used.

See Also MenuItemSetCheckMark, MenuItemUncheck, MenuItemGetCheckMark,
MenuItemSetAutoCheck.

6-172 UIMS DATA/BASIC API, Reference Manual

MenuItemGetCheckMark

MenuItemGetCheckMark

This subroutine returns whether or not a check mark is displayed beside a MenuItem
contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL MenuItemGetCheckMark(Context, MenuItem, vCheck)

Syntax Elements Context The handle of the application context.

MenuItem The handle of the MenuItem contact.

vCheck A variable in which to return whether or not the menu item is checked.
This will be one of the following values:

TRUE The menu item is checked.
FALSE The menu item is not checked.

See Also MenuItemSetAutoCheck, MenuItemSetCheckMark, MenuItemSetTitle.

Subroutine Reference 6-173

MenuItemSetAutoCheck - MenuItemSetTitle

MenuItemSetAutoCheck – MenuItemSetTitle

These subroutines set different attributes of a MenuItem contact.

• MenuItemSetAutoCheck sets whether checking and unchecking the menu item is
automatic or not.

• MenuItemSetCheckMark checks or unchecks a menu item.

• MenuItemSetTitle changes the title of a menu item.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL MenuItemSetAutoCheck(Context, MenuItem, Autocheck, vErr)

CALL MenuItemSetCheckMark(Context, MenuItem, Check, vErr)

CALL MenuItemSetTitle(Context, MenuItem, Title, vErr)

Syntax Elements Context The handle of the application context.

MenuItem The handle of the MenuItem contact.

Autocheck Specifies whether to automatically check and uncheck or not. This must be
one of the following values:

TRUE Enable automatic checking.
FALSE Disable automatic checking.

Check Specifies whether the menu item is to become checked or unchecked. This
must be one of the following values:

TRUE Check the menu item.
FALSE Uncheck the menu item.

Note that the type of check mark displayed is platform dependent. On a PC
running Microsoft Windows, a tick (ü) is used.

6-174 UIMS DATA/BASIC API, Reference Manual

MenuItemSetAutoCheck - MenuItemSetTitle

Title The new title to be displayed for the menu item. An ampersand (&)
preceding a character in this string denotes that character as the selector
key for the menu.

If a single hyphen is used as the title, a separator item is created. This
appears as a continuous line across the width of its parent menu. A
separator item cannot be selected by the user and should be used to
visually group related menu items. Note that a separator item cannot be
attached to a menu bar.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also MenuItemCheck, MenuItemUncheck, CreateMenuItem, MenuItemGetCheckMark.

Subroutine Reference 6-175

MenuItemUncheck

MenuItemUncheck

This subroutine removes the check mark (if any) displayed beside a MenuItem contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL MenuItemUncheck(Context, MenuItem, vErr)

Syntax Elements Context The handle of the application context.

MenuItem The handle of the MenuItem contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also MenuItemCheck, MenuItemSetCheckMark, MenuItemGetCheckMark.

6-176 UIMS DATA/BASIC API, Reference Manual

MenuSetTitle

MenuSetTitle

This subroutine changes the title of a Menu contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL MenuSetTitle(Context, Menu, Title, vErr)

Syntax Elements Context The handle of the application context.

Menu The handle of the Menu contact.

Title The new title to be displayed for the menu. An ampersand (&) preceding a
character in this string denotes that character as the selector key for the
menu.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreatePullDownMenu, MakePullDownMenu.

Subroutine Reference 6-177

Move

Move

This subroutine changes the position of a contact within its parent.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Move(Context, Contact, HPos, VPos, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact you wish to move.

HPos The new horizontal position for the contact in coordinate units.

VPos The new vertical position for the contact in coordinate units.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments HPos and VPos specify the position of the top left-hand corner of the contact, relative to the
top left-hand corner of its parent's client area (position 0,0). Note, however, the following
exceptions:

• For contacts that are children of the application context, the position must be specified
relative to the top, left-hand corner of the display (position 0,0).

• For ExclusiveGroup and InclusiveGroup contacts, the top of the contact is aligned with
the top of the title text (even if none is displayed), rather than with the top of the
enclosing box.

The position specified is interpreted in accordance with the coordinate mode (text or
graphics) currently selected for the application context.

Provided the contact is mappable, when it is moved it will always be redrawn immediately.

See Also GetPosition.

6-178 UIMS DATA/BASIC API, Reference Manual

OptionButtonDeselect

OptionButtonDeselect

This subroutine deselects the specified OptionButton contact, clearing the check mark if
one is displayed.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL OptionButtonDeselect(Context, Button, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the OptionButton contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also OptionButtonSelect, OptionButtonSetSelected, OptionButtonGetSelected.

Subroutine Reference 6-179

OptionButtonGetSelected

OptionButtonGetSelected

This subroutine returns the current state (selected or deselected) of an OptionButton
contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL OptionButtonGetSelected(Context, Button, vSelected)

Syntax Elements Context The handle of the application context.

Button The handle of the OptionButton contact.

vSelected A variable in which to return whether or not the button is selected. This
will be one of the following values:

TRUE The button is selected.
FALSE The button is not selected.

See Also OptionButtonSetSelected.

6-180 UIMS DATA/BASIC API, Reference Manual

OptionButtonSelect

OptionButtonSelect

This subroutine selects the specified OptionButton.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL OptionButtonSelect(Context, Button, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the OptionButton contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments When a option button is selected its check circle is displayed filled in.

See Also OptionButtonDeselect, OptionButtonSetSelected, OptionButtonGetSelected.

Subroutine Reference 6-181

OptionButtonSetSelected - OptionButtonSetToggle

OptionButtonSetSelected – OptionButtonSetToggle

These subroutines change the attributes of a specified OptionButton contact.

• OptionButtonSetSelected sets the button to selected or deselected.

• OptionButtonSetTitle changes the title displayed beside the button.

• OptionButtonSetToggle changes the auto-toggle state of the button.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL OptionButtonSetSelected(Context, Button, Selected, vErr)

CALL OptionButtonSetTitle(Context, Button, Title, vErr)

CALL OptionButtonSetToggle(Context, Button, Toggle, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the OptionButton contact.

Selected The required button state. This must be one of the following values:

TRUE Select the button.
FALSE Deselect the button.

Title The new title for the button.

Toggle The required auto-toggle state. This must be one of the following values:

TRUE Enable automatic toggling.
FALSE Disable automatic toggling.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments When a option button is selected its check circle is displayed filled in.

See Also OptionButtonGetSelected.

6-182 UIMS DATA/BASIC API, Reference Manual

Paste

Paste

This subroutine pastes the contents of the clipboard into an EditBox or TextEditor contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Paste(Context, Contact, Character, Line, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

Character The character position at which to paste the data. The position must be
specified as the number of characters from the start of the line specified in
Line.

Line The number of the line containing the position at which to paste the data.
If Contact is the handle of an EditBox, this parameter will be ignored.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If Character and Line are both -1, the Clipboard contents are inserted at the current cursor
position, replacing any selected text.

If Contact is the handle of a contact other than an EditBox or TextEditor, an error will be
returned.

See Also ClipboardGetContent, ClipboardGetState, Copy, Cut, ClipboardSetContent.

Subroutine Reference 6-183

PenGetColour, PenGetWidth

PenGetColour, PenGetWidth

These subroutines return the different attributes of a Pen object.

• PenGetColour returns the colour of the pen.

• PenGetWidth returns the width of the pen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL PenGetColour(Context, Pen, vColour)

CALL PenGetWidth(Context, Pen, vWidth)

Syntax Elements Context The handle of the application context.

Pen The handle of the Pen object.

vColour A variable in which to return the colour of the pen. The value returned will
be a UIMS logical colour or an RGB value (see Appendix B).

vWidth A variable in which to return the width, in pixels, of the pen.

See Also PenSetColour, PenSetWidth.

6-184 UIMS DATA/BASIC API, Reference Manual

PenSetColour, PenSetWidth

PenSetColour, PenSetWidth

These subroutines change the attributes of a specified Pen object.

• PenSetColour changes the colour of the pen.

• PenSetWidth changes the width of the pen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL PenSetColour(Context, Pen, Colour, vErr)

CALL PenSetWidth(Context, Pen, Width, vErr)

Syntax Elements Context The handle of the application context.

Pen The handle of the Pen object.

Colour The colour of the pen. This must be a UIMS logical colour or an RGB
value (see Appendix B).

Width The width, in pixels, of lines drawn by the pen.

If the width is set to zero, the pen will draw the thinnest and/or most
efficient lines available on the display platform.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also PenGetColour, PenGetWidth.

Subroutine Reference 6-185

PointerGetType

PointerGetType

This subroutine returns the shape of a Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL PointerGetType(Context, Pointer, vType)

Syntax Elements Context The handle of the application context.

Pointer The handle of the Pointer object.

vType A variable in which to return the shape of the pointer. This will be one of
the following values:

UIMS.PTR.ARROW Standard arrow pointer.
UIMS.PTR.IBEAM Text I-beam pointer.
UIMS.PTR.CROSS Diagonal cross-hair pointer.
UIMS.PTR.PLUS Horizontal and vertical cross-hair pointer.
UIMS.PTR.WAIT Wait pointer - normally an hourglass.

See Also PointerSetType.

6-186 UIMS DATA/BASIC API, Reference Manual

PointerSetType

PointerSetType

This subroutine changes the shape of a specified Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL PointerSetType(Context, Pointer, Type, vErr)

Syntax Elements Context The handle of the application context.

Pointer The handle of the Pointer object.

Type The shape of the pointer. This must be one of the following values:

UIMS.PTR.ARROW Standard arrow pointer.
UIMS.PTR.IBEAM Text I-beam pointer.
UIMS.PTR.CROSS Diagonal cross-hair pointer.
UIMS.PTR.PLUS Horizontal and vertical cross-hair pointer.
UIMS.PTR.WAIT Wait pointer - normally an hourglass.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreatePointer, PointerGetType.

Subroutine Reference 6-187

ReMapNVLine25

ReMapNVLine25

This subroutine allows you to use a UIMS message box to display system messages which
the host sends to line 25 of the terminal screen.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL ReMapNVLine25(Context, Enable, vErr)

Syntax Elements Context The handle of the application context.

Enabled The required state. This must be one of the following values:

TRUE Display messages in a message box.
FALSE Display messages on line 25.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The message box in which host system messages are displayed has a single OK button, and
therefore requires a response from the user.

Applications which use line 25 for a continuous display of status information should not map
system messages to a message box.

See Also CreateMessageBox.

6-188 UIMS DATA/BASIC API, Reference Manual

RemoveChild, RemoveChildren

RemoveChild, RemoveChildren

These subroutines remove objects from another object's list of children.

• RemoveChild removes a particular child from the list.

• RemoveChildren removes a number of children from the list, starting at a specified
position.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL RemoveChild(Context, Object, Child, vErr)

CALL RemoveChildren(Context, Object, Index, Count, vErr)

Syntax Elements Context The handle of the application context.

Object The handle of the parent object.

Child The handle of the child you wish to remove.

Index The position in the list of the child or children to be removed. The list is
numbered starting from 0.

Count The number of children to be removed. To remove every child from the
starting point (Index parameter) to the end of the list, specify a count of -1.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also AddChild, AddChildren, GetChild, GetChildren, GetObjectParent.

Subroutine Reference 6-189

RemoveTimer

RemoveTimer

This subroutine removes a timer which was created with AddTimer.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL RemoveTimer(Context, Timer, vErr)

Syntax Elements Context The handle of the application context.

Timer The handle of the timer.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also AddTimer.

6-190 UIMS DATA/BASIC API, Reference Manual

Resize

Resize

This subroutine changes the size of a contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Resize(Context, Contact, Width, Height, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact whose size you wish to change.

Width The required contact width in coordinate units.

Height The required contact height in coordinate units.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments For ExclusiveGroup and InclusiveGroup contacts, this subroutine sets the overall size of
the contact including any title text, rather than the size of the enclosing box.

The Width and Height parameters will be interpreted according to the coordinate mode (text
or graphics) currently selected for the application context.

Provided the contact is mappable, when it is resized it will always be redrawn immediately.

An App or Child window has a minimum size, which depends on the style and content of the
window. Any attempt to make either the width or height smaller than the minimum will fail.

See Also GetSize.

Subroutine Reference 6-191

Scroll

Scroll

This subroutine scrolls the client area of the specified window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL Scroll(Context, Window, HScroll, VScroll, Left, Top, Right, Bottom, vErr)

Syntax Elements Context The handle of the application context.

Window The window which is to be scrolled.

HScroll The amount of horizontal movement. If HScroll is positive, the contents of
the client area move to the right, relative to the window border; if HScroll
is negative, the contents of the client area move to the left.

VScroll The amount of vertical movement. If VScroll is positive, the contents of
the client area move downwards, relative to the window border; if VScroll
is negative, the contents of the client area move upwards.

Left The position of the left-hand edge of the area to be scrolled.

Top The position of the top edge of the area to be scrolled.

Right The position of the right-hand edge of the area to be scrolled.

Bottom The position of the bottom edge of the area to be scrolled.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Left, Top, Right and Bottom permit only a part of the client area to be scrolled; if all are
zero, the entire client area will be scrolled. If specified, the edges of the scrolled area are
relative to the top left-hand corner of the window's client area (position 0,0).

The HScroll, VScroll, Left, Top, Right and Bottom parameters will be interpreted according
to the coordinate mode (text or graphics) currently selected for the application context.

If the window does not have a text canvas, text data which is scrolled out of the window is
lost and, if re-displayed, must be redrawn by the application.

6-192 UIMS DATA/BASIC API, Reference Manual

ScrollBarGetThumb

ScrollBarGetThumb

This subroutine returns the value corresponding to the current thumb position of a ScrollBar
contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ScrollBarGetThumb(Context, ScrollBar, vPosition)

Syntax Elements Context The handle of the application context.

ScrollBar Handle of the ScrollBar object

vPosition A variable in which to return the value corresponding to the current
position of the thumb.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also ScrollBarSetInc, ScrollBarSetRange, ScrollBarSetThumb, ScrollBarSetTracking.

Subroutine Reference 6-193

ScrollBarSetInc - ScrollBarSetTracking

ScrollBarSetInc – ScrollBarSetTracking

These subroutines change the different attributes of a ScrollBar contact.

• ScrollBarSetInc sets the increments by which the thumb position value is changed when
line and page scrolling are used.

• ScrollBarSetRange sets the minimum and maximum thumb position values,
corresponding to the opposite ends of the thumb track.

• ScrollBarSetThumb moves the scroll-bar thumb.

• ScrollBarSetTracking changes the scroll-bar thumb tracking mode.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL ScrollBarSetInc(Context, ScrollBar, PageInc, LineInc, vErr)

CALL ScrollBarSetRange(Context, ScrollBar, Min, Max, vErr)

CALL ScrollBarSetThumb(Context, ScrollBar, Position, vErr)

CALL ScrollBarSetTracking(Context, ScrollBar, Track, vErr)

Syntax Elements Context The handle of the application context.

ScrollBar The handle of the scroll-bar.

PageInc The required value for the page scroll increment.

LineInc The required value for the line scroll increment.

Min A value corresponding to the top or left-hand end of the thumb track.

Max A value corresponding to the bottom or right-hand end of the thumb track.

Position A value representing the required thumb position.

6-194 UIMS DATA/BASIC API, Reference Manual

ScrollBarSetInc - ScrollBarSetTracking

Track The required tracking mode for the scroll-bar. This must be one of the
following values:

TRUE Enable tracking.
FALSE Disable tracking.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments If the Min parameter is greater than Max an error is returned.

See Also CreateScrollBar, ScrollBarGetThumb.

Subroutine Reference 6-195

SendKeys

SendKeys

Sends a sequence of keypresses to the active Windows application, as if they had been typed
at the keyboard.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE RFWKEYS FROM UIMS-TOOLS

CALL SendKeys(Keys, Control, vErr)

Syntax Elements Keys A string containing a key sequence.

Control One of the following control settings:

SENDKEYS.WAIT Don't send the keypresses until the next call to
the Execute subroutine.

RFW.NONE Send the keypresses immediately.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will be set to ERR.RFW.SUCCESS for successful
completion or will contain one of the SendKeys error codes listed in
Appendix D.

Non-Printable
Characters

When SendKeys is used in an application, the item RFWKEYS must be included from the
file UIMS-TOOLS. This item contains key definitions for non-printable characters as listed
in Table 6-1.

Table 6-1. SendKeys Key Definitions

Key Code Key Code

ALT GR SVK.ALTGRKEY CAPS LOCK SVK.CAPSLOCK

ALT SVK.ALTKEY CTRL SVK.CTRLKEY

Backspace SVK.BKSP DELETE SVK.DEL

BREAK (CTRL+PAUSE) SVK.BREAK DOWN (cursor key) SVK.DOWN

END SVK.END Function key F9 SVK.F9

RETURN SVK.ENTER Keypad minus (-) SVK.GREYMINUS

(continued)

6-196 UIMS DATA/BASIC API, Reference Manual

SendKeys

Table 6-1 SendKeys Key Definitions (continued)

Key Code Key Code

ESC SVK.ESC Keypad plus (+) SVK.GREYPLUS

Function key F1 SVK.F1 HOME SVK.HOME

Function key F10 SVK.F10 INSERT SVK.INS

Function key F11 SVK.F11 LEFT (cursor key) SVK.LEFT

Function key F12 SVK.F12 SHIFT (left) SVK.LSHIFTKEY

Function key F13 SVK.F13 NUM LOCK SVK.NUMLOCK

Function key F14 SVK.F14 PAUSE SVK.PAUSE

Function key F15 SVK.F15 PAGE DOWN SVK.PGDN

Function key F16 SVK.F16 PAGE UP SVK.PGUP

Function key F2 SVK.F2 PRINT SCREEN SVK.PRTSC

Function key F3 SVK.F3 RIGHT (cursor key) SVK.RIGHT

Function key F4 SVK.F4 SHIFT (right) SVK.RSHIFTKEY

Function key F5 SVK.F5 SCROLL LOCK SVK.SCROLL

Function key F6 SVK.F6 TAB SVK.TAB

Function key F7 SVK.F7 UP (cursor key) SVK.UP

Function key F8 SVK.F8

In addition, the following key modifiers are available:

ALT SVK.ALT
ALT GR SVK.ALTGR
CTRL SVK.CTRL
SHIFT SVK.SHIFT

Key Rate The following allow you to control the rate at which the keys are sent:

• SVK.KEYRATE:time:terminator

where

: is the DATA/BASIC string concatenation operator.

Subroutine Reference 6-197

SendKeys

time is the time between keys, in 18ths of a second.

terminator is any non-numeric character.

• SVK.DELAY:delay:terminator

where

: is the DATA/BASIC string concatenation operator.

delay is the time to pause before sending the next key, in seconds.

terminator is any non-numeric character.

Examples CALL SendKeys("s", RFW.NONE, ERR)

Sends a lower case 's' without waiting for the next Execute call.

* check that the file exists
FILE = "C:\TMP\SKTEXT.TXT"
CALL SystemCommand(SYS.EXIST, RFW.NONE, FILE, RESPONSE, ERR)

IF ERR = ERR.SYS.SUCCESS THEN
KEYS = SVK.KEYRATE:9:"." ;* Set the key rate
CALL SendKeys(KEYS, SENDKEYS.WAIT, ERR)

* ALT+E,A - select the whole file
KEYS = SVK.ALT:"ea"
* CTRL+INSERT - copy to clipboard
KEYS = KEYS:SVK.CTRL:SVK.INS
* ALT+F4 - close Notepad
KEYS = KEYS:SVK.ALT:SVK.F4
CALL SendKeys(KEYS, SENDKEYS.WAIT, ERR)

COMMANDLINE = "NOTEPAD.EXE ":FILE
CALL Execute(COMMANDLINE, ...
 EXECUTE.SHOWMAXIMIZED, ...
 EXECUTE.WAIT, ...
 ERR)

END

Tests for the existence of the file C:\TMP\SKTEXT.TXT and then, if it exists, builds up a
key sequence which sets a key rate of one every half second, selects the entire contents of
the file, places it on the Windows clipboard, and then closes the application. Finally the

6-198 UIMS DATA/BASIC API, Reference Manual

SendKeys

Windows Notepad utility is executed with the file SKTEXT.TXT loaded, and the stored key
sequence is sent to this application.

Comments Only one instance of key replay can occur at a time. A applications that use this facility
must be programmed to handle the ERR.SENDKEYS.INUSE error when calling the
SendKeys and Execute functions.

If required, successive calls to SendKeys can be used to build up a sequence of keys, before
sending them all with a single Execute call.

Note: Use great care when sending keys to other programs. UIMS has no way to detect or
correct errors generated by other programs, and always sends the programmed
series of keystrokes. Make sure that you test your program under a variety of
conditions to ensure that the keystrokes required by the other program remain
exactly the same. If the other program requires different keystrokes to those
programmed, data could be lost. If more keystrokes are required than are
programmed (for instance, if a RETURN is required to respond to a message box), the
program will freeze while waiting for the missing input. If there are too many
keystrokes in the programmed sequence the results will be unpredictable.

See Also Execute.

Subroutine Reference 6-199

SetBorderStyle

SetBorderStyle

This subroutine changes the border style of an App or Child window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetBorderStyle(Context, Contact, Style, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the window.

Style The new border style. This must be one of the following values:

UIMS.BORDER Give the window a border.
UIMS.NONE No border.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also GetBorderStyle, CreateAppWin, CreateChildWin.

6-200 UIMS DATA/BASIC API, Reference Manual

SetClip

SetClip

This subroutine sets the boundaries of a window's clipping region.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetClip(Context, Window, Top, Left, Bottom, Right, vErr)

Syntax Elements Context The handle of the application context.

Window The handle of the window.

Top The position, in coordinate units, of the top edge of the clipping region.

Left The position, in coordinate units, of the left-hand edge of the clipping
region.

Bottom The position, in coordinate units, of the bottom edge of the clipping
region.

Right The position, in coordinate units, of the right-hand edge of the clipping
region.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Top, Left, Bottom and Right must be specified relative to the top left-hand corner of the
window's client area (position 0,0). These parameters will be interpreted according to the
coordinate mode (text or graphics) currently selected for the application context.

Setting Top, Left, Bottom and Right all to zero removes any previously set clipping region.
With no clipping region set, text and graphics will be clipped at the edges of the client area,
whatever its size.

See Also GetClip.

Subroutine Reference 6-201

SetContactFocus

SetContactFocus

This subroutine gives the focus to a particular contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetContactFocus(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact which is to receive the focus.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Some contacts cannot accept the focus. If the specified contact has children, the focus will
normally pass to the first child in its list of children which can accept the focus. If the
contact has no children, an error will be returned.

See Also GetChildFocus.

6-202 UIMS DATA/BASIC API, Reference Manual

SetCoordMode

SetCoordMode

This subroutine sets the coordinate mode by which positions on the screen are referenced.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetCoordMode(Context, CoordMode, vErr)

Syntax Elements Context The handle of the AppContext object.

CoordMode The required coordinate mode. This must be one of the following values:

UIMS.COORD.TEXT Screen positions are referenced to the nearest
character position, where the size of a
character is that of an upper case character in
the default system typeface.

UIMS.COORD.GRAPHIC Screen positions are referenced to the nearest
pixel.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments When an application signs on to UIMS, text mode is selected.

See Also GetCoordMode.

Subroutine Reference 6-203

SetCursorPosition, SetCursorState

SetCursorPosition, SetCursorState

These subroutines change the different attributes of the cursor within an AppWindow or
ChildWindow contact.

• SetCursorPosition changes the position of the text cursor within the window.

• SetCursorState sets the type of text cursor that is currently selected and whether or not
the cursor is visible.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetCursorPosition(Context, Window, HPos, VPos, vErr)

CALL SetCursorState(Context, Window, Visible, CurType, vErr)

Syntax Elements Context The handle of the application context.

Window The handle of the AppWindow or ChildWindow contact.

HPos The horizontal coordinate of the cursor position.

VPos The vertical coordinate of the cursor position.

Visible Specifies whether or not the cursor is visible. This must be one of the
following values:

TRUE Make the cursor visible.
FALSE Hide the cursor.

CurType A value representing the type of cursor displayed. This will be one of the
following:

UIMS.BAR Vertical bar.
UIMS.BLOCK Block cursor.
UIMS.OUTLINE Outline cursor.
UIMS.UNDERLINE Underline cursor.

6-204 UIMS DATA/BASIC API, Reference Manual

SetCursorPosition, SetCursorState

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments HPos and VPos must be specified relative to the top left-hand corner of the window's client
area (position 0,0). These parameters will be interpreted according to the coordinate mode
(text or graphics) currently selected for the application context.

See Also GetCursorPosition, GetCursorState.

Subroutine Reference 6-205

SetDrawrule

SetDrawrule

This subroutine attaches a new Drawrule object to the specified object or contact. This
changes attributes such as foreground and background colour (refer to the description of the
Drawrule object in Chapter 3).

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetDrawrule(Context, Object, Drawrule, vErr)

Syntax Elements Context The handle of the application context.

Object The handle of the object or contact to which the drawrule is to be attached.

Drawrule The handle of the Drawrule object. If this parameter is zero, the current
drawrule will be removed. Note, however, that if the contact has a parent,
the old drawrule will be replaced by that attached to the parent object.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A drawrule can be attached to only the following objects and contacts:

AppWindow
ChildWindow
Line
Rectangle
Text
AppContext

Attempting to attach a drawrule to an object or contact other than those listed above will
result in an error.

See Also GetDrawrule.

6-206 UIMS DATA/BASIC API, Reference Manual

SetEnabled

SetEnabled

This subroutine enables or disables a contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetEnabled(Context, Contact, Enabled, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact to be enabled or disabled.

Enabled The required state. This must be one of the following values:

TRUE Enable the contact.
FALSE Disable the contact.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A disabled contact remains displayed, but cannot be selected by the user. The disabled state
is indicated a greying effect, the exact form of which is platform dependent.

See Also Enable, Disable, GetState.

Subroutine Reference 6-207

SetEnabledNVGroup

SetEnabledNVGroup

This subroutine enables or disables a NewView group.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMSDEFS FROM UIMS-TOOLS ;* Only required for contact groups
INCLUDE UIMSCOMMON FROM UIMS-TOOLS ;* Only required for contact groups

CALL SetEnabledNVGroup(Context, Group, Enable, vErr)

Syntax Elements Context The handle of the application context.

Group The identifier for the group to be enabled or disabled.

Enabled The required state. This must be one of the following values:

TRUE Enable the group.
FALSE Disable the group.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A disabled group remains displayed, but cannot be selected by the user. In the case of groups
of contacts, the disabled state is indicated a greying effect, the exact form of which is
platform dependent. For groups of hot-spots, the mouse pointer does not change shape as it
passes over them.

See Also SetMappedNVGroup.

6-208 UIMS DATA/BASIC API, Reference Manual

SetEventMask

SetEventMask

This subroutine specifies which types of message will be received by the application. A
mask can be applied to the whole application, or to individual objects.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetEventMask(Context, Object, EventMask, vErr)

Syntax Elements Context The handle of the application context.

Object The handle of an object.

EventMask The new event mask for the object. This must be a combination of the
event mask constants listed in Chapter 4.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments An event mask specifies which types of message will be passed on from an object to its
parent. Since all objects and contacts are ultimately children of the application context, an
event mask applied to the AppContext object controls which types of message will be
received by the application.

See Also GetEventMask, SetSecondaryEventMask.

Subroutine Reference 6-209

SetHelpFile - SetHelpKey

SetHelpFile – SetHelpKey

These subroutines change the settings of the application's AppHelp object.

• SetHelpFile attaches a help file on the PC to the application.

• SetHelpIndex associates a contact with a section of the help file.

• SetHelpKey assigns a key as the help accelerator.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetHelpFile(Context, Filename, vErr)

CALL SetHelpIndex(Context, Contact, Section, vErr)

CALL SetHelpKey(Context, Key, vErr)

Syntax Elements Context The handle of the AppContext.

Filename A string containing the name of the help file. If no path is specified, the
file is loaded from the disk and directory specified in the RFW.INI file on
the PC.

Contact The handle of a contact.

Section The help-id of the section of the help file that is to be associated with the
specified contact.

Key The virtual key code of the key that is to be assigned as the help
accelerator.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also GetHelpFile, GetHelpIndex, GetHelpKey, SetNVHelp.

6-210 UIMS DATA/BASIC API, Reference Manual

SetMapped

SetMapped

This subroutine allows you to decide whether or not a contact is displayed on the screen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetMapped(Context, Contact, Mapped, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact.

Mapped The required state. This must be one of the following values:

TRUE Make the contact visible (mappable).
FALSE Make the contact invisible (unmappable).

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A mappable contact will only be visible if it has a parent and that parent is visible.

• Making a contact with a visible parent mappable will make it and any mappable children
visible.

• Conversely, making a contact with a visible parent unmappable will make it and any
children invisible.

Newly-created contacts are mappable.

Menu and MenuItem contacts cannot be made unmappable.

See Also Map, UnMap, GetState.

Subroutine Reference 6-211

SetMappedNVGroup

SetMappedNVGroup

This subroutine allows you to decide whether or not a NewView group is displayed on the
screen.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS
INCLUDE UIMSDEFS FROM UIMS-TOOLS ;* Only required for contact groups
INCLUDE UIMSCOMMON FROM UIMS-TOOLS ;* Only required for contact groups

CALL SetMappedNVGroup(Context, Group, Mapped, vErr)

Syntax Elements Context The handle of the application context.

Group The identifier for the group.

Mapped The required state. This must be one of the following values:

TRUE Make the group visible.
FALSE Make the group invisible.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The effect of this subroutine depends on whether the group consists of contacts or hot-spots,
and also on the type of contact:

• For button contacts, setting them mappable makes them visible; setting them
unmappable makes them invisible. Since an invisible contact cannot be operated by the
user, unmappable buttons are in effect also disabled.

• MenuItem contacts cannot be made unmappable, so this subroutine will have no effect
on this type of contact.

• For hot-spots, setting them mappable makes them visible by drawing a border around
them; setting them unmappable makes them invisible. However, unlike button contacts,
invisible hot-spots can still be operated by the user – to disable the hot-spots use the
SetEnabledNVGroup subroutine.

See Also SetEnabledNVGroup.

6-212 UIMS DATA/BASIC API, Reference Manual

SetNVHelp

SetNVHelp

This subroutine attaches a help file on the PC to a NewView application.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL SetNVHelp(Filename, vErr)

Syntax Elements Filename A string containing the name of the help file. If no path is specified, the
file is loaded from the disk and directory specified in the RFW.INI file on
the PC.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments This subroutine allows a NewView application to provide application-specific help. The file
specified is displayed when the user selects the Application (or equivalent) command from
the RealLink Help menu. Refer to Chapter 5 for more details.

See Also SetHelpFile.

Subroutine Reference 6-213

SetPointer

SetPointer

This subroutine attaches a new Pointer object to the specified object or contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetPointer(Context, Object, Pointer, vErr)

Syntax Elements Context The handle of the application context.

Object The handle of the object or contact to which the pointer is to be attached.

Pointer The handle of the Pointer object.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments A pointer can be attached to only the following objects and contacts:

AppWindow
ChildWindow
AppContext

Attempting to attach a pointer to an object or contact other than those listed above will result
in an error.

See Also GetPointer.

6-214 UIMS DATA/BASIC API, Reference Manual

SetPointerPos

SetPointerPos

This subroutine sets the position of the mouse pointer, relative to either the screen or a
specified contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetPointerPos(Context, Contact, HPos, VPos, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of a contact. If this parameter is zero the position is set to the
screen.

HPos The new horizontal position for the pointer in coordinate units.

VPos The new vertical position for the pointer in coordinate units.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments SetPointerPos sets the position of the pointer's hot-spot. If a contact is specified, the
position is set relative to the top left-hand corner of the contact's client area (position 0,0);
otherwise the position is set relative to the top left-hand corner of the screen.

The position specified is interpreted in accordance with the coordinate mode (text or
graphics) currently selected for the application context.

See Also GetPointerPos.

Subroutine Reference 6-215

SetSecondaryEventMask

SetSecondaryEventMask

This subroutine sets a secondary event mask for an application.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetSecondaryEventMask(Context, EventMask, Unmaskable, Alert, vErr)

Syntax Elements Context The handle of the application context.

EventMask The secondary event mask for the application. This must be a combination
of the event mask constants listed in Chapter 4.

Unmaskable This specifies whether messages which cannot be masked should be
allowed to reach the application. This must be one of the following values:

TRUE Allow non-maskable messages to reach the application.
FALSE Prevent non-maskable messages reaching the application.

Alert This parameter is reserved for future use – it must be set to FALSE.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The secondary event mask is described in Chapter 4.

See Also GetSecondaryEventMask, SetEventMask.

6-216 UIMS DATA/BASIC API, Reference Manual

SetSync

SetSync

This subroutine selects synchronous or asynchronous error response handling for UIMS
subroutine calls.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetSync(Context, Mode, vErr)

Syntax Elements Context The handle of the application context.

Note: In UIMS version 2.0 this parameter is reserved for future use –
any value will be ignored.

Mode The required error handling mode. This must be one of the following
values:

TRUE Synchronous.
FALSE Asynchronous.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Unless changed, UIMS handles errors asynchronously.

Synchronous and asynchronous error handling are described on page 6-3.

See Also GetMsg.

Subroutine Reference 6-217

SetTeFontSize

SetTeFontSize

This subroutine sets the point size for text displayed in the RealLink or currently active
'terminal emulation' (TE) window.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetTeFontSize(PointSize, Flags, vErr)

Syntax Elements PointSize The required point size. This should one of those which is available for use
in the RealLink or TE window – use GetTePointSizes to find out which
sizes are available. If a size that is not available is requested, an error is
returned.

Flags This parameter is reserved for future use – it must be set to zero.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The point size currently in use in the RealLink or TE window can be obtained by calling
GetTeFontSize.

See Also GetTeFontSize, GetTeFontSizes.

6-218 UIMS DATA/BASIC API, Reference Manual

SetTeWindow

SetTeWindow

This subroutine changes the window that is used as the application's 'terminal emulation'
(TE) window – that is the window in which output printed to the terminal (using PRINT,
CRT, etc.) will be displayed.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetTeWindow(Context, Window, Controls, Err)

Syntax Elements Context The handle of the application context. If this parameter is zero, the current
RealLink context is assumed.

Window The handle of the App or Child window that is to act as the TE window. If
this parameter is zero, the terminal emulation function is returned to the
RealLink window.

Controls Determines whether or not the RealLink window is to remain visible, and
the characteristics of the new TE window. This must be a combination of
the following values:

TE.SHOWWIN The RealLink window is to remain visible. If
not set, the RealLink window will be hidden.

TE.NOAUTOSCROLL Disables the horizontal scroll bar. If not set, a
horizontal scroll bar will appear should the TE
window become too narrow to display 80
characters at the current point size.

TE.NOAUTORESIZE Disables the RealLink Auto Resize Window
feature (if selected for the RealLink window).

TE.NOAUTOFONT Disables the RealLink Auto Select Font feature
(if selected for the RealLink window).

TE.10PTFONT Changes the text point size to 10pt. If not set,
the point size currently selected for the
RealLink window will be retained.

The following pre-defined style is also available:

UIMS.NONE None of the above.

In general, when setting a new TE window the RealLink window should be
hidden (do not select the TE.SHOWWIN option). When the terminal

Subroutine Reference 6-219

SetTeWindow

emulation function is returned to the RealLink window (Window = 0),
TE.SHOWWIN must be selected.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments The screen coordinate mode (see SetCoordMode) must be set before calling
SetTeWindow. Changing the coordinate mode once the TE window is set is not
recommended, but should this be done, SetTeWindow must be called again, even if the TE
window is to remain unchanged.

When a UIMS application is run, the RealLink window will remain visible unless hidden by
SetTeWindow. Applications which do not change the TE window can hide the RealLink
window by calling SetTeWindow with the Context and Window parameters both set to zero,
and TE.SHOWWIN not selected. For example:

CALL SetTeWindow(0, 0, UIMS.NONE, ERR)

Before leaving the application and returning to RealLink, the RealLink window must be re-
displayed as follows:

CALL SetTeWindow(0, 0, TE.SHOWWIN, ERR)

See Also GetTeFontSize, GetTeFontSizes, SetTeFontSize.

6-220 UIMS DATA/BASIC API, Reference Manual

SetUimsMode

SetUimsMode

This subroutine restores message processing after calls to:

• NewView subroutines.

• the Execute, SendKeys, or SystemCommand subroutines.

• DATA/BASIC commands that send data to or receive data from the terminal.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetUimsMode

Comments This subroutine must be used before calling GetMsg, if any subroutines or commands of the
types listed above have been used. If this is not done, Keyboard messages will be ignored.

Subroutine Reference 6-221

SetUpdate

SetUpdate

This subroutine allows you to specify when a contact will be redrawn if a change occurs.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SetUpdate(Context, Contact, Update, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact whose update mode you wish to change.

Update The update mode you require for the contact; this must be one of the
following values:

UIMS.IMMEDIATE Redraw immediately.
UIMS.NONE Don't redraw; wait for a Draw command.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Some operations (for example, Move, Resize) occur immediately whatever the update
mode.

The update mode of Menu and MenuItem contacts is always the same as the MenuBar to
which they are attached and cannot be changed independently. If Contact is the handle of a
Menu or a MenuItem, SetUpdate returns an error.

See Also GetUpdate, Draw.

6-222 UIMS DATA/BASIC API, Reference Manual

SignOff

SignOff

This subroutine signs off a UIMS session.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SignOff(Context, vErr)

Syntax Elements Context The handle of the AppContext object that is to be signed off.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments When this subroutine is called, UIMS destroys any remaining objects created during the
session. The session is then terminated.

See Also SignOn.

Subroutine Reference 6-223

SignOn

SignOn

This subroutine signs on a UIMS session and creates an AppContext object for the new
session.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SignOn(AppName, vContext)

Syntax Elements AppName A string containing the name of the application.

vContext A variable in which to return the handle of the newly-created AppContext
object. If the sign on was not successful, the handle returned will be zero.

Comments The subroutine must be called before any of the other UIMS subroutines can be used.

See Also SignOff.

6-224 UIMS DATA/BASIC API, Reference Manual

SoundSpeaker

SoundSpeaker

This subroutine sounds the loudspeaker in the PC.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL SoundSpeaker(Pitch, Duration, Repeat, Delay, vErr)

Syntax Elements Pitch The frequency in Hertz of the required sound.

Duration The duration of the sound in milliseconds.

Repeat The number of repeats required.

Delay The time delay between repeats.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Subroutine Reference 6-225

StartImage

StartImage

Loads the image manager, thus permitting the use of the DisplayImage and EraseImage
subroutines.

Syntax INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL StartImage(vImageMan)

Syntax Elements vImageMan A variable in which to return the handle of the image manager. If the
Image Manager could not be loaded for any reason, zero is returned.

Comments The StopImage routine must be called to unload the image manager before closing the
application.

See Also DisplayImage, EraseImage, StopImage.

6-226 UIMS DATA/BASIC API, Reference Manual

StopImage

StopImage

Unloads the image manager. Once this has been done, the DisplayImage and EraseImage
subroutines can no longer be used.

Syntax INCLUDE UIMSCOMMON FROM UIMS-TOOLS
INCLUDE UIMS-DDE FROM UIMS-TOOLS

CALL StopImage(ImageMan, vErr)

Syntax Elements ImageMan The handle of the image manager, returned by the StartImage subroutine.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. A return value of zero indicates successful completion.
Otherwise, one of the error codes listed in Appendix D is returned.

Note: StopImage errors are always returned synchronously.
UIMS.MSG.NOTIFY messages are not generated (see page 6-3).

Comments This routine must be called before closing the application.

See Also DisplayImage, EraseImage, StartImage.

Subroutine Reference 6-227

SystemCommand

SystemCommand

Runs a DOS system command on the PC.

Syntax INCLUDE RFWDEFS FROM UIMS-TOOLS

CALL SystemCommand(CommandCode, Options, ParamString, vResponse, vErr)

Syntax Elements CommandCode A value representing the required system command.

Options A value which specifies command options.

ParamString A string containing command parameters. This can contain any
combination of characters, except for "%" which must be used to enclose
substitutable parameters (see below).

vResponse A variable in which to return the result of the command.

vErr A variable in which to return the completion status of the subroutine. In
most cases this will be ERR.SYS.SUCCESS for success, ERR.SYS.FAIL
for failure, or ERR.SYS.INVCOMMAND for an invalid command (but
see below).

Commands The following commands are available:

SYS.CREATEDIR Creates a directory on the PC.

Options None. Must be set to zero.

ParamString The name for the new directory. This must not contain ambiguous
characters (* or ?).

vResponse Returned set to a null string.

vErr Returned set to ERR.SYS.SUCCESS for success or ERR.SYS.FAIL for
failure.

SYS.DELDIR Deletes a directory on the PC.

Options None. Must be set to zero.

6-228 UIMS DATA/BASIC API, Reference Manual

SystemCommand

ParamString The name of the directory to delete. This must not contain ambiguous
characters (* or ?).

vResponse Returned set to a null string.

vErr Returned set to ERR.SYS.SUCCESS for success or ERR.SYS.FAIL for
failure.

Notes:

1. A directory can only be deleted if it is empty.

2. It is not possible to delete the root directory or the current working directory.

SYS.DELFILE Deletes a file on the PC.

Options None. Must be set to zero.

ParamString The name of the file to delete. This must not contain ambiguous characters
(* or ?).

vResponse Returned set to a null string.

vErr Returned set to ERR.SYS.SUCCESS for success or ERR.SYS.FAIL for
failure.

SYS.DOSEXEC Starts a DOS or Windows program on the PC.

Options None. Must be set to zero.

ParamString A string containing the name of the program, plus any optional parameters
and/or switches. The program name can be that of a PIF file. If the
program name does not contain a directory path, UIMS will search the PC
for the executable file as follows:

1. The currently selected directory on the PC.

2. The directories listed in the PATH environment variable.

vResponse Returned set to a null string.

Subroutine Reference 6-229

SystemCommand

vErr Returned set to ERR.SYS.SUCCESS for success or to one of the Execute
error codes listed in Appendix D.

SYS.EXIST Checks whether a file or directory exists on the PC and, if required, returns information
about that file or directory.

Options The information required. This must be a combination of the following
values:

EXIST.TIMESTAMP
Return the date and time that the file or directory was last
modified.

EXIST.SIZE Return the size of the file in bytes.
EXIST.HEADER

Return the first line of the file.
RFW.NONE Check whether the file or directory exists, but do not

return any information about it.

ParamString The name of a file or directory. This must not contain ambiguous
characters (* or ?).

vResponse A dynamic array containing the result of the command. Each attribute
contains the result of one of the selected options, in the order
EXIST.TIMESTAMP, EXIST.SIZE, EXIST.HEADER. Only the results
of selected options are returned.

The results of the different options are as follows:

EXIST.TIMESTAMP
A string in the format:

weekday month day hour : min : sec year X'0D' X'0A'.

For example: Wed Jan 02 04:26:55 1992

EXIST.SIZE
The size of the file in bytes.

EXIST.HEADER
A string containing up to 36 characters from the beginning of the file.
Only printable characters [CHAR(32) to CHAR(127)] are returned –

6-230 UIMS DATA/BASIC API, Reference Manual

SystemCommand

the string ends at the first non-printable character or after 36 characters,
whichever is the sooner.

If no options are selected, a null string is returned.

vErr Returned set to one of the following values:

ERR.SYS.SUCCESS
A file with the specified name exists.

ERR.SYS.DIRECTORY
A directory with the specified name exists.

ERR.SYS.NOFILE
The file or directory does not exist.

SYS.LOOKUP Performs any substitutions in the ParamString parameter and returns the result.

Options None. Must be set to zero.

ParamString A command parameter string containing substitutable parameters (see
below).

vResponse Returned containing the string which results from replacing any
substitutable parameters in ParamString.

vErr Always returned set to ERR.SYS.SUCCESS.

Substitutable
Parameters

The ParamString parameter can contain substitutable parameters enclosed in percent signs.
The following substitutions are available:

%EnvVar%
where EnvVar is the name of a DOS environment variable.

The percent signs and the text in between are replaced by the contents of the specified
variable. For example, %path% is replaced by the DOS executable search path.

%Section!Key!Default!IniFile%
where

Section is the name of a section in the INI file specified in IniFile (see below).
The default value is "reallink".

Key is a the name specific parameter within that section.

Subroutine Reference 6-231

SystemCommand

Default is the string to be returned if the specified key cannot be found. The
default is a null string.

IniFile is the name of a Windows INI file. The default value is "RFW.INI".

For example, %!rfwdir!!% is replaced by the name of the RealLink for Windows
program directory, and %intl!iCountry!!WIN.INI% is replaced by the current
Windows country code.

%%
is replaced by a single percent sign.

Notes:

1. After substitution, any pairs of backslashes ("\\") are converted to single
backslashes ("\").

2. Substitutable parameters that do not conform to the above rules are removed from
ParamString.

Examples CALL SystemCommand(SYS.CREATEDIR, 0, "c:\uimstemp", RESPONSE, ERR)

Creates a directory called c:\uimstemp on the PC.

CALL SystemCommand(SYS.DELDIR, 0, "c:\uimstemp", RESPONSE, ERR)

Deletes the directory called c:\uimstemp from the PC.

CALL SystemCommand(SYS.DELFILE, ...
 0, ...
 "c:\uimstemp\myfile.txt", ...
 RESPONSE, ...
 ERR)

Deletes the file called c:\uimstemp\myfile.txt from the PC.

CALL SystemCommand(SYS.EXIST, ...
 EXIST.SIZE + EXIST.HEADER, ...
 "%!resourcepath!!%\generic.res", ...
 RESPONSE, ...
 ERR)

6-232 UIMS DATA/BASIC API, Reference Manual

SystemCommand

Checks whether the file generic.res exists on the PC in RealLink's resource directory
and, if it does, returns a dynamic array containing its size (in the first attribute) and its first
36 bytes (in the second attribute).

CALL SystemCommand(SYS.LOOKUP, 0, "%!helppath!!%", RESPONSE, ERR)

Returns the directory on the PC that contains the RealLink help files.

See Also Execute.

Subroutine Reference 6-233

TextEditorGetContent, TextEditorGetTextLen

TextEditorGetContent, TextEditorGetTextLen

These subroutines return the different attributes of a TextEditor contact.

• TextEditorGetContent returns the text from the text editor.

• TextEditorGetTextLen returns the length of the text.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL TextEditorGetContent(Context, Editor, vText, vErr)

CALL TextEditorGetTextLen(Context, Editor, vLength)

Syntax Elements Context The handle of the application context.

Editor The handle of the TextEditor contact.

vText A variable in which to return the contents of the text editor. The text will
be returned as a null terminated string with attribute marks separating the
individual lines.

vLength A variable in which to return the number of text characters. Note that the
attribute marks separating multiple lines are included in the count.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also TextEditorSetContent.

6-234 UIMS DATA/BASIC API, Reference Manual

TextEditorSetContent

TextEditorSetContent

This subroutine assigns a text string to a TextEditor contact for editing or display.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL TextEditorSetContent(Context, Editor, Text, vErr)

Syntax Elements Context The handle of the application context.

Editor Handle of the TextEditor object

Text The text string to be displayed for editing in the text editor window. The
text can consist of one or more lines, with multiple lines separated by
attribute marks.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateTextEditor, TextEditorGetContent.

Subroutine Reference 6-235

TextGetContent

TextGetContent

This subroutine returns the text displayed in a Text contact.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL TextGetContent(Context, Text, vString, vErr)

Syntax Elements Context The handle of the application context.

Text The handle of the Text contact.

vString A variable in which to return the text string.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also TextSetContent.

6-236 UIMS DATA/BASIC API, Reference Manual

TextSetContent, TextSetJustification

TextSetContent, TextSetJustification

These subroutines change the different attributes of a Text contact.

• TextSetContent changes the text displayed.

• TextSetJustification changes the alignment of the text.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL TextSetContent(Context, Text, String, vErr)

CALL TextSetJustification(Context, Text, Just, vErr)

Syntax Elements Context The handle of the application context.

Text The handle of the Text contact.

String The new text string.

Just The alignment of the text. This must be one of the following values:

UIMS.JUST.LEFT Left aligned.
UIMS.JUST.RIGHT Right aligned.
UIMS.JUST.BOTH Both left and right aligned (justified).
UIMS.JUST.CENTRED Centred.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateText, TextGetContent.

Subroutine Reference 6-237

TitledButtonSetStyle, TitledButtonSetTitle

TitledButtonSetStyle, TitledButtonSetTitle

These subroutines change the different attributes of a TitledButton contact.

• TitledButtonSetStyle changes the style of the button.

• TitledButtonSetTitle changes the title displayed inside the button.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL TitledButtonSetStyle(Context, Button, Style, vErr)

CALL TitledButtonSetTitle(Context, Button, Title, vErr)

Syntax Elements Context The handle of the application context.

Button The handle of the TitledButton contact.

Style The required style for the button. This must be one of the following values:

UIMS.NONE Normal (thin) border.
UIMS.TB.THICK Thickened border - indicates a default button.

Title The new button title.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also CreateTitledButton.

6-238 UIMS DATA/BASIC API, Reference Manual

TypeFaceGetName - TypeFaceGetPointSizes

TypeFaceGetName – TypeFaceGetPointSizes

These subroutines return different attributes of a TypeFace object.

• TypeFaceGetName returns the name of the typeface.

• TypeFaceGetPointSize returns one of the available point sizes.

• TypeFaceGetPointSizes returns a list of the available point sizes for the typeface.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL TypeFaceGetName(Context, TypeFace, vFontName, vErr)

CALL TypeFaceGetPointSize(Context, TypeFace, Index, vPointSize)

CALL TypeFaceGetPointSizes(Context, TypeFace, vaPointsizes, vErr)

Syntax Elements Context The handle of the application context.

TypeFace The handle of a TypeFace object.

vFontName A variable in which to return the name of the typeface.

Index The position in the list of the point size you require. The list is numbered
starting from 0.

vPointSize A variable in which to return the point size. If zero is returned, there is no
point size at the requested position.

vaPointsizes A variable in which to return a list of numbers representing the available
point sizes. The list is returned as a dynamic array with one point size in
each attribute.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also GetTypeFace, GetTypeFaces.

Subroutine Reference 6-239

UngrabPointer

UngrabPointer

This subroutine releases the pointer following a call to GrabPointer. See page 6-152 for
details.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL UngrabPointer(vErr)

Syntax Elements vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

See Also GrabPointer.

6-240 UIMS DATA/BASIC API, Reference Manual

UnMap

UnMap

This subroutine makes a contact unmappable; that is, it removes the contact from the screen.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL UnMap(Context, Contact, vErr)

Syntax Elements Context The handle of the application context.

Contact The handle of the contact you wish to remove from the screen.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments Making a contact unmappable also removes its children from the screen. The mapped state
of the children, however, remains unchanged.

See Also Map, SetMapped, GetState.

Subroutine Reference 6-241

WaitPointerOff

WaitPointerOff

This subroutine changes the mouse pointer from the wait pointer to the pointer type
specified by the Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL WaitPointerOff(Context, vErr)

Syntax Elements Context The handle of the AppContext.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments This subroutine should be called following a call to WaitPointerOn, to restore the pointer
type to its previous state.

Note that WaitPointerOff also performs an UngrabPointer.

See Also WaitPointerOn, PointerSetType, UngrabPointer.

6-242 UIMS DATA/BASIC API, Reference Manual

WaitPointerOn

WaitPointerOn

This subroutine changes the mouse pointer to a wait pointer (normally an hourglass),
overriding the pointer type specified by the Pointer object.

Syntax INCLUDE UIMSDEFS FROM UIMS-TOOLS
INCLUDE UIMSCOMMON FROM UIMS-TOOLS

CALL WaitPointerOn(Context, vErr)

Syntax Elements Context The handle of the AppContext.

vErr This is a variable that must be supplied to return the completion status of
the subroutine. It will contain a UIMS error code if an error has occurred,
or will be zero for successful completion.

Comments This subroutine should be called to change the appearance of the mouse pointer while
lengthy processing is in progress. When this processing is complete, the WaitPointerOff
subroutine should be called to restore the pointer type to that specified by the Pointer
object.

Note that WaitPointerOn also performs a GrabPointer.

See Also WaitPointerOff, PointerSetType, GrabPointer.

Subroutine Reference 6-243

Resource Compiler

Chapter 7
Resource Compiler

This chapter describes how to use the UIMS Resource Compiler to create

resource files on the PC.

7-1

Introduction

Introduction

The UIMS resource compiler allows the graphical objects used by an application to be
defined on the PC rather than the host. This has two advantages:

• Processing is shared between the PC and the host, reducing communication between the
two systems and therefore improving performance.

• Resources created in this way are loaded only when the application is run, allowing a
programmer to produce different versions of an application, without having to change the
host program.

Resources are defined in a source file (resource script) on the PC; this can be produced by
any ASCII text editor (Windows Notepad, for example). The completed source must then be
compiled, using the UIMS Resource Compiler, RLRC. A host UIMS application loads the
compiled resources by calling the LoadAppRes subroutine.

7-2 UIMS DATA/BASIC API, Reference Manual

Object Definitions

Object Definitions

Each object must be defined by a statement with the form

OBJECTTYPE = Ident
{

ATTRIBUTE = Value
[ATTRIBUTE = Value
…]

}

where:

OBJECTTYPE is the type of object being defined: SCROLLBAR, EDITBOX, etc. - see
the list of object types in Appendix C. This must be in upper case.

Ident is an integer value by which the object will be identified. Once the object
has been loaded into the UIMS application, this value will be used as a
handle.

If the value 0 is used, UIMS will assign a handle to the object. Note,
however, that there is no way of discovering the value of this handle, and
that this should therefore only be done for objects to which the application
will never require access. Typical examples are separators in a menu and
static text in a dialog box.

Note: UIMS reserves handles 8000 to 9999 for its own use – these must
not be used by the application.

ATTRIBUTE is an attribute of the object: SIZE, ENABLED, etc. This must be in upper
case.

Value is the value to be assigned to this attribute. This can be any of the
following:

• A numeric value; for example: 10.

• A valid Resource Compiler keyword for the specified attribute; for
example: TRUE.

Resource Compiler 7-3

Object Definitions

• A literal string, enclosed in single quotes; for example: 'Title'. If the
string itself contains a single quote, this must be preceded by another
single quote; for example: 'Type ' 'c' ' to continue'.

• A list of similar or dissimilar settings (depending on the attribute)
separated by commas; for example: CHILDREN 200, 221, 234, 378

Example The following example defines a titled button called Cancel. The button is 60 coordinate
units wide by 18 high and is positioned 80 coordinate units across and 24 down relative to its
parent. The title displayed in the button is Cancel.

TITLEDBUTTON = 102
{

SIZE = 60, 18
POSITION = 80, 24
TITLE = 'Cancel'

}

Any number of attributes may be specified between the braces. Note however, that the
braces must always be present.

Nested Definitions Object definitions can be nested in order to associate children with their parents. For
example, a dialog box might be designed with three option buttons and two titled buttons. In
order to automatically associate the buttons with the window, a definition of the following
form would be needed:

DIALOGBOX = 200
{

TITLE = 'Choose a sentence'
POSITION = 200,300
SIZE = 266,62
STYLE = CLOSABLE,MOVABLE

OPTIONBUTTON = 201
{

TITLE = 'Hello'
POSITION = 10,6
SIZE = 68,16

}

7-4 UIMS DATA/BASIC API, Reference Manual

Object Definitions

OPTIONBUTTON = 202
{

TITLE = 'Good-bye'
POSITION = 10,23
SIZE = 96,16

}

OPTIONBUTTON = 203
{

TITLE = 'Good morning'
POSITION = 10,40
SIZE = 133,16

}

TITLEDBUTTON = 221
{

TITLE = 'OK'
POSITION = 167,7
SIZE = 88,21

}

TITLEDBUTTON = 222
{

TITLE = 'CANCEL'
POSITION = 167,31
SIZE = 88,21

}
}

The same result can be achieved by defining the option and titled buttons separately and
then specifying the CHILDREN attribute for the dialog window. Note, however, that if
nesting is not used, the children must be defined before their associated parent object, in
order that the parent can be created successfully. If this is not done, the resource compilation
will fail. The following example shows this alternative method:

OPTIONBUTTON = 201
{

TITLE = 'Hello'
POSITION = 10,6
SIZE = 68,16

}

Resource Compiler 7-5

Object Definitions

OPTIONBUTTON = 202
{

TITLE = 'Good-bye'
POSITION = 10,23
SIZE = 96,16

}

OPTIONBUTTON = 203
{

TITLE = 'Good morning'
POSITION = 10,40
SIZE = 133,16

}

TITLEDBUTTON = 221
{

TITLE = 'OK'
POSITION = 167,7
SIZE = 88,21

}

TITLEDBUTTON = 222
{

TITLE = 'CANCEL'
POSITION = 167,31
SIZE = 88,21

}

DIALOGBOX = 200
{

TITLE = 'Choose a sentence'
POSITION = 200,300
SIZE = 266,62
STYLE = CLOSABLE,MOVABLE
CHILDREN = 201,202,203,221,222

}

Menus Additional features are available when defining MenuBar and Menu contacts.

MenuItem Definition Within the definition of a menu bar or menu, simple menu items can be automatically
defined as part of the CHILDREN attribute. There is no need for separate menu item
definitions, either nested within or separate from the definition of the parent.

7-6 UIMS DATA/BASIC API, Reference Manual

Object Definitions

To create menu items in this way, the CHILDREN attribute must be defined as a list of
menu item titles, each followed by an equals sign and an identifying number. Each menu
item title must be enclosed in single quotes. For example, in a MENU called Edit, there
might be items such as Cut, Paste, Delete. These would be coded as follows:

MENU = 250
{

TITLE = 'Edit'
CHILDREN = 'Cut'=251,'Paste'=252,'Delete'=253

}

The Resource Compiler will create a MenuItem contact for each entry in the list of
children. The example given above would be equivalent to:

MENUITEM = 251
{

TITLE = 'Cut'
}

MENUITEM = 252
{

TITLE = 'Paste'
}

MENUITEM = 253
{

TITLE = 'Delete'
}

MENU = 250
{

CHILDREN = 251,252,253
}

MenuItem Attributes When a menu item is defined in a CHILDREN statement as described above, certain
attributes can be set by including additional characters in the title text.

& (ampersand) Designates the following character as a selector key. When the menu item
is displayed, the character concerned is shown underlined and the user can
select the item by pressing that key.

Notes:

1. You can also use an ampersand in this way when defining Menu
contacts.

Resource Compiler 7-7

Object Definitions

2. The user must press the ALT key to activate the menu bar before
using a selector key to select an item from the menu bar.

! (exclamation mark)
This causes the menu item to be checked – equivalent to setting the
CHECKMARK attribute to TRUE. For example:

MENU = 75
{

TITLE = 'View'
CHILDREN = 'Normal!'=80,'Draft'=81,'Page'=82

}

defines a View menu with Normal, Draft and Page items. The Normal item
is checked.

+ (plus sign) Causes the menu item to be disabled (greyed) – equivalent to setting the
ENABLED attribute to FALSE. For example:

MENU = Edit
{

TITLE = 'Edit'
CHILDREN = 'Cut+','Paste','Delete+'

}

defines an Edit menu with Cut, Paste and Delete items. The Cut and Delete
items are disabled.

Note that these substitutions only apply to the CHILDREN attribute of MenuBar and Menu
definitions.

Separator Items If a single hyphen is used as the title of a menu item, a separator item is created. This
appears as a continuous line across the width of its parent menu. A separator item cannot be
selected by the user and should be used to visually group related menu items. Note that a
separator item cannot be attached to a menu bar.

Screen
Coordinates

Most types of contact have Size and Position attributes which can be set in the resource
script. When the resources are loaded into an application, these attributes are interpreted in
accordance with the coordinate mode (text or graphics) set for the application:

• If text mode is selected, the coordinates are interpreted as character positions, based on
the average size of the upper case characters in the default system font.

7-8 UIMS DATA/BASIC API, Reference Manual

Object Definitions

• If graphics mode is selected, the coordinates are interpreted as pixel positions on an
arbitrary screen 1000 pixels wide by 1000 pixels high. When the resources are loaded
into an application, the coordinates are scaled to fit within the actual screen.

For example, if an application is displayed on a VGA screen (640 pixels wide by 480
pixels high), and the resource file specifies position 500, 500 for a contact, when the
resource is loaded into the application, the horizontal coordinate will be converted to
position 320 and the vertical coordinate to position 240 – that is half-way across and
half-way down the screen. Similarly, if the size of a contact is specified as 250 pixels
wide by 750 high, when loaded and displayed, it will always be one quarter of the screen
wide and three quarters of the screen high, whatever the screen resolution.

Resource File
Control

The first line of the source file may contain the version number in the form.

VERSION = string

This will be written after the first record of the output file. If it is not the first line of the
source file, it will be ignored.

Comments Comments may be included in the source code at any point except within literal strings or in
the middle of a word. A comment can be indicated in three ways:

• It can be placed between the characters '/*' and '*/', as in the C programming language.
For example:

/* These two lines
 form a single comment */

• It can be placed on a separate line which starts with an asterisk (*), as in DATA/BASIC.
For example:

* This is a comment

• It can be placed on the end of a line, if preceded by the characters ';*', as in
DATA/BASIC. For example:

TITLEDBUTTON = 102 ;* Cancel button

White-space
Characters

Spaces, newline characters and tab characters may be used freely within the source code to
aid readability. They will be ignored by the compiler. Note, however, that a single line
cannot be longer than 200 characters.

Resource Compiler 7-9

Pre-processor Commands

Pre-processor Commands

The UIMS Resource Compiler includes a pre-processor which manipulates the text of a
source file as the first phase of compilation. Pre-processor commands are typically used to
make resource files easy to change and easy to compile for different execution
environments. Commands in the source file tell the pre-processor to perform specific
actions. For example, the pre-processor can replace identifiers in the text, insert the contents
of other files into the source file, or suppress some definitions by removing sections of the
text.

The pre-processor recognises the following commands:

#DEFINE
EQUATE
EQU
#INCLUDE
#IFDEF
#ELSE
#ENDIF

A pre-processor command will only be recognised if it occurs at the beginning of a line - if
the command is preceded by spaces or tabs, it will be ignored. Note that, with the exception
of the EQUATE and EQU commands which must always be in upper case, these commands
can be in upper case, as shown, or in lower case, as used in C language program and header
files.

Constant
Definitions

Constants may be used to associate meaningful identifiers (tokens) with values and
keywords. A token can be redefined as many times as required within the source code, the
new value applying only to code which follows the re-definition.

A constant can be defined in three ways:

#DEFINE token[value]

EQUATE token TO value

EQU token TO value

7-10 UIMS DATA/BASIC API, Reference Manual

Pre-processor Commands

where

#DEFINE, EQUATE and EQU
are the three forms of the pre-processor command. Note that in the case of
#DEFINE, this can be in upper case as shown, or in lower case as used in
C language program and header files. The EQUATE and EQU keywords
must be in upper case.

token is an identifier which is used later in the source code.

TO is an additional keyword required by the EQUATE and EQU forms of the
command. This must be in upper case.

value is the value which will replace the identifier wherever it is found in the
source code following this definition. It may be a number, a text string
(enclosed in single quotes) or another identifier.

If no substitution is required (for instance, when defining tokens to be used by the #IFDEF
statement – see below), the #DEFINE form can be used with no value parameter.

Example #DEFINE HEAD 'Heading to be used for all windows'

#DEFINE Win1 100
#DEFINE Win2 150

APPWINDOW = Win1
{

TITLE = HEAD
 .
 .
 .

}

APPWINDOW = Win2
{

TITLE = HEAD
 .
 .
 .

}

In this example, the pre-processor will replace every occurrence of the token HEAD with the
text 'Heading to be used for all windows', and the contact names Win1 and Win2 with the
identifiers 100 and 150 respectively.

Resource Compiler 7-11

Pre-processor Commands

File Inclusion The #INCLUDE command inserts the contents of a named file into the source code. You can
create files which contain constant definitions and then use #INCLUDE commands to add
these definitions to any source file.

#INCLUDE tells the pre-processor to treat the contents of the named file as if it appeared in
the source at the point where the command appears. The included text can also contain pre-
processor commands and these are carried out before processing of the original source file
resumes. An included file can itself contain #INCLUDE commands, up to a maximum of 5
levels.

The syntax of the #INCLUDE command is as follows:

#INCLUDE [drive:][path] filename

where

#INCLUDE is the pre-processor command.

[drive:][path] filename
specifies the file to be included.

Conditional
Compilation

If required, the same source file can be used to generate different versions of an application.
Directives are provided which allow you to suppress compilation of parts of a source file by
testing a constant expression or identifier to determine which text blocks should be removed
from the source file during pre-processing.

The syntax of these directives is as follows:

#IFDEF ident
source code block

[#ELSE
source code block]

#ENDIF

where ident is an identifier which might have been previously defined by a constant-
definition pre-processor command. If ident has been defined, regardless of its value, the
source code lines immediately following the #IFDEF statement are included in the source to
be compiled and those following the #ELSE statement (if any) are removed. If ident has not
been defined, the source code following the #ELSE statement (if any) is included instead.

Source code blocks can include both object definitions and pre-processor directives.

7-12 UIMS DATA/BASIC API, Reference Manual

Pre-processor Commands

#IFDEF statements can be nested within each other, up to a maximum of 9 levels. An
#ELSE statement is always assumed to be associated with the most recent open #IFDEF
statement. Consider the following,

#IFDEF Ident1
Block1

#IFDEF Ident2
Block2

#ELSE
Block3

#ENDIF
#ENDIF

The blocks which are compiled depend on the states of Ident1 and Ident2 as follows:

Ident1 Ident2 Blocks compiled

None

Defined Block1, Block3

Defined None

Defined Defined Block1, Block2

However, in

#IFDEF Ident1
Block1

#IFDEF Ident2
Block2

#ENDIF
#ELSE

Block3
#ENDIF

the following applies:

Resource Compiler 7-13

Pre-processor Commands

Ident1 Ident2 Blocks compiled

Block3

Defined Block1

Defined Block3

Defined Defined Block1, Block2

7-14 UIMS DATA/BASIC API, Reference Manual

Compiling a Resource Script

Compiling a Resource Script

A resource script source file is compiled by using the RLRC command. This has the
following syntax:

RLRC [filename]

If you omit the filename parameter, you will be prompted for the name of your source file:

Resource script filename (.ucl) :

The source-file name supplied as input to the RLRC command must have the suffix '.UCL'
(UIMS Command Language). Files included with the #INCLUDE pre-processor command
can have the suffixes '.UCL' or '.H'.

The compilation process creates an output file with the same name as the source file, but
with the suffix '.RES'.

Note: The resource compiler can be run from any directory, but must have access to the
files RC.DAT and RC.MSG. These files must be in the directory specified by the
DOS environment variable URCPATH. If this variable is not set, the files are
assumed to be in the current directory.

If you intend to run RLRC from directories other that containing RC.DAT and
RC.MSG, you should set URCPATH to the correct directory. For example.

SET URCPATH=C:\RFW

tells the resource compiler that RC.DAT and RC.MSG are in the directory C:\RFW.

If required, URCPATH can be set at boot time by including the above command in
the AUTOEXEC.BAT file.

Errors When a compilation error occurs, the action taken depends on whether it has been detected
by the pre-processor or the compiler.

• If the error occurs during pre-processing, an error message is displayed and the line
containing the error is ignored.

• If the error occurs during compilation, the number of the line in which the error occurred
is displayed, together with an error message. All subsequent source lines are ignored, up

Resource Compiler 7-15

Compiling a Resource Script

to the closing brace of the current outer nested level. Compilation then continues from
this point.

Note that the line numbers reported are not those in the original source file, but in a
temporary file, RCTEMP, created in the current directory. If errors occur, this file should
be examined to determine their location.

Example The following example illustrates how errors are reported.

The file RESOURCE.UCL, shown below, contains two errors:

� This line contains an incomplete pre-processor command.

� A mandatory OptionButton attribute – SIZE – has been commented out.

EQU Dialog TO 200
EQU Hi TO 201
EQU Bye TO 202
EQU Morning TO 203

EQU OK �

EQU Cancel TO 222

OPTIONBUTTON = Hi
{

TITLE = 'Hello'

* SIZE = 68,16 �

POSITION = 10,6
}

OPTIONBUTTON = Bye
{

TITLE = 'Good-bye'
POSITION = 10,23
SIZE = 96,16

}

OPTIONBUTTON = Morning
{

TITLE = 'Good morning'
POSITION = 10,40
SIZE = 133,16

}

7-16 UIMS DATA/BASIC API, Reference Manual

Compiling a Resource Script

TITLEDBUTTON = OK
{

TITLE = 'OK'
POSITION = 167,7
SIZE = 88,21

}

TITLEDBUTTON = Cancel
{

TITLE = 'CANCEL'
POSITION = 167,31
SIZE = 88,21

}

DIALOGBOX = Dialog
{

TITLE = 'Choose a sentence'
POSITION = 200,300
SIZE = 266,62
STYLE = CLOSABLE,MOVABLE
CHILDREN = Hi, Bye, Morning, OK, Cancel

}

When this file is compiled, the following error messages are produced:

RLRC RESOURCE.UCL
RealLink for Windows Resource Compiler - Version 1.0 Rev A
(c) Copyright 1992
McDonnell Douglas Information Systems Limited

- EQUATE or EQU without corresponding TO
Line 7 - All the parameters required for create have not been set up
Line 16 - compiling continued
Line 23 - Syntax error
Line 30 - compiling continued
Line 43 - Syntax error

- EQUATE or EQU without corresponding TO
This is a pre-processor error caused by error �; the offending line has been
ignored. To locate this error, examine the original source file.

Line 7 This error was caused by error �, but was not detected until the closing
brace. The line number refers to a line in RCTEMP, which must be
examined to locate the error.

Line 16 This is the line at which compilation continued after the error in line 7.

Resource Compiler 7-17

Compiling a Resource Script

Line 23 This syntax error is caused by error �. Because of this error, the OK token
in the TitledButton definition could not be changed to an identifier value.

Line 30 This is the line at which compilation continued after the error in line 23.

Line 43 This syntax error is also caused by error �. Once again, the OK token
could not be changed to an identifier value, resulting in an invalid
CHILDREN statement.

The errors in lines 7, 23 and 43 can best be found by examining RCTEMP. The temporary
file produced by the above example is shown below. The lines reported by the compilation
process are marked with the number of the source error concerned. The lines in the example
are numbered for clarity; in a real RCTEMP file they would not be numbered, though your
text editor may be able to display line numbers.

1
2 OPTIONBUTTON = 201
3 {
4 TITLE = 'Hello'
5 * SIZE = 68,16
6 POSITION = 10,6

7 } �

8
9 OPTIONBUTTON = 202
10 {
11 TITLE = 'Good-bye'
12 POSITION = 10,23
13 SIZE = 96,16
14 }
15

16 OPTIONBUTTON = 203 �

17 {
18 TITLE = 'Good morning'
19 POSITION = 10,40
20 SIZE = 133,16
21 }
22

23 TITLEDBUTTON = OK �

24 {
25 TITLE = 'OK'
26 POSITION = 167,7
27 SIZE = 88,21
28 }
29

7-18 UIMS DATA/BASIC API, Reference Manual

Compiling a Resource Script

30 TITLEDBUTTON = 222 �

31 {
32 TITLE = 'CANCEL'
33 POSITION = 167,31
34 SIZE = 88,21
35 }
36
37 DIALOGBOX = 200
38 {
39 TITLE = 'Choose a sentence'
40 POSITION = 200,300
41 SIZE = 266,62
42 STYLE = CLOSABLE,MOVABLE

43 CHILDREN = 201, 202, 203, OK �, 222
44 }

Resource Compiler 7-19

Using the Compiled Resources

Using the Compiled Resources

The compiled resource file must be held on the PC, in the directory specified by the
resourcepath variable in the [reallink] section of the RFW.INI file; this file is held in
the Windows program directory on the PC.

An application loads the resources by calling the LoadAppRes subroutine, specifying the
handle of the application context, the name of the file containing the resources and a
variable in which to return an error. For example, the following loads the resources
contained in the file RESOURCE.RES:

CALL LoadAppRes(CONTEXT, "RESOURCE.RES", ERR)

Once loaded, the objects and contacts concerned can be used in the same way as those
created with the create subroutines.

7-20 UIMS DATA/BASIC API, Reference Manual

The Help System

Chapter 8
The Help System

This chapter describes how to provide the user of a UIMS application with

on-line help.

8-1

Introduction

Introduction

A UIMS application provides help to the user by means of an AppHelp object. This consists
of a compiled Windows Help Resource file on the PC that contains named sections of help
text. The help text is displayed in the Windows help window, which provides search and
browse facilities. In addition, sections of the help file can be linked by means of 'hot words'
embedded in the text, which act as links to other sections of the file; if the user clicks on a
hot word, the associated section of the help file is displayed. The help file can also contain
an index, containing hot words which give access to every section of the file.

There are two ways in which the user can be given help:

• The application can display a specified section of the Help file by calling the AppHelp
subroutine. The programmer must provide the user with access to the help file by, for
instance, creating a Help menu.

• A help key can be defined which, when pressed, will display the section of the help file
appropriate to the context. The programmer must link contacts displayed by the
application to the corresponding sections of the help file.

8-2 UIMS DATA/BASIC API, Reference Manual

Creating the Help File

The process of creating a Help Resource file is described in detail in the Tools manual
supplied with the Windows Software Development Kit. The following summarises the
requirements:

• One or more Help Topic files, saved in Microsoft Rich Text Format (RTF). Word
processors that support RTF include Microsoft Word for Windows and Word for DOS.

• A Help Project file, which specifies the files which will be compiled into the application
help file and various compile options. Note that UIMS can only access a section of the
help file by means of a Help Index number; this means that the Help Project file must
contain a [Map] section to assign a Help Index number (the Microsoft term is context
number) to each section of the help file.

• The Help Project file and Help Topic files must be compiled using the Windows help
compiler (HC), to form a Help Resource file for the application.

• The Help Resource file must be loaded onto the PC. It is recommended that it be placed
in the directory specified in the RFW.INI file, or in a sub-directory of this directory.

Other development tools are available which include the Windows Help compiler and a
description of how to create the various Help files. In particular, we recommend Microsoft
Visual Basic 3.0 for Windows, Professional Edition.

The Help System 8-3

Making Help Available to the User

The first step in making help available to the user is to load a Help Resource file by calling
the SetHelpFile subroutine. This has the following syntax:

SetHelpFile(Context, Filename, vErr)

where

Context is the handle of the application's context.

Filename is a string containing the name of the help file. If no path name is
specified, the file is loaded from the disk and directory specified in the
RFW.INI file on the PC.

vErr is a variable in which to return the completion status of the subroutine.

Once the Help Resource file has been loaded, there are two ways in which the application
programmer can make help available to the user:

• By associating contacts with sections of the Help file. The user can then press the Help
key to display context-sensitive help – that is, the section of the Help file which is
appropriate to the command they are using.

• By providing the user with some other means of access to the Help system – the most
usual is a Help menu, though some applications also provide Help buttons which display
context-sensitive help.

Context-sensitive
Help

Context-sensitive help using the Help key is provided as follows:

• The Help Project file must include an entry in its [Map] section, assigning a Help Index
(context number) to the appropriate section of the Help file.

• The contact concerned must be associated with this section of the Help file by calling the
SetHelpIndex subroutine. This has the following syntax:

SetHelpIndex(Context, Contact, Section, vErr)

where

Context is the handle of the application's context.

8-4 UIMS DATA/BASIC API, Reference Manual

Contact is the handle of the contact for which help is being provided.

Section is the help index (context number) of the section of the help file that is
to be associated with this contact.

vErr is a variable in which to return the completion status of the subroutine.

The Help key is normally function key F1, but can be changed if required by calling the
SetHelpKey subroutine.

Creating a Help
Menu

A help menu is created in the same way as any other menu: that is either by separately
creating a menu and its menu items using CreatePullDownMenu and CreateMenuItem, or
by using MakePullDownMenu to create the complete menu in one operation.

Within the application's message loop, UIMS.MSG.MENUITEM messages which originate
in the help menu must initiate a call to the AppHelp subroutine. This has the following
syntax:

AppHelp(Context, Section, vErr)

where

Context The handle of the AppContext.

Section The help index of the required section of the help file. If this parameter is
0, the index will be displayed.

vErr This is a variable in which to return the completion status of the
subroutine.

For example, if the Help file for your application contains a topic that describes how the
keyboard is used, you could place a 'Keyboard' item on your Help menu. When the user
selects that item, your application would call AppHelp, requesting the keyboard topic as
shown below:

CASE CONTACT = HELP.KEYBOARD
CALL AppHelp(CONTEXT, HELP.KEYBD.ID, ERR)

The AppHelp subroutine must also be used if you provide help buttons for the user.

Help Subroutines The following lists all the help subroutines that are available:

SetHelpFile Attaches a help file to the application.

The Help System 8-5

GetHelpFile Returns the name of the application's help file.

AppHelp Displays a specified section of the help file.

SetHelpIndex Associates a contact with a section of the help file.

GetHelpIndex Returns the name of the help file section which is associated with a
specified contact.

SetHelpKey Assigns a key as the help accelerator.

GetHelpKey Returns the key currently assigned as the help accelerator.

These are described in detail in Chapter 6.

8-6 UIMS DATA/BASIC API, Reference Manual

Key Aliases

Appendix A
Key Aliases

This Appendix lists the symbolic constant names, decimal values and

descriptive information for the UIMS key aliases. The codes are listed in

numeric order.

A-1

Key Aliases

Table A-1. Key Aliases

UIMS Key Alias Value Keycap Description

UIK.0 48 0

UIK.1 49 1

UIK.2 50 2

UIK.3 51 3

UIK.4 52 4

UIK.5 53 5

UIK.6 54 6

UIK.7 55 7

UIK.8 56 8

UIK.9 57 9

UIK.A 65 A

UIK.AMPERSAND 38 & Ampersand key
UIK.APOSTROPHE 39 ' Apostrophe (single quote) key
UIK.ASTERISK 42 * Asterisk key
UIK.AT 64 @ At key

UIK.B 66 B

UIK.BACKSLASH 92 \ Backslash key
UIK.BACKSPACE 8 ← Backspace key
UIK.BAR 124 | Vertical bar key
UIK.BRACELEFT 123 { Open curly bracket key
UIK.BRACERIGHT 125 } Close curly bracket key
UIK.BRACKETLEFT 91 [Open square bracket key
UIK.BRACKETRIGHT 93] Close square bracket key

UIK.C 67 C

UIK.CANCEL 272
UIK.CIRCUMFLEX 94 ^ Circumflex (caret) key
UIK.CLEAR 12
UIK.COLON 58 : Colon key
UIK.COMMA 44 , Comma key

UIK.D 68 D

UIK.DELETE 127 DELETE

UIK.DOLLAR 36 $ Dollar key

(continued)

A-2 UIMS DATA/BASIC API, Reference Manual

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.DOWN 257 ↓ Down cursor key

UIK.E 69 E

UIK.END 264 END

UIK.EQUAL 61 = Equals key
UIK.ESCAPE 27 ESC

UIK.EXCLAM 33 ! Exclamation mark key

UIK.F 70 F

UIK.F1 512 F1 Function key
UIK.F2 513 F2 Function key
UIK.F3 514 F3 Function key
UIK.F4 515 F4 Function key
UIK.F5 516 F5 Function key
UIK.F6 517 F6 Function key
UIK.F7 518 F7 Function key
UIK.F8 519 F8 Function key
UIK.F9 520 F9 Function key
UIK.F10 521 F10 Function key
UIK.F11 522 F11 Function key
UIK.F12 523 F12 Function key
UIK.F13 524 F13 Function key
UIK.F14 525 F14 Function key
UIK.F15 526 F15 Function key

UIK.G 71 G

UIK.GRAVE 96 ` Open single quote key
UIK.GREATER 62 > Greater than key

UIK.H 72 H

UIK.HELP 265
UIK.HOME 263 HOME

UIK.I 73 I

UIK.INSERT 262 INSERT

(continued)

Key Aliases A-3

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.J 74 J

UIK.K 75 K

UIK.L 76 L

UIK.LEFT 258 ← Left cursor key
UIK.LESS 60 < Less than key

UIK.M 77 M

UIK.MINUS 45 - Minus key
UIK.MULTI00 128
UIK.MULTI01 129
UIK.MULTI02 130
UIK.MULTI03 131
UIK.MULTI04 132
UIK.MULTI05 133
UIK.MULTI06 134
UIK.MULTI07 135
UIK.MULTI08 136
UIK.MULTI09 137
UIK.MULTI0A 138
UIK.MULTI0B 139
UIK.MULTI0C 140
UIK.MULTI0D 141
UIK.MULTI0E 142
UIK.MULTI0F 143
UIK.MULTI10 144
UIK.MULTI10 144
UIK.MULTI11 145 ‘ open single quote
UIK.MULTI12 146 ’ close single quote
UIK.MULTI13 147
UIK.MULTI14 148
UIK.MULTI15 149
UIK.MULTI16 150
UIK.MULTI17 151
UIK.MULTI18 152

(continued)

A-4 UIMS DATA/BASIC API, Reference Manual

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.MULTI19 153
UIK.MULTI1A 154
UIK.MULTI1B 155
UIK.MULTI1C 156
UIK.MULTI1D 157
UIK.MULTI1E 158
UIK.MULTI1F 159
UIK.MULTI20 160 space
UIK.MULTI21 161 ¡
UIK.MULTI22 162 ¢
UIK.MULTI23 163 £
UIK.MULTI24 164 ¤
UIK.MULTI25 165 ¥
UIK.MULTI26 166 ¦
UIK.MULTI27 167 §
UIK.MULTI28 168 ¨
UIK.MULTI29 169 ©
UIK.MULTI2A 170 ª
UIK.MULTI2B 171 «
UIK.MULTI2C 172 ¬
UIK.MULTI2D 173 -
UIK.MULTI2E 174 ®
UIK.MULTI2F 175 ¯
UIK.MULTI30 176 °
UIK.MULTI31 177 ±
UIK.MULTI32 178 ²
UIK.MULTI33 179 ³
UIK.MULTI34 180 ´
UIK.MULTI35 181 µ
UIK.MULTI36 182 ¶
UIK.MULTI37 183 ·
UIK.MULTI38 184 ¸
UIK.MULTI39 185 ¹
UIK.MULTI3A 186 º
UIK.MULTI3B 187 »
UIK.MULTI3C 188 ¼

(continued)

Key Aliases A-5

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.MULTI3D 189 ½
UIK.MULTI3E 190 ¾
UIK.MULTI3F 191 ¿
UIK.MULTI40 192 À
UIK.MULTI41 193 Á
UIK.MULTI42 194 Â
UIK.MULTI43 195 Ã
UIK.MULTI44 196 Ä
UIK.MULTI45 197 Å
UIK.MULTI46 198 Æ
UIK.MULTI47 199 Ç
UIK.MULTI48 200 È
UIK.MULTI49 201 É
UIK.MULTI4A 202 Ê
UIK.MULTI4B 203 Ë
UIK.MULTI4C 204 Ì
UIK.MULTI4D 205 Í
UIK.MULTI4E 206 Î
UIK.MULTI4F 207 Ï
UIK.MULTI50 208 Ð
UIK.MULTI51 209 Ñ
UIK.MULTI52 210 Ò
UIK.MULTI53 211 Ó
UIK.MULTI54 212 Ô
UIK.MULTI55 213 Õ
UIK.MULTI56 214 Ö
UIK.MULTI57 215 ×
UIK.MULTI58 216 Ø
UIK.MULTI59 217 Ù
UIK.MULTI5A 218 Ú
UIK.MULTI5B 219 Û
UIK.MULTI5C 220 Ü
UIK.MULTI5D 221 Ý
UIK.MULTI5E 222 Þ
UIK.MULTI5F 223 ß
UIK.MULTI60 224 à

(continued)

A-6 UIMS DATA/BASIC API, Reference Manual

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.MULTI61 225 á
UIK.MULTI62 226 â
UIK.MULTI63 227 ã
UIK.MULTI64 228 ä
UIK.MULTI65 229 å
UIK.MULTI66 230 æ
UIK.MULTI67 231 ç
UIK.MULTI68 232 è
UIK.MULTI69 233 é
UIK.MULTI6A 234 ê
UIK.MULTI6B 235 ë
UIK.MULTI6C 236 ì
UIK.MULTI6D 237 í
UIK.MULTI6E 238 î
UIK.MULTI6F 239 ï
UIK.MULTI70 240 ð
UIK.MULTI71 241 ñ
UIK.MULTI72 242 ò
UIK.MULTI73 243 ó
UIK.MULTI74 244 ô
UIK.MULTI75 245 õ
UIK.MULTI76 246 ö
UIK.MULTI77 247 ÷
UIK.MULTI78 248 ø
UIK.MULTI79 249 ù
UIK.MULTI7A 250 ú
UIK.MULTI7B 251 û
UIK.MULTI7C 252 ü
UIK.MULTI7D 253 ý
UIK.MULTI7E 254 þ
UIK.MULTI7F 255 ÿ

UIK.N 78 N

UIK.NEXT 261 PAGE DOWN

UIK.NUMBERSIGN 35 # Number-sign key

(continued)

Key Aliases A-7

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.O 79 O

UIK.P 80 P

UIK.PARENLEFT 40 (Open parenthesis key
UIK.PARENRIGHT 41) Close parenthesis key
UIK.PERCENT 37 % Percent key
UIK.PERIOD 46 . Period key
UIK.PLUS 43 + Plus key
UIK.PRIOR 260 PAGE UP

UIK.Q 81 Q

UIK.QUESTION 63 ? Question mark key
UIK.QUOTEDBL 34 " Double quote key

UIK.R 82 R

UIK.RETURN 13 ↵ Return key
UIK.RIGHT 259 → Right cursor key

UIK.S 83 S

UIK.SCRLOCK 266 SCROLL LOCK

UIK.SEMICOLON 59 ; Semicolon key
UIK.SLASH 47 / Slash key
UIK.SPACE 32 SPACEBAR

UIK.T 84 T

UIK.TAB 9 TAB

UIK.TILDE 126 ~ Tilde key

UIK.U 85 U

UIK.UNDERSCORE 95 _ Underscore key
UIK.UNKNOWN 65535 Unrecognised key.
UIK.UP 256 ↑ Up cursor key

UIK.V 86 V

UIK.W 87 W

(continued)

A-8 UIMS DATA/BASIC API, Reference Manual

Key Aliases

Table A-1. Key Aliases (continued)

UIMS Key Alias Value Keycap Description

UIK.X 88 X

UIK.Y 89 Y

UIK.Z 90 Z

Note: The codes UIK.MULTI00 to UIK.MULTI7F are for keys specific to particular
national keyboards. The keycap given for each is the standard ANSI code for the
character concerned. On keyboards that do not include these keys, the codes can be
generated by holding down the ALT key while entering a zero followed by the ANSI
code on the numeric keypad. The code will be generated when the ALT key is
released. Note, however, that with the NUMLOCK off, keypress messages will be
generated as each key is operated.

Table A-2. Key Modifiers

UIMS Key Modifier Value Keycap Description

UIK.CAPSLOCK 65536 CAPS LOCK

UIK.NUMLOCK 131072 NUM LOCK

UIK.SHIFT 262144 ñ SHIFT

UIK.CTRL 524288 CTRL

UIK.ALT 1048576 ALT

UIK.NUMPAD 2097152 The key operated is on the numeric
keypad.

Key Aliases A-9

Key Aliases

Table A-3. Pointer Modifiers

UIMS Pointer Modifier Value Description

UIK.P.DRAG 2147483648 The pointer is being dragged (drag start).
UIK.P.BUTTON1 1073741824 Pointer button 1 is pressed.
UIK.P.BUTTON2 536870912 Pointer button 2 is pressed.
UIK.P.BUTTON3 268435456 Pointer button 3 is pressed.
UIK.P.BUTTON4 134217728 Pointer button 4 is pressed.
UIK.P.BUTTON5 67108864 Pointer button 5 is pressed.

Note: The pointer button combinations which produce these values are hardware
dependent.

A-10 UIMS DATA/BASIC API, Reference Manual

Screen Colours

Appendix B
Screen Colours

This appendix describes how screen colours are specified in a UIMS

application and lists the pre-defined logical colours. It also explains the

effects of the different graphics drawing modes.

B-1

Screen Colours

Specifying Colours

In a UIMS application, screen colours can be specified in two ways:

• The absolute colour can be specified as a particular combination of red, green and blue
elements. The intensity of each of the these elements is in turn specified as an integer
between 0 and 255, where 0 is zero intensity and 255 full brightness. The required
combination is then created as follows:

65536*red + 256*green + blue

The intensities of the red, green and blue elements of a colour can be obtained as
follows:

blue = MOD(colour, 256)
green = MOD(INT(colour/256), 256)
red = MOD(INT(colour/65536), 256)

• Any one of the sixteen pre-defined logical colours listed in Table B-1 can be used.

Table B-1. Logical Colour Bindings

Logical Colour Red Green Blue

UIMS.BLACK 0 0 0

UIMS.BLUE 0 0 255

UIMS.BROWN 128 128 0

UIMS.CYAN 0 255 255

UIMS.DARKBLUE 0 0 128

UIMS.DARKCYAN 0 128 128

UIMS.DARKGREEN 0 128 0

UIMS.DARKGREY 85 85 85

UIMS.DARKMAGENTA 128 0 128

UIMS.DARKRED 128 0 0

UIMS.GREEN 0 255 0

(continued)

B-2 UIMS DATA/BASIC API, Reference Manual

Screen Colours

Table B-1 Logical Colour Bindings (continued)

Logical Colour Red Green Blue

UIMS.GREY 170 170 170

UIMS.MAGENTA 255 0 255

UIMS.RED 255 0 0

UIMS.WHITE 255 255 255

UIMS.YELLOW 255 255 0

Screen Colours B-3

Screen Colours

Graphics Drawing Modes

The appearance of lines drawn on the display is determined not only by the colour of the
Pen object, but also by the graphics drawing mode selected in the Drawrule. Eight modes
are available:

UIMS.DRAW.CLEAR
For each pixel, a new colour is produced by inverting the pen colour bit-
wise, and then performing a bit-wise AND between the result and the
current colour of the destination pixel.

UIMS.DRAW.COPY
Lines are drawn in the pen colour, regardless of the colour of the
destination.

UIMS.DRAW.NOTCLEAR
For each pixel, a new colour is produced by performing a bit-wise AND
between the pen colour and the current colour of the destination pixel.

UIMS.DRAW.NOTCOPY
Lines are drawn in the bit-wise inverse of the pen colour, regardless of the
colour of the destination.

UIMS.DRAW.NOTOR
For each pixel, a new colour is produced by inverting the pen colour, and
then performing a bit-wise OR between the result and the current colour of
the destination pixel.

UIMS.DRAW.NOTXOR
For each pixel, a new colour is produced by performing a bit-wise
exclusive-OR between the pen colour and the current colour of the
destination pixel, and then inverting the result.

UIMS.DRAW.OR
For each pixel, a new colour is produced by performing a bit-wise OR
between the pen colour and the current colour of the destination pixel.

UIMS.DRAW.XOR
For each pixel, a new colour is produced by performing a bit-wise
exclusive-OR between the pen colour and the current colour of the
destination pixel.

B-4 UIMS DATA/BASIC API, Reference Manual

Screen Colours

The different drawing modes are best understood by considering what happens when two
lines, one black and one white, are drawn across a screen which is part white and part black.
The results are summarised below:

Screen Pen CLEAR COPY NOTCLEAR NOTCOPY NOTOR NOTXOR OR XOR

White White White White White Black Black Black White White

White Black White Black White White White White Black Black

Black White Black White White Black Black White Black Black

Black Black White Black Black White Black Black Black White

This is, of course, the simplest case. In reality, even on a monochrome display UIMS can
produce various shades of grey by dithering black and white pixels. Since the logical
operations are carried out on a pixel-by-pixel basis, the result of drawing a pure white or
black line on a grey background will in most cases be a different shade of grey

The situation becomes even more complex on a colour display, since each of the three
primary colours (red, green and blue) is affected separately by the logical operation. This
can be illustrated by considering the UIMS.DRAW.NOTCOPY drawing mode, which
simply inverts the pen colour and replaces the screen colour with the result.

Pen Colour Result

Black White

Blue Yellow

Green Magenta

Cyan Red

Red Cyan

Magenta Green

Yellow Blue

White Black

The following tables show the resulting colours for all combinations of red, green and blue
in the Pen colour and destination pixel, for the remaining drawing modes.

Screen Colours B-5

Screen Colours

Table B-2. UIMS.DRAW.CLEAR Colour Combinations

Pen Colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black White Yellow Magenta Red Cyan Green Blue Black

Blue White White Magenta Magenta Cyan Cyan Blue Blue

Green White Yellow White Yellow Cyan Green Cyan Green

Cyan White White White White Cyan Cyan Cyan Cyan

Red White Yellow Magenta Red White Yellow Magenta Red

Magenta White White Magenta Magenta White White Magenta Magenta

Yellow White Yellow White Yellow White Yellow White Yellow

White White White White White White White White White

Table B-3. UIMS.DRAW.NOTCLEAR Colour Combinations

Pen Colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Blue Green Cyan Red Magenta Yellow White

Blue Blue Blue Cyan Cyan Magenta Magenta White White

Green Green Cyan Green Cyan Yellow White Yellow White

Cyan Cyan Cyan Cyan Cyan White White White White

Red Red Magenta Yellow White Red Magenta Yellow White

Magenta Magenta Magenta White White Magenta Magenta White White

Yellow Yellow White Yellow White Yellow White Yellow White

White White White White White White White White White

B-6 UIMS DATA/BASIC API, Reference Manual

Screen Colours

Table B-4. UIMS.DRAW.NOTOR Colour Combinations

Pen Colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Black Black Black Black Black Black Black

Blue Blue Black Blue Black Blue Black Blue Black

Green Green Green Black Black Green Green Black Black

Cyan Cyan Green Blue Black Cyan Green Blue Black

Red Red Red Red Red Black Black Black Black

Magenta Magenta Red Magenta Red Blue Black Blue Black

Yellow Yellow Yellow Red Red Green Green Black Black

White White Yellow Magenta Red Cyan Green Blue Black

Table B-5. UIMS.DRAW.NOTXOR Colour Combinations

Pen Colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Blue Green Cyan Red Magenta Yellow White

Blue Blue Black Cyan Green Magenta Red White Yellow

Green Green Cyan Black Blue Yellow White Red Magenta

Cyan Cyan Green Blue Black White Yellow Magenta Red

Red Red Magenta Yellow White Black Blue Green Cyan

Magenta Magenta Red White Yellow Blue Black Cyan Green

Yellow Yellow White Red Magenta Green Cyan Black Blue

White White Yellow Magenta Red Cyan Green Blue Black

Screen Colours B-7

Screen Colours

Table B-6. UIMS.DRAW.OR Colour Combinations

Pen Colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black Black Black Black Black Black Black Black Black

Blue Black Blue Black Blue Black Blue Black Blue

Green Black Black Green Green Black Black Green Green

Cyan Black Blue Green Cyan Black Blue Green Cyan

Red Black Black Black Black Red Red Red Red

Magenta Black Blue Black Blue Red Magenta Red Magenta

Yellow Black Black Green Green Red Red Yellow Yellow

White Black Blue Green Cyan Red Magenta Yellow White

Table B-7. UIMS.DRAW.XOR Colour Combinations

Pen Colour

Destination Black Blue Green Cyan Red Magenta Yellow White

Black White Yellow Magenta Red Cyan Green Blue Black

Blue Yellow White Red Magenta Green Cyan Black Blue

Green Magenta Red White Yellow Blue Black Cyan Green

Cyan Red Magenta Yellow White Black Blue Green Cyan

Red Cyan Green Blue Black White Yellow Magenta Red

Magenta Green Cyan Black Blue Yellow White Red Magenta

Yellow Blue Black Cyan Green Magenta Red White Yellow

White Black Blue Green Cyan Red Magenta Yellow White

B-8 UIMS DATA/BASIC API, Reference Manual

Resource Compiler Keywords

Appendix C
Resource Compiler Keywords

This appendix lists the object type and attribute keywords recognised by

the resource compiler and gives details of mandatory attributes and valid

attribute settings. It also lists the error messages that might be displayed by

the resource compiler and suggests probable causes for these.

C-1

Object Types

Object Types

APPWINDOW BRUSH CHECKBUTTON

CHILDWINDOW DIALOGBOX DRAWRULE

EDITBOX EXCLUSIVEGRP INCLUSIVEGRP

LINE LISTBOX MENU

MENUBAR MENUITEM OPTIONBUTTON

PEN POINTER RECTANGLE

SCROLLBAR TEXT TEXTEDITOR

TITLEDBUTTON

C-2 UIMS DATA/BASIC API, Reference Manual

Object Attributes

Object Attributes

This section lists the attributes which are valid for each type of object.

Note: Attributes in bold are mandatory; they must be included every time an object of the
specified type is defined.

APPWINDOW BDRSTYLE Border style. See page C-11 for valid settings.
CHILDREN List of Object IDs.
CLIPREGION List of four coordinate values (top, left, bottom, right).
CURSORPOS Cursor position - list of two coordinate values (horizontal,

vertical).
CURSORSTATE List of two settings (Visible, Type).

Visible - one of:
TRUE
FALSE

Type - one of:
OUTLINE
BLOCK
UNDERLINE
BAR

DRAWRULE Object ID.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
MENUBAR Object ID.
POINTER Object ID.
POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
SIZING One of: MAX

MIN
NORMAL

STYLE List of settings, each one of:
CLOSABLE
DIALOG
HSCROLL
ICONISABLE
MOVABLE
NONE
SIZABLE

Resource Compiler Keywords C-3

Object Attributes

TEXT
VSCROLL

TITLE String.
UPDATE See page C-11 for valid settings.

BRUSH FOREGROUND See page C-11 for valid settings.
STYLE One of: HOLLOW

SOLID

CHECKBUTTON ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SELECTED One of: TRUE

FALSE
SIZE List of two coordinate values (width, height).
TITLE String.
TOGGLE One of: TRUE

FALSE
UPDATE See page C-11 for valid settings.

CHILDWINDOW BDRSTYLE Border style. See page C-11 for valid settings.
CHILDREN List of Object IDs.
CLIPREGION List of four coordinate values (top, left, bottom, right).
CURSORPOS Cursor position - list of two coordinate values (horizontal,

vertical).
CURSORSTATE List of two settings (Visible, Type).

Visible - one of:
TRUE
FALSE

Type - one of:
OUTLINE
BLOCK
UNDERLINE
BAR

DRAWRULE Object ID.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POINTER Object ID.
POSITION List of two coordinate values (horizontal, vertical).

C-4 UIMS DATA/BASIC API, Reference Manual

Object Attributes

SIZE List of two coordinate values (width, height).
STYLE List of settings, each one of:

DIALOG
HSCROLL
NONE
TEXT
VSCROLL

UPDATE See page C-11 for valid settings.

DIALOGBOX CHILDREN List of Object IDs.
DEFBUTTON Object ID.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
MODE One of: APP

LESS
SYS

POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
STYLE List of settings, each one of:

CLOSABLE
MOVABLE
NONE

TITLE String.
UPDATE See page C-11 for valid settings.

DRAWRULE BACKGROUND See page C-11 for valid settings.
BRUSH Object ID.
DRAWMODE One of: CLEAR

COPY
NOTCLEAR
NOTCOPY
NOTOR
NOTXOR
OR
XOR

FOREGROUND See page C-11 for valid settings.
PEN Object ID.
TEXTMODE One of: OPAQUE

HOLLOW

Resource Compiler Keywords C-5

Object Attributes

EDITBOX. CONTENT String.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
MASK This parameter is for future use. It must be set to a null string

when defining an EditBox, but its value will be ignored when the
object is created.

POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
STYLE List of settings, each one of:

BORDER
NONE

UPDATE See page C-11 for valid settings.

EXCLUSIVEGRP BORDER Border style. See page C-11 for valid settings.
CHILDREN List of Object IDs.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
TITLE String.
UPDATE See page C-11 for valid settings.

INCLUSIVEGRP BORDER Border style. See page C-11 for valid settings.
CHILDREN List of Object IDs.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
TITLE String.
UPDATE See page C-11 for valid settings.

LINE DRAWRULE Object ID.
ENABLED See page C-11 for valid settings.
ENDPOS List of two coordinate values (horizontal, vertical). Note that the

position must be specified relative to STARTPOS.

C-6 UIMS DATA/BASIC API, Reference Manual

Object Attributes

ENDSTYLE This parameter is for future use. It must be set to DEFAULT
when defining a Line contact, but its value will be ignored when
the object is created.

MAPPED See page C-11 for valid settings.
STARTPOS List of two coordinate values (horizontal, vertical).
UPDATE See page C-11 for valid settings.

LISTBOX CONTENT List of strings.
CONTROLS One of: NONE

MULTISELECT
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
LINK Object ID.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SELECTION Value.
SIZE List of two coordinate values (width, height).
UPDATE See page C-11 for valid settings.

MENU CHILDREN List of Object IDs.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
TITLE String.

MENUBAR CHILDREN List of Object IDs.
EVENTMASK List of settings. See page C-11 for valid settings.
MAPPED See page C-11 for valid settings.
UPDATE See page C-11 for valid settings.

MENUITEM AUTOCHECK One of: TRUE
FALSE

CHECKMARK One of: TRUE
FALSE

ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
TITLE String.

Resource Compiler Keywords C-7

Object Attributes

OPTIONBUTTON ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SELECTED One of: TRUE

FALSE
SIZE List of two coordinate values (width, height).
TITLE String.
TOGGLE One of: TRUE

FALSE
UPDATE See page C-11 for valid settings.

PEN FOREGROUND See page C-11 for valid settings.
STYLE One of: HOLLOW

SOLID
WIDTH Number of pixels.

POINTER TYPE One of: ARROW
CROSS
CUSTOM
IBEAM
PLUS
WAIT

RECTANGLE DRAWRULE Object ID.
ENABLED See page C-11 for valid settings.
ENDPOS List of two coordinate values (horizontal, vertical). Note that the

position must be specified relative to STARTPOS.
MAPPED See page C-11 for valid settings.
STARTPOS List of two coordinate values (horizontal, vertical).
STYLE One of: NONE

BORDER
UPDATE See page C-11 for valid settings.

SCROLLBAR ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
INC List of two increment values (page, line).
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
RANGE List of two coordinate values (minimum, maximum).
SIZE List of two coordinate values (width, height).

C-8 UIMS DATA/BASIC API, Reference Manual

Object Attributes

THUMBPOS Value.
TRACK One of: TRUE

FALSE
TYPE One of: HORZ

VERT
UPDATE See page C-11 for valid settings.

TEXT CONTENT String.
DRAWRULE Object ID.
ENABLED See page C-11 for valid settings.
HELPINDEX Help identifier value.
JUSTIFICATION One of: BOTH

CENTRED
LEFT
RIGHT

MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
UPDATE See page C-11 for valid settings.

TEXTEDITOR CONTENT String.
ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).
STYLE List of settings, each one of:

NONE
AUTOSCROLL
BORDER
HSCROLLBAR
READONLY
VSCROLLBAR

UPDATE See page C-11 for valid settings.

TITLEDBUTTON ENABLED See page C-11 for valid settings.
EVENTMASK List of settings. See page C-11 for valid settings.
HELPINDEX Help identifier value.
MAPPED See page C-11 for valid settings.
POSITION List of two coordinate values (horizontal, vertical).
SIZE List of two coordinate values (width, height).

Resource Compiler Keywords C-9

Object Attributes

STYLE List of settings, each one of:
BORDER
NONE
THICK
TRANS

TITLE String.
UPDATE See page C-11 for valid settings.

C-10 UIMS DATA/BASIC API, Reference Manual

Common Object Attributes

Common Object Attributes

This section lists attributes which are common to a number objects and contacts, or which
have a large number of possible settings.

Border Styles One of: NONE
BORDER

ENABLED One of: TRUE
FALSE

EVENTMASK List of: BUTTONPRESS CLICK CLOSE
DBLCLICK DRAG ENTER
EXIT HSCROLL IDLE
KEYPRESS KILL LBOXDESELECT
LBOXSELECT LEAVE MENUITEM
MOTION MOVE NEWVIEW
NOTIFY PRESS RELEASE
SCROLL SELECT SIZE
TIMER UPDATE VSCROLL

MAPPED Whether or not the contact is to be visible on the screen. One of:
TRUE
FALSE

UPDATE Update mode. One of:
NONE
IMMEDIATE

Colours One of: BLACK
CYAN
DARKGREEN
DARKRED
MAGENTA
YELLOW

BLUE
DARKBLUE
DARKGREY
GREEN
RED

BROWN
DARKCYAN
DARKMAGENTA
GREY
WHITE

Note: In a Resource Script you can only specify logical colours - you cannot define
colours as combinations of red, green and blue.

Virtual Keys One of: 0
3

1
4

2
5

6 7 8
9 A AMPERSAND

Resource Compiler Keywords C-11

Common Object Attributes

APOSTROPHE ASTERISK AT
B BACKSLASH BACKSPACE
BAR BRACELEFT BRACERIGHT
BRACKETLEFT BRACKETRIGHT C
CIRCUMFLEX CLEAR COLON
COMMA D DELETE
DOLLAR DOWN E
END EQUAL ESCAPE
EXCLAM F F1
F10 F11 F12
F13 F14 F15
F2 F3 F4
F5 F6 F7
F8 F9 G
GREATER H HELP
HOME I INSERT
J K L
LEFT LESS M
MINUS MULTI00 MULTI01
MULTI02 MULTI03 MULTI04
MULTI05 MULTI06 MULTI07
MULTI08 MULTI09 MULTI0A
MULTI0B MULTI0C MULTI0D
MULTI0E MULTI0F MULTI10
MULTI11 MULTI12 MULTI13
MULTI14 MULTI15 MULTI16
MULTI17 MULTI18 MULTI19
MULTI1A MULTI1B MULTI1C
MULTI1D MULTI1E MULTI1F
MULTI20 MULTI21 MULTI22
MULTI23 MULTI24 MULTI25
MULTI26 MULTI27 MULTI28
MULTI29 MULTI2A MULTI2B
MULTI2C MULTI2D MULTI2E
MULTI2F MULTI30 MULTI31
MULTI32 MULTI33 MULTI34
MULTI35 MULTI36 MULTI37
MULTI38 MULTI39 MULTI3A
MULTI3B MULTI3C MULTI3D
MULTI3E MULTI3F MULTI40
MULTI41 MULTI42 MULTI43
MULTI44 MULTI45 MULTI46
MULTI47 MULTI48 MULTI49

C-12 UIMS DATA/BASIC API, Reference Manual

Common Object Attributes

MULTI4A MULTI4B MULTI4C
MULTI4D MULTI4E MULTI4F
MULTI50 MULTI51 MULTI52
MULTI53 MULTI54 MULTI55
MULTI56 MULTI57 MULTI58
MULTI59 MULTI5A MULTI5B
MULTI5C MULTI5D MULTI5E
MULTI5F MULTI60 MULTI61
MULTI62 MULTI63 MULTI64
MULTI65 MULTI66 MULTI67
MULTI68 MULTI69 MULTI6A
MULTI6B MULTI6C MULTI6D
MULTI6E MULTI6F MULTI70
MULTI71 MULTI72 MULTI73
MULTI74 MULTI75 MULTI76
MULTI77 MULTI78 MULTI79
MULTI7A MULTI7B MULTI7C
MULTI7D MULTI7E MULTI7F
N NEXT NUMBERSIGN
O P PARENLEFT
PARENRIGHT PERCENT PERIOD
PLUS PRIOR Q
QUOTERIGHT QUESTION QUOTEDBL
QUOTELEFT R RETURN
RIGHT S SEMICOLON
SLASH SPACE T
TAB TILDE U
UNDERSCORE UP V
W X Y
Z

Key Modifiers Any of the above virtual key codes can be combined with one or more of the following key
modifiers. The keys must be separated by plus (+) signs; for example: CTRL+F,
CTRL+SHIFT+F4.

CAPSLOCK
NUMLOCK
SHIFT
CTRL
ALT

Resource Compiler Keywords C-13

Errors

Errors

This section lists the error messages which might be displayed during pre-processing and
compilation. In each case, the meaning is explained and appropriate action suggested.

Command Errors These errors can occur when you type in the RLRC command, but before pre-processing or
compiling starts.

Can't open file filename

RLRC cannot find the resource file you have specified. Enter the correct file name.

Can't open message file - rc.msg

The resource compiler's message file cannot be found. Possible causes are:

• The resource compiler has been copied to a different directory. Copy the files
RC.MSG and RC.DAT as well as RLRC.EXE.

• A disk error has occurred. Use a disk maintenance tool to find and correct the
error and then re-install the resource compiler from your RealLink for Windows
disks.

Can't open temporary file - 'rctemp'

The resource compiler is unable to create the temporary, pre-processed file.
Possible causes are:

• The disk you are using is write protected. Enable writing to the disk or use a
different disk.

• The disk you are using is full. Use a different disk, or delete unwanted files to
create more space.

• The directory in which you are compiling contains too many files; this can
normally only occur in the root (\) directory. Change to a different directory.

Resource compiler needs '.ucl' or '.UCL' suffix

Your resource file has the wrong file extension. Rename your file.

C-14 UIMS DATA/BASIC API, Reference Manual

Errors

Resource script filename (.ucl) :

You have omitted the name of the file containing the resource script in your RLRC
command line. Enter the name of the required file.

Pre-processor
Errors

If an error occurs during pre-processing, an error message is displayed and the line
containing the error is ignored.

Can't open data file - rc.dat

The resource compiler's data file cannot be found. Possible causes are:

• The resource compiler has been copied to a different directory. Copy the files
RC.MSG and RC.DAT as well as RLRC.EXE.

• A disk error has occurred. Use a disk maintenance tool to find and correct the
error and then re-install the resource compiler from your RealLink for Windows
disks.

- #ELSE without corresponding #IFDEF

The #ELSE pre-processor command is only legal if preceded by an #IFDEF
command. Check the structure of your source file.

- #ENDIF without corresponding #IFDEF

The #ENDIF pre-processor command is only legal if preceded by an #IFDEF
command. Check the structure of your source file.

- EQUATE or EQU without corresponding TO

The TO keyword and/or the value has been omitted from an EQUATE or EQU pre-
processor statement. Check your resource script and any included files.

filename is not valid

The file specified in an #INCLUDE statement cannot be found. Check that the file
name is spelled correctly and that the file concerned is accessible to the resource
compiler.

Resource Compiler Keywords C-15

Errors

- Include file must have '.ucl', '.UCL', '.h' or '.H' suffix

You have specified a file to be included which has an illegal suffix. Check your
resource script and any included files.

Line number - More than 5 levels of #INCLUDE, ignored

Included files have been nested too deeply. Reorganise your source files.

- More than 9 levels of #IFDEF, ignored

An #IFDEF structure has been nested too deeply. Reorganise the structure of your
source file.

Compilation
Errors

If an error occurs during compilation, the number of the line in which the error occurred is
displayed, together with an error message. All subsequent source lines are ignored, up to the
closing brace of the current outer nested level. Compilation then continues from this point.

Note that the line numbers reported are not those in the original source file, but in a
temporary file, RCTEMP, created in the current directory.

Line number - All the parameters required for create have not been
set up

You have omitted one or more mandatory parameters in an object definition. Check
the RCTEMP temporary file and correct your resource script.

Line number - compiling continued

After an error, compiling has continued from the specified line. The lines between
that containing the error and this line have not been compiled.

Line number - Id given is within forbidden limits - ident

An identifier value you have chosen is one of those reserved for internal use by
UIMS. Use a value outside the range 8000 – 9999.

Line number - Invalid UIMS type parameter - value

An object attribute has been set to an invalid keyword value. Check the RCTEMP
temporary file and correct your resource script. Refer to pages C-3 to C-10 for
details of the valid attribute settings for each type of object.

C-16 UIMS DATA/BASIC API, Reference Manual

Errors

Line number - Object does not have property - attribute

An attribute set in an object definition is not valid for the object concerned. Check
the RCTEMP temporary file and correct your resource script. Refer to pages C-3 to
C-10 for details of the attributes which are valid for each type of object.

Note: This error can also occur if you have used a token as the identifier for a
nested object, but have not defined a value for the token.

Line number - Object not defined - name

An invalid object type has been specified. Check the RCTEMP temporary file and
correct your resource script. Refer to page C-2 for the list of valid object types.

Line number - Parameter should be a number - value

You have used a string or keyword value instead of a number when setting an
attribute. Check the RCTEMP temporary file and correct your resource script. Refer
to pages C-3 to C-10 for details of the valid attribute settings for each type of
object.

Line number - Parameter should be a string - value

You have used a number or keyword value instead of a string when setting an
attribute. Check the RCTEMP temporary file and correct your resource script. Refer
to pages C-3 to C-10 for details of the valid attribute settings for each type of
object.

Line number - Syntax error

Several conditions can cause this error. The most common cause is a mis-typed
resource compiler keyword. Check the RCTEMP temporary file and correct your
resource script.

Line number - Text string invalid in CHILDREN other than for
MENU,MENUBAR

An automatic MenuItem definition has been used in the CHILDREN attribute of
an object other than a Menu or MenuBar. Check the RCTEMP temporary file and
correct your resource script.

Resource Compiler Keywords C-17

Errors

Line number - Too few parameters

You have supplied too few parameters when setting the value of an attribute. Check
the RCTEMP temporary file and correct your resource script. Refer to pages C-3 to
C-10 for details of the valid attribute settings for each type of object.

Line number - Too many parameters

You have supplied too many parameters when setting the value of an attribute.
Check the RCTEMP temporary file and correct your resource script. Refer to pages
C-3 to C-10 for details of the valid attribute settings for each type of object.

Line number - Unpaired quote

In defining a string value, you have omitted the closing single quote. Check the
RCTEMP temporary file and correct your resource script.

C-18 UIMS DATA/BASIC API, Reference Manual

Error Codes

Appendix D
Error Codes

This appendix lists the completion/error codes which may be returned by

UIMS subroutines in the vErr parameter. The numeric value of each is

given, together with the message that is returned for that code by the

GetErrorText subroutine. Possible causes of each error are also

suggested.

The codes listed are defined in items in the file UIMS-TOOLS; the

appropriate items should be included in your application, depending on the

subroutines used – see Chapter 2 for details.

D-1

Error Codes

UIMS Error Codes

These codes are defined in the item UIMSDEFS in the file UIMS-TOOLS.

0 ERR.SUCCESS No Error

Subroutine completed successfully.

1 ERR.FAIL General failure

A subroutine has failed, but the reason is unknown. This is usually caused by insufficient
memory or Windows resources on the PC. Close down as many applications as possible and
try again. If this fails, try restarting Windows.

2 ERR.UNSUPPORTED Unsupported facility

You have attempted to set a common contact attribute that does not apply to the specified
contact. Refer to the contact description in Chapter 3.

3 ERR.INVHANDLE Invalid handle

The handle you have specified does not identify an object that currently exists. This might
be caused by the following:

• You have used an incorrect application context handle or have failed to sign on before
calling a subroutine that requires the handle of the application context.

• You have used an incorrect object handle, or that of an object that has not yet been
created, or has been destroyed.

5 ERR.MALLOC No memory allocated

UIMS was unable to allocate the memory required for an operation. This is usually caused
by insufficient memory or Windows resources on the PC. Close down as many applications
as possible and try again. If this fails, try restarting Windows.

8 ERR.INVCLASS Invalid class

You have called a subroutine that attaches one object to another (for example:
AppWinSetMenuBar, DrawruleSetFont or SetPointer) and have specified the wrong type
of object. For example, passing the handle of a Brush object to DrawruleSetPen instead of
that of a Pen will produce this error.

D-2 UIMS DATA/BASIC API, Reference Manual

Error Codes

10 ERR.NOITEM Couldn't find the item to delete

• You have called ListBoxRemoveContent or ListBoxRemoveContents and have
specified an item that does not exist.

• You have called ListBoxGetSelections, but none of the items in the list box are selected.

11 ERR.INVPARAM Invalid parameter

You have passed an invalid parameter to a subroutine.

12 ERR.ITEMEXISTS Item already exists

When calling AddChild (or AddChildren), the child contact is already a child of the
specified parent.

15 ERR.INVPARENT Parent is not of appropriate type

Some objects can only be made children of certain types of object. For example, a ListBox
cannot be made the child of an ExclusiveGroup. Refer to Chapter 3 for details of which
objects can have which types of parent.

16 ERR.DRAW.ORPHAN Cannot Draw an orphan

When calling the Draw subroutine, you have specified an object that does not have a parent.
Check that you have specified the correct object.

21 ERR.COORDMODE Invalid coordinate mode

You have used an invalid value when setting the co-ordinate mode. Refer to the description
of the SetCoordMode subroutine.

24 ERR.NOSCREEN Couldn't get the default screen

You have attempted to obtain the size of the screen by calling GetSize and specifying the
application context. This has failed, probably because of insufficient memory or Windows
resources on the PC. Close down as many applications as possible and try again. If this fails,
try restarting Windows.

27 ERR.NOTREALISED Contact has not yet been realised

You have attempted to draw text or graphics, or set the cursor position, in a contact that does
not have a parent.

Error Codes D-3

Error Codes

35 ERR.FILEOPEN Error opening file

The resource file you have specified when calling LoadAppRes cannot be found. This
might be caused by the following:

• The file name you have specified is incorrect.

• The directory you have specified is incorrect.

• The directory specified in the RFW.INI file does not contain the resource file you have
specified.

Refer to the description of the LoadAppRes subroutine for details of how to load resources.

38 ERR.INVFILENAME Invalid file name specified

The file you have specified when calling the LoadAppRes subroutine has the wrong
extension. Resource files must have the extension '.RES'.

501 ERR.CLIP.FORMAT Format is not available

You have attempted to use a clipboard format that is not supported by this version of UIMS.
Refer to the desciptions of the ClipboardGetContent and ClipboardSetContent
subroutines for details of supported formats.

502 ERR.CLIP.OPEN Failed to open clipboard

Another Windows application has the clipboard open. Only one application can use the
clipboard at a time.

603 ERR.EBOX.NOTEXTSEL No text selected

You have attempted to cut or copy selected text from an EditBox or TextEditor (Cut or
Copy subroutine called with start and end parameters all set to -1), but there is no text
selected in the specified contact.

800 ERR.DLGBOX.INVMODE Invalid dialog box mode

You have used an invalid value when setting the mode of a dialog box. Refer to the
description of the DlgBoxSetMode subroutine.

D-4 UIMS DATA/BASIC API, Reference Manual

Error Codes

DDE Error Codes

These codes are defined in the item UIMS-DDE in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these
errors.

Any code other than those listed below indicates an internal error.

0 ERR.RFW.SUCCESS

Subroutine completed successfully.

2003 ADV.CONFAIL

A permanent DDE link was not established or has been terminated by the server.

2010 ERR.DDE.CONFAIL

An attempt to initiate a conversation failed. This might be for any of the following reasons:

• The server application could not be found.

• The server application does not support DDE.

• The specified topic was not recognised by the server.

2101 ERR.DDE.BUSY

The server was unable to respond because it was carrying out another task.

2107 ERR.DDE.LOW.MEMORY

There is insufficient memory available because of an internal error condition.

2108 ERR.DDE.MEMORY.ERR

UIMS was unable to allocate the memory needed for the current task.

Error Codes D-5

Error Codes

2114 ERR.DDE.SERVER.DIED

The server has attempted to continue a conversation that has been terminated by the client.,
or the server terminated before completing a transaction.

2115 ERR.DDE.SYS.ERR

An internal error has occurred.

D-6 UIMS DATA/BASIC API, Reference Manual

Error Codes

Execute Error Codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these
errors.

0 ERR.RFW.SUCCESS

Subroutine completed successfully.

8100 ERR.EXECUTE.MEMALLOC

Out of memory.

8102 ERR.EXECUTE.NOFILE

File not found.

8104 ERR.EXECUTE.NOPATH

Path not found.

8105 ERR.EXECUTE.LINK

Attempt to dynamically link to a task.

8106 ERR.EXECUTE.DATASEG

Each task requires a separate data segment.

8110 ERR.EXECUTE.WINVERSION

Incorrect Windows version.

8111 ERR.EXECUTE.INVEXE

Invalid Windows executable file (non-Windows application or error in .EXE image).

8112 ERR.EXECUTE.OS2

OS/2 application.

Error Codes D-7

Error Codes

8113 ERR.EXECUTE.DOS

DOS 4.0 application.

8114 ERR.EXECUTE.INVEXE2

Unknown executable type.

8115 ERR.EXECUTE.OLDEXE

Windows program not supported in current mode.

8116 ERR.EXECUTE.RUNNING

Attempt to run a second instance of a program containing multiple, writeable data segments.

8117 ERR.EXECUTE.RUNNING2

Attempt to run a second instance of a program that links to non-shareable dlls.

8118 ERR.EXECUTE.PROTECTED

Attempt to run a protected mode application in real mode.

8132 ERR.EXECUTE.INUSE

Application already in use (only applies if the Control parameter includes the
EXECUTE.SINGLE option).

8133 ERR.EXECUTE.MEMLOCK

Internal error.

D-8 UIMS DATA/BASIC API, Reference Manual

Error Codes

SendKeys Error Codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these
errors.

0 ERR.RFW.SUCCESS

Subroutine completed successfully.

8135 ERR.SENDKEYS.FAIL

Internal error.

8136 ERR.SENDKEYS.INUSE

SendKeys is in use by another instance of RealLink.

Error Codes D-9

Error Codes

SystemCommand Error Codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these
errors.

0 ERR.SYS.SUCCESS

Subroutine completed successfully.

8140 ERR.SYS.INVCOMMAND

Illegal command.

8141 ERR.SYS.FAIL

Command failed.

8142 ERR.SYS.DIRECTORY

A directory with the specified name exists.

8143 ERR.SYS.NOFILE

The file or directory does not exist.

8144 ERR.SYS.NOTUIMS

You have attempted to call the SystemCommand subroutine while using a character-based
terminal or a terminal emulator other than RealLink for Windows.

D-10 UIMS DATA/BASIC API, Reference Manual

Error Codes

NewView Error Codes

These codes are defined in the item RFWDEFS in the file UIMS-TOOLS.

Note that the GetErrorText subroutine returns the description "Unknown" for all these
errors.

0 ERR.RFW.SUCCESS

Subroutine completed successfully.

8201 ERR.NV.NOMEM

NewView was unable to allocate the memory required for an operation. This is usually
caused by insufficient memory or Windows resources on the PC. Close down as many
applications as possible and try again. If this fails, try restarting Windows.

8202 ERR.NV.EXISTS

You have attempted to create a NewView group with an identifier that is already in use by
another group. Refer to the descriptions of the CreateNVContactGroup and
CreateNVHotspotGroup subroutines.

8203 ERR.NV.INVALIDID

You have used an invalid NewView identifier – no group exists with the identifier you have
specified. The group might not yet have been created, or might have been destroyed.

8204 ERR.NV.INVALIDINST

You have used an incorrect application context handle or have failed to sign on before
calling a NewView subroutine that requires the handle of the application context.

Error Codes D-11

Glossary

Active Window The window which the user can currently manipulate or work with. This is similar to having
the focus.

API Application Programming Interface.

App Window An App window is the main type of window in a UIMS application. It is free to appear
anywhere on the screen and to overlap any other window (compare child window). A UIMS
application must have at least one App window (the root window).

Attribute 1. A unique characteristic of an object that can be modified.

2. A section of a REALITY file item, delimited by attribute marks – CHAR(254).

Brush 1. The way the interior of a graphical object looks; it can be coloured, hatched, or
patterned.

2. A UIMS object that controls these characteristics.

Check Button A check button is a control that can be turned on or off and saves its state. It looks like a
square box to the left of some text. If it has been selected, an 'X' appears in the box.

Check Mark A mark shown beside a menu item to indicate a selected option. The mark displayed is
normally a tick (ü), but on some hardware platforms other marks may be used.

Child Window A child window is similar to an App window, but cannot overlap windows other than its
parent.

Client Area The client area is the part of a window where an application can draw. It is usually the
central area of the window and excludes the title area, menu bar, scroll bars, etc.

Client Coordinates Coordinates relative to the top left-hand corner of the window's client area.

Clip Region Defines in which part of a window drawing can take place. An application may draw outside
the clip region, but only the part inside the clip region will be displayed.

Clipboard The clipboard can be thought of as a resting place in memory for data that has been copied
or cut from one application to be pasted into the same or a different application.

Contact An object that provides an interface with the user. Window, menu, and dialogue box objects
are all contacts.

UIMS DATA/BASIC API, Reference Manual Glossary-1

Glossary

Context An object that defines certain application-wide parameters, such as the coordinate mode, the
default drawing objects, and the event mask.

Control A control is a contact that carries out a specific kind of input or output. Edit boxes, titled
buttons and scroll bars are examples of controls.

Copy To Copy means to get data from an application and put it in the clipboard.

Cursor A blinking graphic entity that shows where the next text input will appear on the screen.

Cut To Cut means to get some data from an application and put it in the clipboard and then to
remove the data from the application.

DDE Dynamic Data Exchange – a message exchange protocol used in the Microsoft Windows
environment.

Default Titled Button A default titled button is a control that represents the usual response to a request. It has text
surrounded by an emboldened rectangle. If the user types the RETURN key it is the default
titled button that takes effect.

Dialog Box A dialog box is a window that an application displays to request information from the user.
It contains controls that the user can manipulate.

Disabled If an application does not want to allow the user to select a particular option at a certain
time, it can disable the option. Disabling a contact causes any text in the contact to be
greyed.

Edit Control A control that lets the user type in his own text.

Enabled Selectable by the user.

Event Actions carried out by the user result in UIMS events, the details of which are sent to the
application by means of messages. For example, when the user presses a key, the resulting
event generates a keypress message, which tells the application which key was pressed.

Focus If a window has the focus, all keyboard events will be sent to that window.

Font The typeface used to display text.

GUI Graphical User Interface.

Instance An occurrence of an application.

Glossary-2 UIMS DATA/BASIC API, Reference Manual

Glossary

List Box A list box is a control that presents the user with a list of options which may be clicked on
to accomplish some action. Often there is a scroll bar attached to the list box to scroll
through the options, which may be numerous. A common use of a list box is to present the
user with a list of files to select from.

Menu A menu is a list of action choices listed at the top of a window that can be selected with a
pointing device or from the keyboard.

Message UIMS communicates with applications by passing pre-defined formatted messages.
Examples are messages which tell the application to paint its window, and messages which
tell the application that the user has selected a command on the menu.

Object A software packet containing a collection of related data (in the form of attributes) and
procedures for operating on that data.

Option Button An option button is a control that usually appears in a group of other option buttons. Each
choice is mutually exclusive of the others in the group, so that once the user selects one
button, any other button in the group turns off. Selecting a option button is analogous to
selecting a radio station on a car radio; for this reason, option buttons are often called radio
buttons.

Parent An object or contact to which other objects or contacts are attached. For example, a dialog
box is the parent of the controls it contains.

Paste A command to insert the current contents of the clipboard into an application's window.

Pen The way the outline of a graphical object looks. It can be wide, coloured, or patterned.

Pointer A graphic entity that is controlled by a pointing device to make selections in an
application's window.

Pointing Device A pointing device is an input device used to control the pointer on the screen. It can be a
mouse, a light pen, a joystick or a graphic tablet.

Resource Compiler The resource compiler converts a text file that describes the resources (menus, dialog boxes,
etc.) used by an application into the format required by the application.

Screen Coordinates Coordinates relative to the top left corner of the display.

Scroll Bar A scroll bar is a control that allows the user to set analogue values. Its main use is to let the
user change the current view of the application when there is more data than can be
displayed in one window.

UIMS DATA/BASIC API, Reference Manual Glossary-3

Glossary

System Menu The system menu is a special menu that is pulled down from the top left corner of a window.
It contains actions that are usually common to all applications such as moving or changing
the size of the window.

Thumb A part of a scroll bar that can be dragged with the mouse to change the scroll bar setting. Its
position on the scroll bar indicates the current setting.

Title Bar The title bar is the uppermost part of a window that provides two pieces of information; the
name of the application and whether the window is currently active. Another name for the
title bar is the caption bar.

Titled Button A titled button is a control that has text surrounded by a rectangle. Clicking on it causes an
immediate reaction. For example, in dialog boxes there are OK and Cancel buttons. Titled
buttons are also known as Push Buttons.

Glossary-4 UIMS DATA/BASIC API, Reference Manual

Index

! (exclamation mark), using in resource script 7-8 AppWindow contact (cont.)
& (ampersand), defining menu selector key 7-7 NewView 5-4
+ (plus sign), using in resource script 7-8 resource script C-3

A

scroll bars 3-49
subroutines 6-7, 6-9, 6-12, 6-33

AppWinGetDisplay subroutine 3-10, 3-21, 6-7
Active window, defined Glossary-1 AppWinGetHScroll subroutine 3-10, 6-7
AddChild subroutine 6-4 AppWinGetMenuBar subroutine 3-10, 3-39, 6-7

AppWindow contact 3-11 AppWinGetStyle subroutine 3-9, 6-7
ChildWindow contact 3-17 AppWinGetVScroll subroutine 3-10, 6-7
DialogBox contact 3-20 AppWinMaximize subroutine 3-10, 6-9
ExclusiveGroup contact 3-28 AppWinMinimize subroutine 3-10, 6-9
InclusiveGroup contact 3-33 AppWinRemoveMenuBar subroutine 3-10, 3-39, 6-10
Menu contact 3-38 AppWinRestore subroutine 3-10, 6-11
MenuBar contact 3-39 AppWinSetDefButton subroutine 3-11, 3-58, 6-12

AddChildren subroutine 6-4 AppWinSetMenuBar subroutine 3-10, 3-39, 6-12
AppWindow contact 3-11 AppWinSetSizing subroutine 3-10, 6-12
ChildWindow contact 3-17 AppWinSetStyle subroutine 3-9, 6-12
DialogBox contact 3-20 AppWinSetTitle subroutine 3-10, 6-12
ExclusiveGroup contact 3-28 Attribute
InclusiveGroup contact 3-33 defined Glossary-1
Menu contact 3-38 resource script 7-3
MenuBar contact 3-39 AUTOEXEC.BAT file 7-15

AddTimer subroutine 3-61, 6-5

B
Ampersand (&), defining menu selector key 7-7
API

DATA/BASIC 2-4 BitTest subroutine 3-63, 6-14
defined Glossary-1 Border styles C-11

App window, defined Glossary-1 Brush object 3-11 to 3-14
AppContext object 3-4 to 3-6, 3-8, 3-62 default 3-4

event mask 4-3 Drawrule object 3-22
UIMS.MSG.IDLE message 4-21 Rectangle contact 3-47

AppHelp object 3-6 to 3-7, 8-2 resource script C-4
subroutines 6-6, 6-137, 6-210 subroutines 6-15, 6-16, 6-42

AppHelp subroutine 3-6, 6-6, 8-2, 8-5 Brush, defined Glossary-1
Application BrushGetColour subroutine 3-13, 6-15

existing 5-2 to 5-10 BrushSetColour subroutine 3-13, 6-16
messages 4-8

C
types 2-5

AppResource object 3-6 to 3-8
AppWindow contact 3-8 to 3-13 Cascading menus 6-169

AppContext object 3-4 ChangeNVButtonGroup subroutine 3-62, 5-5, 6-17
menu bar 3-39 ChangeNVContacts subroutine 3-62, 5-5, 6-20

UIMS DATA/BASIC API, Reference Manual Index-1

Index

Check button, defined Glossary-1 Colours (cont.)
Check mark, defined Glossary-1 specifying B-2
CheckButton contact 3-14 to 3-15 Comments, resource script 7-9

Compiled resources, using 7-20InclusiveGroup contact 3-32
Compiling a resource script 7-15resource script C-4
Conditional compilation, resource script 7-12subroutines 6-22, 6-23, 6-24, 6-25, 6-36
Constant definitions 6-2UIMS.MSG.BUTTONPRESS message 4-10

resource script 7-10CheckButtonDeselect subroutine 3-14, 6-22
ContactCheckButtonGetSelected subroutine 3-14, 6-23

defined Glossary-1CheckButtonSelect subroutine 3-14, 6-24
described 2-6CheckButtonSetSelected subroutine 3-14, 6-25
graphics 2-6CheckButtonSetTitle subroutine 3-14, 6-25

Context, defined Glossary-2CheckButtonSetToggle subroutine 3-14, 6-25
Context-sensitive help 8-4CHECKMARK MenuItem attribute, resource script 7-8
ControlChild window, defined Glossary-1

defined Glossary-2CHILDREN attribute, resource script 7-5, 7-6
messages 4-7ChildWindow contact 3-15 to 3-18

Coordinate mode 3-4InclusiveGroup contact 3-32
NewView 5-4NewView 5-4

Copyresource script C-4
defined Glossary-2scroll bars 3-49
subroutine 3-18, 6-32subroutines 6-27, 6-29, 6-38

CreateAppWin subroutine 3-8, 6-33using as the terminal window 5-6
CreateCheckButton subroutine 3-14, 6-36ChildWinGetHScroll subroutine 3-16, 6-27
CreateChildWin subroutine 3-15, 6-38ChildWinGetStyle subroutine 3-16, 6-27
CreateDlgBox subroutine 3-19, 6-40ChildWinGetVScroll subroutine 3-16, 6-27
CreateDrawBrush subroutine 3-13, 6-42ChildWinSetDefButton subroutine 3-17, 3-58, 6-29
CreateDrawFont subroutine 3-30, 6-43ChildWinSetStyle subroutine 3-16, 6-29
CreateDrawPen subroutine 3-44, 6-45Client area
CreateDrawrule subroutine 3-22, 3-23, 6-46AppWindow contact 3-8
CreateEditBox subroutine 3-25, 6-48ChildWindow contact 3-15
CreateExGroup subroutine 3-28, 6-50defined Glossary-1
CreateIncGroup subroutine 3-32, 6-52Client coordinates, defined Glossary-1
CreateLine subroutine 3-34, 6-54Clip region, defined Glossary-1

Clipboard object 3-17 to 3-19 CreateListBox subroutine 3-35, 3-36, 6-56
subroutines 6-30, 6-31, 6-32, 6-83, 6-183 CreateMenuBar subroutine 3-39, 6-58

Clipboard, defined Glossary-1 CreateMenuItem subroutine 3-38, 3-39, 3-40, 6-59, 8-5
ClipboardGetContent subroutine 3-18, 6-30 CreateMessageBox subroutine 3-42, 6-61
ClipboardGetSize subroutine 3-18, 6-30 CreateNVContactGroup subroutine 3-61, 5-4, 6-64
ClipboardSetContent subroutine 3-18, 6-31 CreateNVHotspotGroup subroutine 3-61, 5-5, 6-66
Colours B-1 to B-8 CreateOptionButton subroutine 3-43, 6-68

logical colour bindings B-2 CreatePointer subroutine 3-45, 6-70
resource script settings C-11 CreatePullDownMenu subroutine 3-38, 3-39, 6-71, 8-5

Index-2 UIMS DATA/BASIC API, Reference Manual

Index

CreateRect subroutine 3-47, 6-72 DialogBox contact 3-19 to 3-21, 3-58
CreateScrollBar subroutine 3-48, 3-49, 6-74 resource script C-5

subroutines 6-40, 6-99, 6-100CreateText subroutine 3-53, 6-76
DIL files 6-98CreateTextEditor subroutine 3-54, 6-78
DirectoryCreateTitledButton subroutine 3-58, 6-80

checking existence of 6-230Creating
creating on the PC 6-228a directory on the PC 6-228
deleting from the PC 6-228a help file 8-3

Disable subroutine 3-2, 6-94NewView contacts 5-4, 5-9
Disabled, defined Glossary-2Cursor, defined Glossary-2
Display object 3-20 to 3-22, 3-52Cut

subroutines 6-95defined Glossary-2
DisplayGetMetrics subroutine 3-21, 6-95subroutine 3-18, 6-83
DisplayGetPixelSize subroutine 3-21, 6-95

D DisplayImage subroutine 3-62, 6-97
DlgBoxGetMode subroutine 3-19, 6-99

DATA/BASIC API 2-4 DlgBoxGetStyle subroutine 3-19, 6-99
DDE DlgBoxSetDefButton subroutine 3-20, 3-58, 6-100

defined Glossary-2 DlgBoxSetMode subroutine 3-19, 6-100
subroutines 3-62 DlgBoxSetStyle subroutine 3-19, 6-100

DDE.ADVISE subroutine 3-62, 6-84 DlgBoxSetTitle subroutine 3-20, 6-100
DDE.CLOSEADVISE subroutine 3-62, 6-85 DOS environment variables
DDE.EXECUTE subroutine 3-62, 6-86 URCPATH 7-15
DDE.OPENADVISE subroutine 3-62, 6-88 values 6-231
DDE.PEEK subroutine 3-62, 6-89 DOS programs, starting 6-229
DDE.POKE subroutine 3-62, 6-91 Draw subroutine 3-3, 6-102
Default event masks 4-4 Drawing modes B-4
Default titled button, defined Glossary-2 DrawLine subroutine 6-103
#DEFINE resource compiler pre-processor command

7-10
AppWindow contact 3-9, 3-11
ChildWindow contact 3-15, 3-17

Defining DialogBox contact 3-20
menu selector key 7-7 InclusiveGroup contact 3-33

Defining MenuItem contacts 7-6 Pen object 3-44
Defining objects 7-3 DrawRect subroutine 3-47, 6-103

without nesting 7-5 AppWindow contact 3-9, 3-11
Deleting ChildWindow contact 3-15, 3-17, 3-20

a directory on the PC 6-228 InclusiveGroup contact 3-33
a file on the PC 6-229 Pen object 3-44

Destroy subroutine 3-61, 4-12, 4-23, 6-92 Drawrule object 3-22 to 3-25, B-4
DestroyNVGroup subroutine 3-61, 5-5, 5-10, 6-93 AppWindow contact 3-10
Dialog box, defined Glossary-2 Brush object 3-13

ChildWindow contact 3-16
default 3-4

UIMS DATA/BASIC API, Reference Manual Index-3

Index

Drawrule object (cont.) ENABLED attribute, resource script C-11
Font object 3-30 MenuItem contact 7-8
Line contact 3-34 Enabled, defined Glossary-2
Pen object 3-44 #ENDIF resource compiler pre-processor command

7-10, 7-12Rectangle contact 3-47
resource script C-5 Enhancing existing applications 5-2 to 5-10
subroutines 6-46, 6-105, 6-107, 6-133, 6-206 Environment variables
Text contact 3-53 URCPATH 7-15

DrawruleGetBrush subroutine 3-13, 3-22, 6-105 values 6-231
EQU resource compiler pre-processor command 7-10DrawruleGetColour subroutine 3-23, 6-105
EQUATE resource compiler pre-processor command

7-10
DrawruleGetFont subroutine 3-22, 3-30, 3-31, 6-105
DrawruleGetPen subroutine 3-22, 3-44, 6-105

Erase subroutine 3-12, 3-17, 3-20, 3-33, 6-114DrawruleSetBrush subroutine 3-13, 3-22, 6-107
EraseImage subroutine 3-62, 6-115DrawruleSetColour subroutine 3-23, 6-107
Error codes D-1 to D-5DrawruleSetFont subroutine 3-22, 3-31, 6-107
Errors, resource compiler 7-15DrawruleSetPen subroutine 3-22, 3-44, 6-107
Event 4-2DrawTextString subroutine 6-109

defined Glossary-2AppWindow contact 3-9, 3-11
Event mask 4-3 to 4-7ChildWindow contact 3-15, 3-17

AppContext object 4-3compared with Text contact 3-53
default 4-4DialogBox contact 3-20
UIMS.EM.BUTTONPRESS 4-10InclusiveGroup contact 3-33
UIMS.EM.CLICK 4-11Dynamic Data Exchange – see DDE
UIMS.EM.CLOSE 4-12Dynamic Imaging Library 6-98
UIMS.EM.DBLCLICK 4-14

E
UIMS.EM.DRAG 4-16
UIMS.EM.ENTER 4-18
UIMS.EM.EXIT 4-19Edit control, defined Glossary-2
UIMS.EM.HSCROLL 4-20EditBox contact 3-25 to 3-28
UIMS.EM.IDLE 4-21Clipboard object 3-18
UIMS.EM.KEYPRESS 4-22InclusiveGroup contact 3-32
UIMS.EM.KILL 4-23ListBox contact 3-35
UIMS.EM.LBOX.DESELECT 4-24resource script C-6
UIMS.EM.LBOX.SELECT 4-25subroutines 6-48, 6-110, 6-111
UIMS.EM.LEAVE 4-26UIMS.MSG.SELECT message 4-35
UIMS.EM.MENUITEM 4-27user interface 3-26
UIMS.EM.MOTION 4-28EditBoxGetContent subroutine 3-25, 6-110
UIMS.EM.MOVE 4-29EditBoxSetContent subroutine 3-25, 6-111
UIMS.EM.NEWVIEW 4-5EditBoxSetSelected subroutine 6-111
UIMS.EM.NOTIFY 4-30EditBoxSetSelection subroutine 3-25
UIMS.EM.PRESS 4-31#ELSE resource compiler pre-processor command

7-10, 7-12 UIMS.EM.RELEASE 4-32
UIMS.EM.SCROLL 4-33Enable subroutine 3-2, 6-113

Index-4 UIMS DATA/BASIC API, Reference Manual

Index

Event mask (cont.) Focus
UIMS.EM.SELECT 4-35 defined Glossary-2
UIMS.EM.SIZE 4-36 messages 4-7
UIMS.EM.TIMER 4-37 Font object 3-15, 3-22, 3-30 to 3-32, 3-60
UIMS.EM.UPDATE 4-38 default 3-4
UIMS.EM.VSCROLL 4-39 subroutines 6-43, 6-120, 6-122

EVENTMASK attribute, resource script C-11 Font, defined Glossary-2
Exclamation mark (!), using in resource script 7-8 FontGetMetrics subroutine 3-31, 6-120
ExclusiveGroup contact 3-28 to 3-30 FontGetPointSize subroutine 6-120

InclusiveGroup contact 3-32 FontGetStyle subroutine 3-30, 6-120
resource script C-6 FontGetTextLen subroutine 6-120
subroutines 6-50, 6-118, 6-119 FontGetTypeFace subroutine 3-30, 6-120

Execute subroutine 3-63, 6-2, 6-116, 6-221 FontSetPointSize subroutine 3-30, 6-122
ExGroupGetSel subroutine 3-28, 6-118 FontSetStyle subroutine 3-30, 6-122
ExGroupSetStyle subroutine 3-28, 6-119 FontSetTypeFace subroutine 3-30, 6-122
ExGroupSetTitle subroutine 3-28, 6-119

G
F

GetAppName subroutine 6-124
File GetBorderStyle subroutine 3-2, 6-125

header 6-230 GetChild subroutine 6-126
inclusion, resource script 7-12 AppWindow contact 3-11
names, resource script 7-15 ChildWindow contact 3-17
size 6-230 DialogBox contact 3-20

Files ExclusiveGroup contact 3-28
AUTOEXEC.BAT 7-15 InclusiveGroup contact 3-33
checking existence of 6-230 Menu contact 3-38
deleting from the PC 6-229 MenuBar contact 3-39
DIL 6-98 GetChildCount subroutine 6-126
.H 7-15 AppWindow contact 3-11
help 8-2, 8-3, 8-4, 8-5 ChildWindow contact 3-17
help project 8-3, 8-4 DialogBox contact 3-20
help topic 8-3 ExclusiveGroup contact 3-28
image 6-81, 6-97 InclusiveGroup contact 3-33
INCLUDE 5-9 Menu contact 3-38
INI 6-232 MenuBar contact 3-39
RC.DAT 7-15 GetChildFocus subroutine 6-126
RC.MSG 7-15 AppWindow contact 3-11
RCTEMP 7-16, C-16 ChildWindow contact 3-17
.RES 7-15 DialogBox contact 3-20
RFW.INI 6-81, 7-20, 8-3, 8-4 ExclusiveGroup contact 3-29
.UCL 7-15 InclusiveGroup contact 3-33
UIMS-TOOLS 5-9, 6-2, D-1

UIMS DATA/BASIC API, Reference Manual Index-5

Index

GetChildren subroutine 6-126 GetState subroutine 3-2, 6-147
AppWindow contact 3-11 GetTeFontSize subroutine 6-148
ChildWindow contact 3-17 GetTeFontSizes subroutine 6-148
DialogBox contact 3-20 GetTypeFace subroutine 3-52, 3-60, 6-149
ExclusiveGroup contact 3-28 GetTypeFaces subroutine 3-52, 3-60, 6-149
InclusiveGroup contact 3-33 GetUimsVersion subroutine 3-63, 6-150
Menu contact 3-38 GetUpdate subroutine 3-3, 6-151
MenuBar contact 3-39 GrabPointer subroutine 3-46, 4-28, 4-31, 4-32, 6-152

GetClip subroutine 3-10, 3-16, 6-128 Graphics contacts 2-6
GetCoordMode subroutine 3-4, 6-129 Graphics drawing modes B-4
GetCursorPosition subroutine 3-11, 3-17, 6-130 Groups, NewView 5-2, 5-4, 5-9
GetCursorState subroutine 3-11, 3-17, 6-130

HGetDefaults subroutine 3-21, 3-52, 6-132
GetDrawrule subroutine 3-22, 3-24, 6-133

AppContext object 3-4 Handle 7-3
AppWindow contact 3-10 Help 8-1 to 8-6
Brush object 3-13 AppHelp object 8-2
ChildWindow contact 3-16 compiler 8-3
Font object 3-30 context number – see Help index number
Line contact 3-34 context-sensitive 8-4
Pen object 3-44 directory 8-3
Rectangle contact 3-47 file 8-2, 8-3, 8-4, 8-5
Text contact 3-53 index number 8-3, 8-4, 8-5

GetErrorText subroutine 3-63, 4-30, 6-134 key 8-2, 8-4
GetEventMask subroutine 3-3, 4-4, 6-135 menu 8-2

AppContext object 3-4 NewView 5-8, 5-9
GetFrontWindow subroutine 3-4, 6-136 project file 8-3, 8-4
GetHelpFile subroutine 3-5, 3-6, 6-137, 8-6 topic files 8-3
GetHelpIndex subroutine 3-2, 3-6, 6-137, 8-6 window 8-2

HiByte subroutine 3-63, 6-153Clipboard object 3-18
GetHelpKey subroutine 3-5, 3-6, 6-137, 8-6 Hot

spots 5-2GetMsg subroutine 3-61, 4-2, 4-9, 6-138
words 8-2GetObjectParent subroutine 3-61, 6-139

I
GetPointer subroutine 3-46, 6-140

AppWindow contact 3-11
ChildWindow contact 3-16

ID.EDITCOPY menu item 5-7GetPointerPos subroutine 3-46, 6-141
ID.EDITCOPYWINDOW menu item 5-7GetPosition subroutine 3-2, 6-142
ID.EDITPASTE menu item 5-7GetRootWindow subroutine 3-4, 6-143
ID.FILEPRINT menu item 5-7GetSecondaryEventMask subroutine 4-6, 6-144
ID.FILEPRINTERSETUP menu item 5-7GetSize subroutine 3-2, 6-145
ID.FILEPRINTWINDOW menu item 5-7GetSolidColour subroutine 6-146
ID.HELPAPP menu item 5-7, 5-8

Index-6 UIMS DATA/BASIC API, Reference Manual

Index

ID.HELPCOMMANDS menu item 5-7 Line contact (cont.)
ID.HELPINDEX menu item 5-7 resource script C-6
ID.HELPKEYBOARD menu item 5-7 subroutines 6-54
Identifier, object 7-3 List box, defined Glossary-3
#IFDEF resource compiler pre-processor command

7-10, 7-11, 7-12
ListBox contact 3-35 to 3-38

InclusiveGroup contact 3-32
Images resource script C-7

displaying in windows 6-97 subroutines 6-56, 6-158, 6-160, 6-162, 6-164
displaying on titled buttons 6-80, 6-81 user interface 3-36, 3-37

IncGroupSetStyle subroutine 3-33, 6-155 ListBoxAddContent subroutine 3-35, 6-158
IncGroupSetTitle subroutine 3-32, 6-155 ListBoxAddContents subroutine 3-35, 6-158
INCLUDE ListBoxAddSelection subroutine 3-35, 6-158

files 5-9 ListBoxAddSelections subroutine 3-35, 6-158
items 6-2, D-1 ListBoxGetContent subroutine 3-35, 6-160
statements, NewView 5-9 ListBoxGetContents subroutine 3-35, 6-160

#INCLUDE resource compiler pre-processor command
7-10, 7-12

ListBoxGetSelections subroutine 3-35, 6-160
ListBoxRemoveContent subroutine 3-35, 6-162

InclusiveGroup contact 3-32 to 3-34 ListBoxRemoveContents subroutine 3-35, 6-162
resource script C-6 ListBoxRemoveSelection subroutine 3-35, 6-162
subroutines 6-52, 6-155 ListBoxRemoveSelections subroutine 3-35, 6-162

INI file 6-232 ListBoxSetLink subroutine 3-35, 6-164
InitialiseUims subroutine 3-62, 5-9, 6-156 LoadAppRes subroutine 3-7, 6-165, 7-2, 7-20
Instance, defined Glossary-2 NewView 5-4, 5-9
IsUimsCapable subroutine 6-157 LoByte subroutine 3-63, 6-166

K
Logical colour bindings B-2

MKey modifiers A-9
resource script settings C-13 MakePullDownMenu subroutine 3-38, 6-168, 8-5

Key, help 8-2, 8-4 [Map] section, help project file 8-3, 8-4
Keyboard interface Map subroutine 3-2, 6-171

EditBox contact 3-26 MAPPED attribute, resource script C-11
ListBox contact 3-36, 3-37 Masking messages 4-3 to 4-7
ScrollBar contact 3-50 Maximum line length in resource script 7-9
TextEditor contact 3-55 Menu

Keyboard messages 4-7 separator item 7-8

L
Menu contact 3-38 to 3-39, 3-40, 7-6

NewView 5-4, 5-6
resource script C-7

Line contact 3-33 to 3-35 subroutines 6-71, 6-168, 6-177
InclusiveGroup contact 3-32 Menu selector key, defining 7-7
NewView 5-4 Menu, defined Glossary-3
Pen object 3-44

UIMS DATA/BASIC API, Reference Manual Index-7

Index

MenuBar contact 3-10, 3-38, 3-39 to 3-40, 7-6 Messages (cont.)
UIMS.MSG.MOTION 4-7, 4-28NewView 5-4, 5-6

resource script C-7 UIMS.MSG.MOVE 4-7, 4-29
subroutines 6-7, 6-10, 6-12, 6-58 UIMS.MSG.NOTIFY 4-4, 4-8, 4-30

MenuItem attributes, defining in a resource script 7-7 UIMS.MSG.PRESS 4-7, 4-31
MenuItem contact 3-38, 3-39, 3-40 to 3-41, 7-6 UIMS.MSG.RELEASE 4-7, 4-32

NewView 5-4, 5-6 UIMS.MSG.SCROLL 4-8, 4-33
RealLink 5-6 UIMS.MSG.SELECT 4-8, 4-35
resource script C-7 UIMS.MSG.SIZE 4-7, 4-36
subroutines 6-59, 6-168, 6-172, 6-173, 6-174, 6-176 UIMS.MSG.TIMER 4-8, 4-37

MenuItemCheck subroutine 3-40, 6-172 UIMS.MSG.UPDATE 4-7, 4-38
MenuItemGetCheckMark subroutine 3-40, 6-173 UIMS.MSG.VSCROLL 4-7, 4-39
MenuItemSetAutoCheck subroutine 3-40, 6-174 Modification time 6-230
MenuItemSetCheckMark subroutine 3-40, 6-174 Mouse interface
MenuItemSetTitle subroutine 3-40, 6-174 EditBox contact 3-26
MenuItemUncheck subroutine 3-40, 6-176 ListBox contact 3-36, 3-37
Menus ScrollBar contact 3-50

cascading 6-169 TextEditor contact 3-55
help 8-2 Move subroutine 3-2, 6-178
NewView applications 5-3, 5-6

NMenuSetTitle subroutine 3-38, 6-177
Message, defined Glossary-3
MessageBox contact 3-41 to 3-43 Nested definitions 7-4

redirecting system messages to 5-7 Newline characters, in resource script 7-9
Messages 4-2 to 4-10 NewView 4-5, 5-2 to 5-10

UIMS.MSG.BUTTONPRESS 4-4, 4-8, 4-10 applications 4-4
UIMS.MSG.CLICK 4-11 assigning text strings 5-2
UIMS.MSG.CLOSE 4-4, 4-7, 4-12 contacts 5-2, 5-3

contacts, creating 5-4, 5-9UIMS.MSG.CREATE 4-6, 4-7, 4-13
groups 5-2, 5-4, 5-9UIMS.MSG.DBLCLICK 4-7, 4-14
groups, destroying 5-10UIMS.MSG.DESTROY 4-6, 4-7, 4-15
help 5-8, 5-9UIMS.MSG.DRAG 4-7, 4-16
hot-spots 5-2UIMS.MSG.ENTER 4-7, 4-18
INCLUDE statements 5-9UIMS.MSG.EXIT 4-3, 4-4, 4-8, 4-19
menu items 5-6UIMS.MSG.HSCROLL 4-7, 4-20

NewView applications 2-5, 5-8 to 5-10UIMS.MSG.IDLE 4-4, 4-8, 4-21
Menus 5-6UIMS.MSG.KEYPRESS 4-4, 4-7, 4-22
RealLink menu items 5-6UIMS.MSG.KILL 4-7, 4-23
running on normal terminals 5-3, 5-9UIMS.MSG.LBOX.DESELECT 4-8, 4-24
terminating 5-10UIMS.MSG.LBOX.SELECT 4-8, 4-25

NewView subroutines 3-61, 6-221UIMS.MSG.LEAVE 4-7, 4-26
contact groups 6-17, 6-20, 6-64, 6-93UIMS.MSG.MENUITEM 4-3, 4-4, 4-8, 4-27, 8-5
groups 6-208, 6-212

Index-8 UIMS DATA/BASIC API, Reference Manual

Index

NewView subroutines (cont.) Pen, defined Glossary-3
help 6-213 PenGetColour subroutine 3-44, 6-184
hotspot groups 6-66, 6-93 PenGetWidth subroutine 3-44, 6-184
system messages 6-188 PenSetColour subroutine 3-44, 6-185

O
PenSetWidth subroutine 3-44, 6-185
Plus sign (+), using in resource script 7-8
Pointer

Object defined Glossary-3
attributes 7-3 messages 4-7
defined Glossary-3 modifier, UIK.P.DRAG 4-16
described 2-6 modifiers A-10
identifier 7-3 Pointer object 3-45 to 3-47

Object definitions AppWindow contact 3-11
in a resource script 7-3 ChildWindow contact 3-16
nested 7-4 resource script C-8

Objects, defining 7-3 subroutines 6-140, 6-186, 6-187, 6-214
Option button, defined Glossary-3 PointerGetType subroutine 3-45, 6-186
OptionButton contact 3-43 to 3-44 PointerSetType subroutine 3-45, 6-187

ExclusiveGroup contact 3-28 Pointing device, defined Glossary-3
InclusiveGroup contact 3-32 Pre-processor commands, resource compiler 7-10 to

7-14resource script C-8
subroutines 6-68, 6-179, 6-180, 6-181, 6-182 conditional compilation 7-12
UIMS.MSG.BUTTONPRESS message 4-10 constant definitions 7-10

OptionButtonDeselect subroutine 3-28, 3-43, 6-179 #DEFINE 7-10
OptionButtonGetSelected subroutine 3-43, 6-180 #ELSE 7-12
OptionButtonSelect subroutine 3-28, 3-43, 6-181 #ENDIF 7-12
OptionButtonSetSelected subroutine 3-28, 3-43, 6-182 EQU 7-10
OptionButtonSetTitle subroutine 3-43, 6-182 EQUATE 7-10
OptionButtonSetToggle subroutine 3-43, 6-182 file inclusion 7-12

P
#IFDEF 7-11, 7-12
#INCLUDE 7-12

Pre-processor errors, resource compiler 7-15, C-15
Parent, defined Glossary-3 Push button – see Titled button
Paste

Rdefined Glossary-3
subroutine 3-18, 6-183

Pen object 3-44 to 3-45, B-4 Radio button – see Option button
default 3-4 RC.DAT file 7-15
Drawrule object 3-22 RC.MSG file 7-15
Line contact 3-34 RCTEMP file 7-16, C-16
Rectangle contact 3-47 RealLink menu items, in NewView applications 5-6
resource script C-8
subroutines 6-45, 6-184, 6-185

UIMS DATA/BASIC API, Reference Manual Index-9

Index

Rectangle contact 3-47 to 3-48 Resource script (cont.)
common object attributes C-11 to C-14InclusiveGroup contact 3-32
compiling 7-15NewView 5-4
defining MenuItem contacts 7-6Pen object 3-44
defining objects without nesting 7-5resource script C-8
ENABLED MenuItem attribute 7-8subroutines 6-72
filenames 7-15ReMapNVLine25 subroutine 3-62, 5-7, 6-188
maximum line length 7-9RemoveChild subroutine 6-189
MenuItem attributes 7-7AppWindow contact 3-11
nested object definitions 7-4ChildWindow contact 3-17
object attributes C-3 to C-10DialogBox contact 3-20
object definitions 7-3ExclusiveGroup contact 3-28
object types C-2InclusiveGroup contact 3-33
resource file control 7-9Menu contact 3-38
screen coordinates 7-8MenuBar contact 3-39
white-space characters 7-9RemoveChildren subroutine 6-189

RFW.INI file 6-81, 7-20, 8-3, 8-4AppWindow contact 3-11
RFWDEFS INCLUDE item 5-9, 6-2, D-7, D-9, D-10,

D-11
ChildWindow contact 3-17
DialogBox contact 3-20

RFWKEYS INCLUDE item 6-2ExclusiveGroup contact 3-28
Rich text format 8-3InclusiveGroup contact 3-33
RLRC command 7-15Menu contact 3-38

see also Resource compilerMenuBar contact 3-39

S
RemoveTimer subroutine 3-61, 6-190
Removing

a directory on the PC 6-228
Screen coordinatesa file on the PC 6-229

defined Glossary-3Resize subroutine 3-2, 3-34, 3-47, 6-191
resource script 7-8Resource compiler 2-4, 7-2 to 7-20

Script, resource – see Resource scriptsee also Resource script
Scroll baradvantages of using 7-2

AppWindow contact 3-10, 4-20, 4-39defined Glossary-3
ChildWindow contact 3-16, 4-20, 4-39errors 7-15, C-14 to C-18
defined Glossary-3keywords C-2 to C-18

Scroll subroutine 3-12, 3-17, 6-192pre-processor commands – see Pre-processor
commands, resource compiler ScrollBar contact 3-48 to 3-51

InclusiveGroup contact 3-32RLRC command 7-15
resource script C-8Resource file control 7-9
subroutines 6-74, 6-193, 6-194Resource script 5-4, 5-7, 5-9, 7-2
UIMS.MSG.SCROLL message 4-33see also Resource compiler
user interface 3-50CHECKMARK MenuItem attribute 7-8

ScrollBarGetThumb subroutine 3-49, 6-193CHILDREN attribute 7-5, 7-6
ScrollBarSetInc subroutine 3-49, 6-194comments 7-9

Index-10 UIMS DATA/BASIC API, Reference Manual

Index

ScrollBarSetRange subroutine 3-49, 6-194 SetSync subroutine 3-63, 6-217
ScrollBarSetThumb subroutine 3-49, 6-194 SetTeFontSize subroutine 6-218
ScrollBarSetTracking subroutine 3-49, 6-194 SetTeWindow subroutine 3-61, 5-6, 5-9, 5-10, 6-219
Secondary event mask 4-4 to 4-7 SetUimsMode subroutine 3-63, 6-221
SendKeys subroutine 3-63, 6-2, 6-196, 6-221 SetUpdate subroutine 3-3, 6-222
Separator item, menu 7-8 SignOff subroutine 3-62, 5-10, 6-223
SetBorderStyle subroutine 3-2, 6-200 SignOn subroutine 3-4, 3-62, 5-9, 6-224
SetClip subroutine 3-10, 3-16, 6-201 Software, UIMS 2-4
SetContactFocus subroutine 6-202 SoundSpeaker subroutine 3-51, 6-225

AppWindow contact 3-11 Spaces, in resource script 7-9
ChildWindow contact 3-17 Speaker object 3-49 to 3-52
DialogBox contact 3-20 StartImage subroutine 3-62, 6-226
ExclusiveGroup contact 3-29 Starting programs on the PC 6-116, 6-229
InclusiveGroup contact 3-33 StopImage subroutine 3-62, 6-227

SetCoordMode subroutine 3-4, 5-4, 5-9, 6-203 System menu, defined Glossary-4
SetCursorPosition subroutine 3-11, 3-17, 6-204 System messages, redirecting to a message box 5-7,

6-188SetCursorState subroutine 3-11, 3-17, 6-204
SetDrawrule subroutine 3-22, 3-24, 6-206 SystemCommand subroutine 3-63, 6-2, 6-221, 6-228

AppContext object 3-4 SystemDictionary object 3-52 to 3-53
AppWindow contact 3-10

TChildWindow contact 3-16
Line contact 3-34
Rectangle contact 3-47 Tabs, in resource script 7-9
Text contact 3-53 TE Window subroutines 6-148, 6-218, 6-219

SetEnabled subroutine 3-2, 6-207 Terminal window 4-5, 5-3, 5-6
SetEnabledNVGroup subroutine 3-61, 5-5, 5-10, 6-208 returning to RealLink 5-10
SetEventMask subroutine 3-3, 4-4, 6-209 setting 5-9

using a child window as 5-6AppContext object 3-4, 4-5
Text canvasNewView 5-9

AppWindow contact 3-9SetHelpFile subroutine 3-5, 3-6, 6-210, 8-4, 8-5
ChildWindow contact 3-15SetHelpIndex subroutine 3-2, 3-6, 6-210, 8-4, 8-6

Text contact 3-53 to 3-54Clipboard object 3-18
compared with DrawTextString subroutine 3-53SetHelpKey subroutine 3-5, 3-6, 6-210, 8-5, 8-6
InclusiveGroup contact 3-32SetMapped subroutine 3-2, 6-211
NewView 5-4SetMappedNVGroup subroutine 3-61, 5-5, 5-10, 6-212
resource script C-9SetNVHelp subroutine 5-8, 6-213
subroutines 6-76, 6-236, 6-237SetPointer subroutine 3-45, 3-46, 6-214

Text strings, assigning to NewView groups 5-2AppWindow contact 3-11
TextEditor contact 3-54 to 3-58ChildWindow contact 3-16

Clipboard object 3-18SetPointerPos subroutine 3-46, 6-215
InclusiveGroup contact 3-32SetSecondaryEventMask subroutine 4-6, 4-13, 4-15,

6-216 resource script C-9
subroutines 6-78, 6-234, 6-235

UIMS DATA/BASIC API, Reference Manual Index-11

Index

TextEditor contact (cont.) UIMS.EM.DBLCLICK event mask 4-14
UIMS.MSG.SELECT message 4-35 UIMS.EM.DRAG event mask 4-16
user interface 3-55 UIMS.EM.ENTER event mask 4-18

TextEditorGetContent subroutine 3-55, 6-234 UIMS.EM.EXIT event mask 4-19
UIMS.EM.HSCROLL event mask 4-20TextEditorGetTextLen subroutine 3-55, 6-234
UIMS.EM.IDLE event mask 4-21TextEditorSetContent subroutine 3-55, 6-235
UIMS.EM.KEYPRESS event mask 4-22TextGetContent subroutine 3-53, 6-236
UIMS.EM.KILL event mask 4-23TextSetContent subroutine 3-53, 6-237
UIMS.EM.LBOX.DESELECT event mask 4-24TextSetJustification subroutine 3-53, 6-237
UIMS.EM.LBOX.SELECT event mask 4-25Thumb, defined Glossary-4
UIMS.EM.LEAVE event mask 4-26Title bar, defined Glossary-4
UIMS.EM.MENUITEM event mask 4-27Titled button, defined Glossary-4
UIMS.EM.MOTION event mask 4-28TitledButton contact 3-55 to 3-59
UIMS.EM.MOVE event mask 4-29AppWindow contact 3-11
UIMS.EM.NEWVIEW event mask 4-5, 5-9ChildWindow contact 3-17
UIMS.EM.NOTIFY event mask 4-30DialogBox contact 3-20
UIMS.EM.PRESS event mask 4-31NewView 5-4
UIMS.EM.RELEASE event mask 4-32resource script C-9
UIMS.EM.SCROLL event mask 4-33subroutines 6-80, 6-238
UIMS.EM.SELECT event mask 4-35UIMS.MSG.BUTTONPRESS message 4-10
UIMS.EM.SIZE event mask 4-36TitledButtonSetStyle subroutine 3-58, 6-238
UIMS.EM.TIMER event mask 4-37TitledButtonSetTitle subroutine 3-58, 6-238
UIMS.EM.UPDATE event mask 4-38TypeFace object 3-59 to 3-61
UIMS.EM.VSCROLL event mask 4-39Font object 3-30
UIMS.MSG.BUTTONPRESS message 4-4, 4-8, 4-10subroutines 6-149, 6-239
UIMS.MSG.CLICK message 4-11SystemDictionary object 3-52
UIMS.MSG.CLOSE message 4-4, 4-7, 4-12TypeFaceGetName subroutine 3-60, 6-239
UIMS.MSG.CREATE message 4-6, 4-7, 4-13TypeFaceGetPointSize subroutine 3-60, 6-239
UIMS.MSG.DBLCLICK message 4-7, 4-14TypeFaceGetPointSizes subroutine 3-30, 3-60, 6-239
UIMS.MSG.DESTROY message 4-6, 4-7, 4-15

U
UIMS.MSG.DRAG message 4-7, 4-16
UIMS.MSG.ENTER message 4-7, 4-18
UIMS.MSG.EXIT message 4-3, 4-4, 4-8, 4-19UIK.P.DRAG pointer modifier 4-16
UIMS.MSG.HSCROLL message 4-7, 4-20UIMS
UIMS.MSG.IDLE message 4-4, 4-8, 4-21DATA/BASIC API 2-4
UIMS.MSG.KEYPRESS message 4-4, 4-7, 4-22resource compiler – see Resource compiler
UIMS.MSG.KILL message 4-7, 4-23software 2-4
UIMS.MSG.LBOX.DESELECT message 4-8, 4-24UIMS-DDE INCLUDE item D-5
UIMS.MSG.LBOX.SELECT message 4-8, 4-25UIMS-TOOLS file 5-9, 6-2, D-1

UIMS.CAPABLE variable 5-9 UIMS.MSG.LEAVE message 4-7, 4-26
UIMS.EM.BUTTONPRESS event mask 4-10 UIMS.MSG.MENUITEM message 4-3, 4-4, 4-8, 4-27,

8-5UIMS.EM.CLICK event mask 4-11
UIMS.EM.CLOSE event mask 4-12 UIMS.MSG.MOTION message 4-7, 4-28

Index-12 UIMS DATA/BASIC API, Reference Manual

Index

UIMS.MSG.MOVE message 4-7, 4-29
UIMS.MSG.NOTIFY message 4-4, 4-8, 4-30
UIMS.MSG.PRESS message 4-7, 4-31
UIMS.MSG.RELEASE message 4-7, 4-32
UIMS.MSG.SCROLL message 4-8, 4-33
UIMS.MSG.SELECT message 4-8, 4-35
UIMS.MSG.SIZE message 4-7, 4-36
UIMS.MSG.TIMER message 4-8, 4-37
UIMS.MSG.UPDATE message 4-7, 4-38
UIMS.MSG.VSCROLL message 4-7, 4-39
UIMSCOMMON INCLUDE item 5-9, 6-2
UIMSDEFS INCLUDE item 5-9, 6-2, D-2
UngrabPointer subroutine 3-46, 6-240
UnMap subroutine 3-2, 4-12, 6-241
UPDATE attribute, resource script C-11
URCPATH DOS environment variable 7-15
User interface

EditBox contact 3-26
ListBox contact 3-36, 3-37
ScrollBar contact 3-50
TextEditor contact 3-55

Using compiled resources 7-20

V

Virtual keys, resource script settings C-11

W

WaitPointerOff subroutine 3-5, 3-46, 6-242
WaitPointerOn subroutine 3-5, 3-46, 6-243
White-space characters, in resource script 7-9
Window

help 8-2
terminal 4-5, 5-3, 5-6, 5-9, 5-10

Window messages 4-7
Windows programs, starting 6-116, 6-229

UIMS DATA/BASIC API, Reference Manual Index-13

