

RealityX FailSafe
V3.1

Reference Manual

All trademarks including but not limited to brand names, logos and product names referred to in this document are trademarks or
registered trademarks of Northgate Information Solutions UK Limited (Northgate) or where appropriate a third party.

This document is protected by laws in England and other countries. Unauthorised use, transmission, reproduction, distribution or storage
in any form or by any means in whole or in part is prohibited unless expressly authorised in writing by Northgate. In the event of any such
violations or attempted violations of this notice, Northgate reserves all rights it has in contract and in law, including without limitation, the
right to terminate the contract without notice.

© Copyright Northgate Information Solutions UK Limited, 2006.

Document No. UM70006220AX5
September 1992

Northgate Information Solutions UK Limited
Peoplebuilding 2
Peoplebuilding Estate
Maylands Avenue
Hemel Hempstead
Herts
HP2 4NW

Tel: +44 (0)1442 232424
Fax: +44 (0)1442 256454

www.northgate-is.com

Chapter 1 About this Manual

Purpose 1-2
Intended Readership 1-2
Assumed Knowledge 1-2
References 1-2
Comment Sheet 1-2

Introducing FailSafe Operation 1-3
Contents 1-4
Conventions 1-5

Chapter 2 Outline of Operation

Overview 2-2
Transaction Handling 2-3

What is a Transaction 2-3
Example of a Transaction 2-3
What is Transaction Handling? 2-4
Executing a Transaction 2-5
Aborting a Transaction 2-5
Forced Abort and Logoff of a Transaction 2-5

Transaction Logging 2-7
What is Transaction Logging? 2-7

FailSafe Operation 2-10
Database Recovery 2-13

Recovery Methods 2-13
Hit Process Recovery 2-13

Chapter 3 Guidelines for Managing Logs

Locating of the Raw Log and Clean Logs 3-2
Raw Log 3-2
Clean Logs 3-2
Clean Log File System 3-2
Use of a Log Disk 3-3

Reality X FailSafe Reference Manual Contents-1

Estimating Raw Log Size 3-4
The 5 Minute Factor 3-4
Allowing for Longest Transaction 3-4
How Update Data is Stored 3-4
Size of Image Header 3-4
Transaction Boundary Images 3-4
Parameters Affecting Raw Log Size 3-5
Maximum Number of Updates (A) 3-5
Bytes Per Update (B) 3-5
Bytes For Transaction Boundaries (C) 3-5
Calculation of Raw Log Size (R) 3-6
Without Transactions 3-6
Minimum Size of Raw Log 3-6

Managing Clean Logs 3-7
Esimating Clean Log Growth Rate (G) 3-7
Avoiding a Clean Log Full Condition 3-8
Multiple Databases 3-8
Naming Clean Logs 3-8
Viewing Clean Logs 3-9
Log Archiving Policy 3-10

Chapter 4 Setting Up Procedures

Commands and Utilities used for Setting Up FailSafe Operation 4-2
TCL Commands 4-2
UNIX Tools 4-2

Setting Up a FailSafe Database 4-3
Setting Up Transaction Handling/Logging 4-4
Defining the Files to be Logged 4-4
Saving the Database to Tape 4-4
Creating an Identical Database 4-5
Configuring the Secondary 4-6
Configuring the Primary 4-7

Contents-2 Reality X FailSafe Reference Manual

Chapter 5 Operating Procedures

Commands and Utilities Referenced in this Chapter 5-2
Initial Startup Procedure 5-3
Switching to a New Clean Log 5-5
Reversing Roles in FailSafe Pair 5-8
Shut-down Procedures 5-10

Shutting Down a FailSafe Pair 5-10
Suspending the Secondary Database 5-11
Shutting Down the Secondary Database Only 5-12
Shutting Down a System 5-12

Archiving Clean Logs 5-13
Using TL-DUMP 5-13
Using cpio 5-13

Retrieving Clean Logs 5-15
Using TL-LOAD 5-15
Using cpio 5-15

Facilities to Monitor Transaction Logging 5-17

Chapter 6 Recovery Procedures

Commands and Utilities Referenced in this Chapter 6-2
Introducing Recovery Methods 6-3

Full Recovery 6-3
Selective Recovery 6-4

First Steps to Recovery 6-5
Option 1 - Using TL-REDUAL to Restore a Chain of Clean Logs
in One Sequence 6-9
Option 2- Using TL-REDUAL to Restore Clean Logs One at a Time 6-11
Option 3 - Using TL-RESTORE to Restore Chained Clean Logs in One Sequence,
then TL-REDUAL 6-14
Option 4 - Using TL-RESTORE to Restore Clean Logs One at a Time, then TL-
REDUAL 6-17
Copying Clean Logs between Databases 6-20

Copying Clean Logs via Tape 6-20
Copying Clean Logs via a Network 6-20

Reality X FailSafe Reference Manual Contents-3

Chapter 7 UNIX Tools

fsadm 7-2
killreal 7-4
lockdbase 7-5
mklog - Making a Raw Log 7-6
mklog - Making a Clean Log Sub-directory 7-7
runrealcd 7-9
unlockdbase 7-10

Chapter 8 TCL Commands

TCL Commands Described in this Chapter 8-2
Modified Standard Commands 8-2

ACCOUNT-RESTORE 8-3
CREATE-FILE 8-4
CREATE-ACCOUNT 8-5
FSADM 8-6
FSADM-PRIMARY 8-8
FSADM-SECONDARY 8-9
FSADM-STATUS 8-10
FSADM-UNPAIR 8-11
SEL-RESTORE 8-12
TL-CONTINUE 8-13
TL-CREATE-FILE 8-14
TL-DUMP 8-15
TL-LISTFILES 8-16
TL-LOAD 8-17
TL-REDUAL 8-18
TL-RESTORE 8-20
TL-SET-LOG-STATUS 8-23
TL-START 8-31
TL-STATUS 8-32
TL-STOP 8-35
TL-SWITCH 8-36
TL-TRANSACTIONS 8-37

Contents-4 Reality X FailSafe Reference Manual

Chapter 9 Log Files

Overview 9-2
Log Files 9-3

Log Item Format 9-3
History File - TL-LIST 9-5
Using ENGLISH to Examine a Log 9-6

Log Item Attributes 9-6
Macros 9-7

Chapter 10 Applications Interface

Introduction 10-2
Item Locking 10-3
Avoid File Creation/Deletion Within a Transaction 10-3

TCL/PROC Interface to Transactions 10-4
TRANSTART Verb 10-5
TRANSEND Verb 10-6
TRANSABORT Verb 10-7
TRANSQUERY Verb 10-8
DATA/BASIC Interface to Transactions 10-9
TRANSEND Statement 10-11
TRANSABORT Statement 10-12
TRANSQUERY Function 10-13
Example of Transaction Boundaries in a DATA/BASIC Program 10-14
ALL Interface to Transactions 10-18

Function Level Transaction Boundaries 10-18
Function Definition Screen 10-18
Block Level Transaction Boundaries 10-19
Function Characteristics Screen 10-19
Non-Paging Screens 10-20
Paging Screens 10-20
Random Paging Updates 10-20
Subfiles 10-20

Reality X FailSafe Reference Manual Contents-5

Identifying Transactions 10-21
Where to Set @$TRVAR 10-21
Item Locks In ALL 10-21
Aborting Transactions 10-21
Logging Of Files 10-21
The Chain Command 10-21
External Calls 10-21

Notes on Defining Transactions in ALL 10-22

Appendix A Error Messages

Appendix B Installation of Transaction Handling/Logging

Introduction B-2
Procedure for UMAX V Systems B-3

Removing Swap Partitions from Log Disk B-3
Removing File Systems from Log Disk B-4
Defining the Raw Log and Clean Log Partitions B-6
Creating the Clean Log File System B-8
Initialising the Raw Log B-8
Configuring a database for logging B-8

Procedure for M88 Systems B-10

Glossary

Index

List of Figures

Figure 2-1 Transaction Handling/Logging Paths 2-6
Figure 2-2 Logging Path of a FailSafe Pair
Figure 2-3 FailSafe Operation with Multiple Databases 2-12
Figure 4-1 FailSafe Setup 4-3
Figure 6-1 Flowchart to Choose Clean Log Restore Procedure 6-7
Figure 6-2 Example of Clean Log Restore Sequence 6-8

Contents-6 Reality X FailSafe Reference Manual

Chapter 1
About this Manual

This chapter describes the purpose and use of this manual, including:

• The intended readership and the knowledge they are assumed to have in
 order to use the manual.

• A list of associated manuals.

• A brief introduction to FailSafe operation.

• A summary of chapter contents,.

• A list of conventions used in the manual.

1-1
Draft 9/92

Purpose

This manual contains the information necessary to administer and operate FailSafe for a
Reality X database.

Intended The manual is aimed at:
Readership

• The System Administrator responsible for setting up and maintaining the FailSafe pair.

• Operators responsible for the day-to-day operation of the FailSafe database.

• Programmers responsible for creating or modifying applications to include transactions.

Assumed It is assumed that the reader understands the basics of UNIX and Reality X administration and
Knowledge has appropriate knowledge of TCL, ENGLISH, DATA/BASIC and PROC. Detailed

information on these subjects can be obtained from the manuals listed later in this chapter.

References The following manuals provide reference information for the commands and procedures
described in this manual.

Administrator's Guide to Reality X

Reality X Differences Supplement

You also need a set of REALITY Release 7.0 manuals which are used in conjunction with the
Reality X Differences Supplement to provide information on the RealityX applications
environment. A list of Release 7.0 manuals is given in the supplement.

For information on the UNIX environment, refer to the set of reference manuals supplied with
your UNIX system

Comment Sheet A Comment Sheet is included at the front of this manual. If you find any errors or have any
suggestions for improvements in the manual please complete and return the form. If it has
already been used then send your comments to the Technical Publications Manager at the
address on the title page.

1-2 Reality X FailSafe Reference Manual
Draft 9/92

Introducing FailSafe Operation

FailSafe operation is an optional facility supported by RealityX which maintains a two
identical databases for one set of users. One database is the live one to which users can log on
and carry out update operations. The other database is maintained as a standby to which users
can switch if the live database fails. The live database is designated the 'primary' and the
standby duplicate database is designated the 'secondary'.

On a machine containing multiple databases it is not necessary for all live databases to operate
in FailSafe mode, nor is it necessary to maintain all primary or all secondary databases on the
same machine. RealityX FailSafe software supports complete flexibility in the setting up and
location of FailSafe databases pairs across two or more machines. FailSafe operation is an
extension of the RealityX Transaction Logging software.

The consistency and integrity of a FailSafe database can be maintained by the Transaction
Handling facility; a standard feature of RealityX.

Transaction Transaction Handling maintains a sequence of updates to a database as a single 'transaction'.
Handling The contents of the transaction are application-defined using two commands, 'transaction start'

and 'transaction end'. If the transaction is not completed, all updates since its start are deleted
and the original data items restored (rolled back) to maintain the consistency of the database.

Transaction Transaction Logging saves updates to the primary database and logs them on disk. Initially
Logging all updates are logged in raw partitions, called 'raw logs', one locally on the machine

containing the primary database and the other, remotely via a communications link to the
machine containing the secondary database. Normally there is one raw log per system

Independent updates and completed transactions logged in the local and remote raw logs are
then written to a log file called a clean log where they are stored for back-up purposes. One
clean log must be provided for each database, primary and secondary.

The FailSafe logging mechanism maintains the secondary as a real-time duplicate of the
primary by applying all updates logged in the secondary clean log to the secondary database

About this Manual 1-3
Draft 9/92

Contents

This comprises:

Chapter 1 (this chapter).

Chapter 2, Introduction, contains an overview of FailSafe and a description of Transaction
Logging and how it is used to implement FailSafe operation. It also describes the Transaction
Handling mechanisms, used to maintain a consistent database.

Chapter 3, Guidelines for Managing Logs, contains recommendations to the System
Administrator on estimating the size of the raw log and clean log partitions, and administering
their use to facilitate maximum operating efficiency of Transaction Logging.

Chapter 4, Setting Up Procedures, describes the procedures used by the System
Administrator to configure the systems and databases for FailSafe operation.

Chapter 5, Operating Procedures, describes procedures and facilities used by the System
Operator to enable efficient day-to-day operation of a FailSafe database.

Chapter 6, Recovery Procedures, describes the facilities available to the System
Administrator and/or Operator for recovering a FailSafe database and restoring it to its most
current, consistent and predictable state after a system failure.

Chapter 7, UNIX Tools, describes the utilities available to administer a FailSafe pair.

Chapter 8, TCL Commands, details in alphabetical order the TCL commands available to run
a FailSafe configuration.

Chapter 9, Examining Log Files, describes the purpose and contents of various log and
history files supported by Reality X and explains how ENGLISH can be used to examine
them.

Chapter 10, Applications Interface, is directed at programmers and describes the use of
transactions within DATA/BASIC, PROC, TCL and ALL applications.

Appendix A, Error Messages, lists of error messages that may be generated in a FailSafe
configuration and suggests actions that should be taken in response.

Appendix B, Installation of Transaction Handling and Logging, details the procedure to
follow in order to install transaction processing on a system.

Glossary and Index are included at the end of the manual.

1-4 Reality X FailSafe Reference Manual
Draft 9/92

Conventions

This manual uses the following conventions:

Text Bold text shown in this typeface is used to indicate input which must
be typed at the terminal.

Text Text shown in this typeface is used to show text that is output to the
screen.

Bold text Bold text in syntax descriptions represents characters typed exactly as
shown. For example

 WHO

text Characters or words in italics indicate parameters which must be
supplied by the user. For example in

 LIST file-name

the parameter file-name is italicized to indicate that you must supply
the name of the actual file defined on your system.

Italic text is also used for titles of documents referred to by this
document.

{Braces} Braces enclose options and optional parameters. For example in

 BLIST {DICT} file-name item-id {(options}

• the word DICT can optionally be typed to specify the dictionary
of the file.

• file-name and item-id must be supplied

• one or more single-letter options can be included, as defined for
the command; these must be preceded by an open parenthesis,
can be given in any order, and are not separated by spaces. Any
number of options can be used except where specified in text.

About this Manual 1-5
Draft 9/92

[param | param] Parameters shown separated by vertical lines within square brackets in
syntax descriptions indicate that at least one of these parameters must
be selected. For instance,

 [THEN statements | ELSE statements]

indicates that either a THEN clause or an ELSE clause must be
included (or both).

... In syntax descriptions, indicates that the parameters preceding can be
repeated as many times as necessary.

SMALL CAPITALS Small capitals are used for the names of keys such as RETURN.

CTRL+X Two (or more) key names joined by a plus sign (+) indicate a
combination of keys, where the first key(s) must be held down while
the second (or last) is pressed. For example, CTRL+X indicates that the
CTRL key must be held down while the X key is pressed.

Enter To enter means to type text then press RETURN. For instance, 'Enter the
WHO command' means type WHO, then press return.

In general, the RETURN key (shown as ENTER or ¿ on some keyboards)
must be used to complete all terminal input unless otherwise specified.

Press Press single key or key combination but do not press RETURN

afterwards.

X'nn' This denotes a hexadecimal value.

1-6 Reality X FailSafe Reference Manual
Draft 9/92

Chapter 2
Outline of Operation

This chapter provides an elementary introduction to the operation of

Reality X FailSafe and the associated Transaction Logging and Handling

facilities. The description is given in the following order:

• Transaction Handling. The concept of a transaction is explained with a
simple example, and the facilities available to applications programmers
are described.

• Transaction Logging. The basic elements of logging to the raw log and
logging to clean logs are discussed.

• FailSafe operation. The purpose and operation of logging in a FailSafe
pair is described. The description is extended to multiple databases.

• Database Recovery. Only a brief overview of recovery methods and
procedures is provided here. For detailed procedures you must refer to
Chapter 6.

2-1
Draft 9/92

Overview

Reality X FailSafe software maintains two identical databases; one as the live database to
which users log on and one as a duplicate of the live database which is used as a standby.
Users can then switch to the standby if the live database fails. The two databases are normally
located on different machines so that one remains functional if a machine crashes. The live
database is designated the 'primary' and the standby is designated the 'secondary'

The Reality X FailSafe software logs updates on the primary database to two log files. One is
associated with the primary database and one is associated with the secondary. The logging
mechanism which saves the updates in the secondary's log, also applies them to the secondary
database to maintain it as a real-time duplicate of the primary. The FailSafe logging software
is an extension of the Transaction Logging software available for a stand-alone database.

The consistency and integrity of the primary and secondary databases when performing a set
of interdependent updates (a transaction) are maintained by Transaction Handling, if
transactions have been incorporated into the application being run. Transaction Handling is a
standard facility of Reality X.

2-2 Reality X FailSafe Reference Manual
Draft 9/92

Transaction Handling

Transaction Handling is a standard software facility on Reality X by which a database is
maintained in a consistent and predictable state when performing transactions. This section
contains a description of what it is and how it works.

What is a A transaction is a set of related updates made to a database which can be logically grouped
Transaction together by Transaction Handling 'start' and 'end' commands. Each update is a single change

made to the database, from DATA/BASIC, PROC, TCL or ALL, by creating, altering or
deleting an item. Individual updates not grouped into a transaction are defined as being
'independent'.

The relationship between updates belonging to a transaction and logically grouped by
transaction start and end commands may be defined as follows:

• if one update within the transaction is applied to the database, then all of the remaining
updates within the transaction must be applied in order to maintain a consistent database.

The following example may make the concept clearer:

Example of a Consider a stock control program which generates a set of updates from a single input; first to
Transaction an Orders file, then to a Customer file, and then finally to a Stock file. The program can be

considered in four stages.

1. Details of an order are entered.

2. The Orders file is updated with the name and address of the customer, the goods ordered,
the price and the date of order.

3. The Customer file is updated with the date of order, the goods ordered and the price, so
that an invoice can be produced

4 The company Stock file is updated, subtracting the quantity of goods ordered from the
current stock.

If the program were aborted after stage 2, this would mean an order would be sent out, but the
customer would not receive the invoice produced by stage 3 (Customer file) and the Stock file
would not be amended, causing 'out of stock' problems in the future.

To maintain a consistent database, Stages 1 to 4 must all be completed, that is, they must be
maintained as a single transaction. Transaction Handling facilities are provided to do this.

The creation of transactions by applications programmers is discussed in Chapter 10.

Description of Operation 2-3
Draft 9/92

What is Transaction Handling ensures that the updates defined as belonging within a transaction are
Transaction maintained together as a set, so that, if a transaction is not completed, the updates made since
Handling? the start of the transaction are deleted from the database and the pre-updated items are

restored. This maintains the database in a predictable and consistent state.

Transaction Handling also suspends the release of item locks set within transactions. These
remain locked until the end of a transaction. This prevents inconsistencies in data due to
attempted simultaneous update of one or more items by processes which are not involved in
the transaction.

Transaction Handling supports three transaction boundary commands.

TRANSTART which marks the start of a transaction.

TRANSEND which marks the end of a successful transaction, i.e. the transaction is
committed.

TRANSABORT which marks the end of an unsuccessful transaction, i.e. the transaction
is rolled back.

These boundary markers are implemented as TCL commands, DATA/BASIC statements and
ALL functions. Refer to Chapter 10 for a more detailed description.

A fourth transaction command, TRANSQUERY, can be used to find out the transaction status
of the current port. This can be executed, either by a TCL command or a DATA/BASIC
function.

The transaction boundary markers, TRANSTART, TRANSEND and TRANSABORT, can be
used to update existing application code to incorporate transactions. This may (in some cases)
require some restructuring of the application in order to collect related updates together, so
that they are performed in sequence and can therefore be defined as a transaction. When
designing applications to incorporate transactions, the definition of transactions should be an
integral part of the design.

It is important that transactions are made as short as possible in order to minimise the effect of
the Transaction Handling mechanism on the overall efficiency of the system.

2-4 Reality X FailSafe Reference Manual
Draft 9/92

Executing a A transaction is started by executing a TRANSTART operation from ALL, DATA/BASIC,
Transaction TCL, or PROC and completed by executing a TRANSEND.

During each transaction the following events occur:

• Whenever a database update occurs within the transaction, a 'Before' image is copied into
a central log on disk called the 'raw log' (See Figure 2-1). Each 'Before' image contains
enough information to reverse the effect of the change to the database brought about by
the update. For example, if you update an existing item, the 'Before' image that is logged
contains a copy of the item before it was changed. If you create an item, the 'Before'
image that islogged is 'delete item'. 'Before' images are only held for the duration of the
transaction.

• Items locked in a transaction are kept locked until a TRANSEND or TRANSABORT is
issued. This prevents other transactions or processes reading updated items while the
current transaction is still in progress, thus preventing dirty and unrepeatable reads (see
Glossary). All item locks set during a transaction remain locked until the 'transaction
commit' or 'transaction abort', after which they are released.

Note: It is important that all processes use item locking to prevent dirty reads. Items that
are updated without having been locked previously are not guaranteed to be
recovered correctly by a TRANSABORT

• TRANSEND generates a 'transaction precommit', followed by a 'transaction commit'.
Transaction commit indicates that the transaction is completed. 'Before' images are only
held in the raw log for the duration of the transaction. Once a transaction is committed,
i.e. the 'transaction commit' is logged in the raw log, the 'Before' images are discarded and
all the item locks held by the transaction are released.

Aborting a If a transaction is aborted, either deliberately by TRANSABORT or by a forced log off
Transaction occurring mid-transaction, the transaction is 'rolled back' by applying the 'Before' images to

the database in reverse order. The 'Before images are then discarded.

Forced Abort and Two conditions will force a transaction to abort automatically and logoff.
Logoff of a
Transaction 1. If the raw log becomes excessively full (>85%), then the oldest transaction, and

therefore the longest, is forcibly aborted and logged off.

2. A transaction longer than a pre-defined timeout period will be forcibly aborted. The
timeout period is specified in minutes in the environmental variable
REALTXNTIMEOUT which should be set up by the system administrator in
/etc/realityrc. The default is 8 hours (480 minutes). If REALTXNTIMEOUT is
changed, the new value becomes effective the next time the central daemon is started.

Description of Operation 2-5
Draft 9/92

Database 'A'
(T.H./T.L. enabled)

Stand-alone Host

raw
log

clean
log
(A)

'Before' + 'After'
images of
logged updates

Database 'B'
(T.H./T.L. enabled)

clean
log
(B)

'Before' + 'After'
images of
logged updates

via
Shared
Memory
Buffer

'After' images
of committed transactions
+ independent updates
(Unsync.write, 5 min. factor)

'After' images
of committed transactions
+ independent updates
(Unsync.write, 5 min. factor)

Database 'C'
(T.H./T.L. not
supported)

Database 'D'
(T.H only)

'Before' images
of updates
in transactions

T.H. - Transaction Handling
T.L. - Transaction Logging

updates

updatesupdates

updates

Figure 2-1 Transaction Handling/Logging Paths

2-6 Reality X FailSafe Reference Manual
Draft 9/92

Transaction Logging

What is Transaction Logging is a software facility which permanently saves completed transactions
Transaction and independent updates to disk, so that, in the event of a database failure, the logged updates
Logging? can be restored so as to recover the most recent version of the database.

With transactions defined, Transaction Handling and Transaction Logging operate together to
ensure the consistency of the database in the event of a failure. Only committed transactions
are logged. Aborted transactions, initiated by a TRANSABORT or program failure, are
rolled-back to restore the database to the state it was in before the current transaction was
started.

If a database failure, the database can be recovered by restoring the most recent back-up tape,
then restoring all committed transactions and independent updates logged since the back-up
was made.

How Transaction Figure 2-1 illustrates the logging paths for Transaction Handling/Logging on a system
Logging Works containing multiple databases. Note that not all databases on a system have support

Transaction Logging or Logging. In the example, only Databases 'A' and 'B' support
Transaction Handling and Transaction Logging. Database 'C' does not support either, and
Database 'D' supports Transaction Handling only, so that only 'Before' images are written to
the raw log.

Images Written to the Transaction Handling/Logging writes two images to the raw log for each logged update, a
Raw Log 'Before' image and an 'After' image. These are defined, as follows:

'Before' image This defines how the updated item is restored to its original value.
This is supported by the Transaction Handling mechanism to roll-back
the updated item to its original value if the system or process fails in
mid-transaction or in the event of a 'transaction abort'.

'After' image This defines the item update. This is saved to enable recovery of the
updated item in the event of a system/program failure.

For a committed transaction three transaction boundary images are written to the raw log,
Start, Precommit and Commit. TRANSEND generates a Precommit, then a Commit.

For an aborted transaction two transaction boundary images are written to the raw log, Start
and Abort.

Description of Operation 2-7
Draft 9/92

The Raw Log The raw log is a central log located on disk (normally one per system) to which is written
'Before' and 'After' images for all recently logged updates for all databases on a system. It is
located in a raw partition, normally on a disk dedicated to logging (the log disk), and operates
as a cyclic buffer. The raw partition is created by the administrator when setting up
Transaction Logging. Chapter 3 discusses the sizing of the raw partition.

The raw log is the key component of the Reality X Transaction Handling and Logging system.
The complex cyclic queue structure ensures efficient and secure storage of 'Before' and 'After'
images for all active and recently committed transactions and independent updates. It
supports the following facilities:

• Roll-back of transactions in the event of an abort or program failure.

• Buffering for 'After' Images before they are written to a clean log.

Writing to the Raw log 'Before' and 'After' images are written to the raw log via a cyclic buffer in shared memory.
This buffer is common to all databases. The shared memory buffer is maintained as an image
of the current write point on the raw log. Each user copies images to the shared memory
buffer and the buffer is 'flushed' to raw disk, either periodically or by a transaction being
completed. The transfer to disk from the shared memory buffer to the raw log is carried out
by a synchronised write.

The two operations of copying a committed transaction to the shared memory buffer and
logging it to disk can be synchronised or unsynchronised. Synchronised logging is referred to
a FULL logging mode and unsynchronised logging is referred to as BRISK logging. The
mode is set as part of the Transaction Logging setting up procedure using the mklog utility.
See Chapter 7 for details.

In FULL logging mode, the shared memory buffer is flushed each time a 'transaction commit'
image is copied to it. This ensures that all committed transactions are written safely to disk
immediately so that they cannot be lost in a system crash. However, this has a performance
overhead, in that the user process waits until the synchronised write to disk is completed
before continuing. Note that, on receiving the 'commit' image all previous images in the
shared memory buffer are flushed to disk. If transactions are not in use, i.e. no 'transaction
commits' copied to shared memory, the buffer is flushed periodically only, or when full.

In BRISK logging mode, the shared memory is not flushed by a 'transaction commit', but is
flushed periodically or when full. This improves up the performance of the database, but does
mean there is a potential for losing committed transactions from the memory buffer during the
period between flushes.

2-8 Reality X FailSafe Reference Manual
Draft 9/92

Writing to Clean Log When a transaction is committed, that is, the 'transaction commit' image is written to the raw
log, all 'After' images and 'transaction boundary' images for that transaction are written to a
clean log file which is assigned to database on which the transaction is performed. All images
relating to that transaction are then cleared from the raw log, i.e. 'Before' images are
discarded.

'Before' and 'After' images are maintained in the raw log, after being written to a clean log, for
just under 5 minutes. This is because the writing to the clean log is via memory buffers and is
unsynchronised. It is, therefore, necessary to allow 5 minutes to ensure that the images have
reached the safety of the clean log disk and will not be lost if the system crashes. If the
system does crash, the images can then be recovered from the raw log and written to the clean
log. After 5 minutes all committed transactions and independent updates in the raw log are
cleared.

Clean log A clean log is a serial file (one per database) which is created to hold committed transactions
and independent updates for one associated database. Transactions are written to it in the
order in which they are committed. Each transaction on a clean log file consists of a copy of
the sequence of logged 'After' images and 'transaction boundary' images for that transaction.
The contents of an inactive clean log can be used to restore updates to its associated database
in the event of a system/program failure. Refer to the section on recovery at the end of this
chapter. Operations on logs are not logged as this might leads to obvious conflict (e.g.
CLEAR-FILE on a clean log).

Description of Operation 2-9
Draft 9/92

FailSafe Operation

FailSafe operation maintains two identical databases for one set of users; the live database that
is, the one to which users log on and a duplicate of the live database which is used as a
standby and is not normally accessed by users. The standby is normally on a different
machine from the live database to guard against machine failure. If the live database fails,
then users can switch to the standby and continue operating with only a short break in service
and minimal loss of data. The live database is referred to as the 'primary' and the standby
database is referred to as the 'secondary '.

FailSafe is an extension of Transaction Logging on a stand-alone machine. Figure 2-2
illustrates the logging path in a FailSafe configuration.

clean
log
(sec.)

Secondary
Database

clean
log
(prim.)

raw
log

raw
log

machine to
machine link

committed txns
+ updates

committed txns
+ updates from
primary

logged
primary
updates

Local System Remote System
committed txns
+ updates

primary updates

Primary
Database

Users

Figure 2-2 Logging Path of a FailSafe Pair

'Before' and 'After' images for all primary database updates are written to two raw logs; one on
the local machine containing the primary database and one on the remote machine containing
the secondary database, via a machine to machine communications link.

Committed transactions and independent updates in the local and remote raw logs,
respectively, are then written to clean logs for the primary and secondary databases,
respectively. Transactions and independent updates logged to the secondary's clean log are
also applied to the secondary database to shadow the primary.

2-10 Reality X FailSafe Reference Manual
Draft 9/92

Reality X supports multiple databases on one system. It is not necessary for all databases on a
system to operate in FailSafe mode. Some may operate in FailSafe mode while others may be
stand-alone unresilient databases, with or without Transaction Logging. There are also no
technical limitations on where the primary and secondary databases in a FailSafe pair are
located. However, it is necessary that each half of a pair should be on a different system, so
that in the event of a system failure, one database remains in service, otherwise the purpose of
FailSafe operation is negated. Unrelated primary and secondary databases may be located on
the same system.

Figure 2-3 illustrates FailSafe operation in a multiple database configuration, showing two
FailSafe pairs (Databases A and B) and an unresilient database not using transaction
boundaries (Database C). Note that FailSafe operation can take place in both directions across
the machine to machine link. Updates from local and remote primaries are stored in the same
raw log.

While operating in FailSafe mode, the secondary database is closed to all users except the
system super-user (root). Even the super-user should exercise extreme caution as update
operations on the secondary may lead to loss of synchronisation between the two databases.

If a primary database becomes unavailable, for example, due to a system crash, the secondary
database can be converted to be the primary, without loss of transaction integrity and with
minimum loss of data and service. The transfer of users to the secondary is a manual
operation. If a secondary database becomes unavailable, the primary continues unaffected as
a stand-alone database.

The failed database, whether primary or secondary, can be recovered by restoring the most
recent file-save and clean log(s). The restored database can then be re-introduced as a
secondary and synchronised with the primary without affecting the users. FailSafe operation
is then resumed. In the case of primary failure, primary/secondary roles will be reversed after
recovery. Refer to Chapter 6 for details.

Description of Operation 2-11
Draft 9/92

clean
log
(prim.A)

Primary
Database

'A'

clean
log
(sec.B)

clean
log
(prim.B)

clean
log
(sec.A)

Database
'C'

Secondary
Database

'A'

Primary
Database

'B'

Secondary
Database

'B'

Local System Remote System

raw
lograw

log

Users

logged
primary 'A'
updates Primary 'A' committed

txns + updates

Primary 'B'
committed txns
+ updates

Primary 'B'
committed txns
+ updates logged

primary 'B'
updates

Primary 'A'
committed txns
+ updates

Primary 'A'
committed txns
+ updates

main working
database

unresilient
database

machine-to-machine
bidirectional link

small
'live'
database
(eg. personnel)

logged primary 'B' updates

logged primary 'A' updates

Users

Users

Figure 2-3 FailSafe Operation with Multiple Databases

2-12 Reality X FailSafe Reference Manual
Draft 9/92

Database Recovery

Recovery Methods Currently, Transaction Logging supports three methods to recover the most recent, consistent
and predictable version of a database. They are:

• Hit Process Recovery

• Full Recovery

• Selective Recovery

Hit Process Recovery Hit Process Recovery is an automatic recovery mode which restores a database to a consistent
state, after a process has crashed or been killed.

This recovery method is supported by Transaction Handling with or without Transaction
Logging. Whem a failure occurs, it rolls back all updates in incomplete transactions, restoring
their 'Before' images, so that the database(s) on the failed machine are restored to the
consistent state that they were in before the incomplete transactions started. This uses
Transaction Handling facilities only.

Full Recovery Full Recovery is initiated manually when a system crashes and a database is corrupted. Either
a TL-RESTORE or a TL-REDUAL command is used to initiate the restore all updates from
clean logs to a database. The appropriate command is executed after the most recent version
of the database has been restored from a FILE-SAVE. All After images held in the clean
log(s) are applied to the partially restored database. TL-REDUAL not only restores the
database, but re-establishes FailSafe operation, re-synchronising the primary and secondary
databases.

Selective Recovery Selective Recovery is a special case of the Full Recovery Method, used when only certain
areas of a database need to be recovered. Like Full Recovery, it is initiated using the TL-
RESTORE command, but instead of restoring updates to the whole database, it restores
selected accounts and files only. A selection list is generated using the ENGLISH query
language to operate on the clean log file. All selected 'After' images from the clean log(s) are
then TL-RESTORE'd on the database.

Description of Operation 2-13
Draft 9/92

Procedure to In the event of a system/database failure causing data loss or corruption, the steps to recovery
Recover a are as follows:
Database After a
System Failure For a primary database/system failure:

1. Reverse the primary and secondary roles of the FailSafe pair using fsadm with the -R
option on both machines.

2. Unlock the new primary using unlockdbase and tell users to switch to it.

3. If necessary, repair and restart the failed primary.

4. Restore the damaged database from the last back-up tape(s).

5. Restore updates logged in clean logs since the last back-up and up to, but not including
the currently active clean log on the live database.

 A number of different procedures are available to do this. These involve the use of TL-
RESTORE and/or TL-REDUAL. The method used depends partly on system limitations
and partly personal preference.

6. Use TL-REDUAL to re-establish FailSafe operation, and re-synchronise the primary and
secondary databases.

For a secondary database/system failure, the steps to recovery are similar to the primary,
except that the failure does not affect users directly and therefore it is not necessary to carry
out step 1. Also, there is no reversal of roles. After the secondary is repaired, it is restarted
and resynchronised with the primary to restore FailSafe operation.

Refer to Chapter 6 for a detailed description of recovery procedures.

2-14 Reality X FailSafe Reference Manual
Draft 9/92

Chapter 3
Guidelines for Managing Logs

This chapter contains recommendations on the sizing and managing of the

raw log and clean logs to ensure optimum operating efficiency of

Transaction Logging on a system. Recommendations are given on:

• where the raw log and clean log directory should be located.

• What size the raw log should be.

• How to estimate the rate of clean log growth.

• How the clean log growth rate affects clean log switching and archiving.

• How many times to change clean logs each day.

• When to archive clean logs and why.

• What to name the clean log files.

Refer to Appendix B for details on setting up the raw log and clean log
partitions

 3-1
Draft 9/92

Locating of the Raw Log and Clean Logs

This section provides recommendations on where the raw log and clean logs should be located
on the system disks.

Raw Log The raw log, as its name implies, is created in a raw partition.

Clean Logs Clean logs are maintained within a mountable file system which is created in a disk partition
dedicated to clean logs.

 CAUTION

It is mandatory that the raw log partition and the clean log file system partition are located
on a disk which is separate from all standard UNIX partitions, swap partitions and logged
databases.

Clean Log File The clean log file system consists of a three-level hierarchy, as follows:
System

• A 'clean log directory' which is the mount point for the file system.

• Clean log sub-directories; one for each logging database. Sub-directories are contained in
the clean log directory.

• Clean log files; logs for a particular database are contained in the clean log sub-directory
for that database

A typical clean log file system structure is illustrated below:

3-2 Reality X FailSafe Reference Manual
Draft 9/92

Typically, the clean log file system is mounted below root, but this is not mandatory. If the
partition contains other file structures, the clean log directory may be mounted further down
the disk file system.

Use of a Log Disk Normally a disk, designated the Log Disk, is dedicated to the raw and clean logs. However, in
small systems other user partitions with low utilisation may also be located on the Log Disk.
Remember, though, that the accessing of non-logging related data/partitions on the Log Disk
will impair the performance of Transaction Logging, particularly when using transaction
boundaries.

Guidelines for Managing Logs 3-3
Draft 9/92

Estimating Raw Log Size

The raw log must be large enough to retain all roll-forward information ('After' and
transaction boundary images) and all roll-back information ('Before' images) until a
transaction is ended or aborted and any associated 'After' images and transaction boundary
images are securely in the clean log.

Note also that only about 85% of available raw log space may actually be used. If the raw log
becomes excessively full (>85%), then the longest, and therefore the oldest, transaction is
forcibly aborted and the process logged off from the database. This should be taken into
account in the final specification of minimum raw log size.

The 5 Minute 'After' images and transaction boundary images transferred to a clean log are maintained in the
Factor raw log for 5 minutes after being written, to ensure that they have been flushed from the

UNIX system buffer and have reached the clean log. Writing to a clean log is not
synchronised.

To meet this requirement the raw log should be made large enough to hold all roll-forward
and roll-back images generated during the run period of the longest transaction expected to be
on the system, plus 5 minutes.

Allowing for The minimum partition size required to operate as the raw log is determined by the longest
Longest transaction expected to be input to the raw log. This is because the raw log operates as a
Transaction circular buffer and all buffer space between the transaction start and current update of an open

transaction remains locked until the transaction is committed. Hence, although, shorter
transactions and updates within the time span of a longer transaction may be successfully
written to a clean log, the buffer space used by them is locked until the longest transaction is
committed.

How Update Data To calculate raw log size you need to appreciate how the update data is stored. For each item
is Stored update within a transaction, Transaction Logging generates two images; a 'Before' image

containing the update item before the update was made plus a header, and an 'After' image
containing the update item after the update was made plus a header. An update outside a
transaction only generates an 'After' image.

Size of Image The image header contains information about the update, for example, user, account, file, time
Header of update, port, etc. On average there are about 100 bytes of information in the header.

Transaction For each completed transaction, Transaction Logging generates transaction boundary images
Boundary Images TRANSTART, PRE-COMMIT and COMMIT. Each of these contains a header of

approximately 50 bytes and a text string which is application determined. A total image size
of 100 bytes is assumed in the calculations in this chapter.

3-4 Reality X FailSafe Reference Manual
Draft 9/92

Parameters To work out the minimum size of raw log, you need to estimate the following parameters
Affecting Raw Log during the peak work period of your databases:
Size

U the maximum number of item updates per hour performed on your system.

I the average size of an updated item in bytes.

T the maximum number of transactions per hour.

t the estimated duration in minutes of the longest transaction.

These parameters are used to calculate the amount of disk space required for the raw log, as
follows,

Maximum Maximum number of updates (A) to be held on the raw log is
Number of
Updates (A) A = (5 + t) · U/60

U is divided by 60 to calculate the number of updates per minute. Five minutes is added to
the estimated duration of the longest transaction, as the transaction is maintained in the raw
log for an additional 5 minutes after it is written to the clean log to ensure that the write is
successful.

Bytes Per Update Number of bytes (B) created by a single update is
(B)

B = 2 ·(I+100)

The figure of 100 bytes is added to the average item size (I) to allow for the header of an
image in the raw log. Two images, 'Before' and 'After', are stored in the raw log for each
update, hence the multiplication by two.

Bytes For Growth in bytes (C) due to transaction boundary images generated during the longest
Transaction transaction anticipated is
Boundaries (C)

C = (5 + t) · (T · 3 · 100)/60

The number of transactions (T) is multiplied by three, as there are three images per transaction
(start, precommit and commit), then by 100 as each image is assumed to consist of 100 bytes,
maximum. This total is divided by 60 to calculate the number of bytes generated per minute.
This figure is then multiplied by (5 + t) to allocate space for the longest transaction
anticipated.

Guidelines for Managing Logs 3-5
Draft 9/92

Calculation of Raw Using the above calculations the minimum number of bytes of disk space required for the raw
Log Size (R) log partition is

R = (A · B) + C

Without Note that in this calculation we have assumed that all updates are made within transactions. If
Transactions Transaction Handling is not used at all, the minimum raw log size can be half that of the

above calculation, as only one image is logged for an independent transaction and there will
be no transaction boundary images.

Minimum Size of The size of raw log (R) calculated here should be considered as the absolute minimum. It is
Raw Log recommended that where possible, the raw log should be double the calculated value to allow

for worst case conditions. On systems where disk space is at a premium, a margin of at least
25% is strongly advised. Remember that automatic aborting and log off of transactions occurs
when the raw log is >85% full.

 CAUTION

A "raw log full" condition can lead to serious system performance problems and potential
lock-up conditions. It is most important that the raw log be configured large enough in the
first place as any resizing will require the Reality X system to be shut-down and the log
disk re-partitioned.

3-6 Reality X FailSafe Reference Manual
Draft 9/92

Managing Clean Logs

A policy for managing clean logs on your system will depend on a number of factors. These
include:

• Size of the clean log partition

• Growth rate of each clean log.

• Number of databases on the system

• Requirements for keeping old clean logs

The following sections deals with each of these factors. By considering these factors together
you can establish a clean log cycling policy.

Clean Log The size of the clean log partition on the log disk is the primary factor in limiting the
Partition Size maximum size and number of clean logs which can be maintained on your system. This may

be equal to the total storage space on the log disk minus the raw log partition. It is
recommended that the log disk is dedicated to logging and there are only two partitions on it,
raw log and clean log.

Esimating Clean The rate of growth of data in the clean log for a single database in bytes per hour is:
Log Growth Rate
(G) G = ((I+130) · u/d) + (3 · t · 100)

where,

u is the estimated number of updates on the database per working day. This is divided by
the number of hours in the working day to calculate the hourly rate.

d is the length of the working day for the database in hours.

I is the average size of an updated item in bytes. The figure of 130 is the overhead allowed
for the header of a clean log image.

t is an estimate of the average number of transactions per hour on the database.

The expression 3 · t calculates the number of transaction boundary images (3 per transaction,
start, pre-commit and commit) stored in the clean log per hour. This is multiplied by the
average size of a transaction boundary image (100 bytes) to calculate the total amount of
transaction boundary information held in the clean log. The average size (100 bytes) of a
transaction boundary includes a 50 byte overhead for the header.

Guidelines for Managing Logs 3-7
Draft 9/92

Avoiding a Clean When the clean log partition becomes 70% full, warning messages are displayed at the system
Log Full Condition console and the raw log is locked. Clean log disk space must be released immediately

otherwise logging will grind to a halt. The procedure to be carried out when a 'clean log 70%
full condition' is received, is described in Chapter 5.

 CAUTION

A "clean log partition full" condition will lead to serious performance problems and
potential lock-up conditions on your system. It is very important that large clean logs are
cleared from disk long before this condition becomes a possibility.

Multiple Where there are a number of databases on your system the growth of each clean log will
Databases contribute to the total 'rate of filling' of the clean log partition. The clean log cycling policy

for all databases on the systems should be defined so as to avoid filling up the clean log
partition to 70% full. It may be necessary to switch the clean logs more often on the
database(s) with the largest growth rate to ensure that the total amount of clean log data on the
system does not approach 70% of the partition size. Clean logs will also have to be cleared
from the log partition more often.

Naming Clean In order to make it easy to identify a clean log and the date it was used, it is recommended that
Logs you establish a naming convention for clean log files used on your system.

Note: Clean log file names are limited to 13 characters and have the usual UNIX
constraints. The slash '/' is a reserved character.

For example, the first part of a clean log file name might be a standard string such as CLOG,
short for clean log. The latter part might be some form of alphanumeric identifier. What this
will be depends on the clean log cycling policy for your system and whether you wish to
archive files for security or audit purposes.

It is up to the Database Administrator to choose the naming convention most suited to the way
Transaction Logging is used on the database.

No Archiving If archiving of clean logs is not required, it is recommended you use one of two naming
conventions. This depends on whether it is necessary to change logs more than once each
working day.

3-8 Reality X FailSafe Reference Manual
Draft 9/92

The following naming conventions are recommended.

• CLOG-MON, CLOG-TUES, CLOG-WED and so on, one for each working day of the
week.

• CLOG-MON-A, CLOG-MON-B, CLOG-TUES-A, CLOG-TUES-B, CLOG-WED-A
CLOG-WED-B and so on, two, or more, for each working day of the week.

Archived Clean Logs If archiving is required, it is recommended you include the date in the log file name as
follows:

• CLOG11.02.91, CLOG12.02.91 and so on for a one log per working day database

• CLOGA11.02.91, CLOGB11.02.91, CLOGA12.02.91, CLOGB12.02.91, and so on where
more than one log per working day is used.

Archived Logs from If you want to archive clean logs from more than one database on a system or from a FailSafe
Multiple Databases pair, it is recommended that you include an identifier in the clean log file names which

associates each clean log with a database. It is recommended that you a clean log naming
convention that does not require them to change the name of the file when it is archived.

As a filename in UNIX is restricted to 13 characters, it is improbable that a full database name
can be included. Filenames of the following type are suggested.

LA11.02.91D1, LB11.02.91D1, LA11.02.91D2, LB11.02.91D2, where,

L This prefix identifies that its a clean log (CLOG) file

A and B specifies clean log A and clean log B, respectively.

11.02.91, is the date when the clean log was filled.

D1, D2 specifies the associated database. This suffix identifier can be cross-
referred to a database name.

Alternatively, it may be easier to manage clean logs if you archive all clean logs for different
databases on different tapes,.

Viewing Clean The contents of a clean log can be viewed from the Reality X environment and can be
Logs accessed using standard ENGLISH verbs such as LIST. Details are later in this manual in the

'Log Files' chapter.

Guidelines for Managing Logs 3-9
Draft 9/92

Log Archiving Database back-up and data security procedures will vary according to user requirements.
Policy Once a database has been backed up, the earlier clean log(s) are effectively redundant,

however, some users may wish to keep clean logs for an extended time period to provide
additional security or for auditing purposes. Larger systems may require logs to be archived
during each working day to make space on the clean log partition. The policy is user
determined.

The procedures to archive and retrieve clean logs are discussed further in the 'Operating
Procedures' chapter

3-10 Reality X FailSafe Reference Manual
Draft 9/92

Chapter 4
Setting Up Procedures

This chapter outlines the procedures used to set up Transaction Logging on

two separate systems/databases and then configure them to operate as a

FailSafe pair. These are:

• Setting up Transaction Handling/Logging initially on each system.

• Defining the files to be logged

• Saving the live database to tape.

• Creating an identical database

• Configuring the secondary

• Configuring the primary

Appendix B is referenced. This details the procedure for installing

Transaction Handling/Logging on your system

4-1
Draft 9/92

Commands and Utilities used for Setting Up FailSafe Operation

TCL Commands The following TCL commands are used in this chapter as part of the setting up procedures.

• TL-CREATE-FILE

• TL-SET-LOG-STATUS

Full descriptions of these commands, including syntax and restrictions, are given in Chapter 8.

UNIX Tools Also the following special UNIX tools are used.

• fsadm

• mklog

• mkdbase

• killreal

Full descriptions of these utilities, including syntax, are given in Chapter 7.

4-2 Reality X FailSafe Reference Manual
Draft 9/92

Setting Up a FailSafe Database

This section describes the procedures carried out to set up a pair of identical databases to
operate as a FailSafe pair. For the purpose of this description, the two databases are identified
as pdbase on the system phost, and sdbase on the system shost. Refer to Figure 4-1.

phost shost

primary

users
pdbase slog

raw
log

secondary

machine-to-machine link

Fail Safe Pair
to be configured

sdbaseplog

raw
log

Figure 4-1 FailSafe Setup

It is assumed that pdbase is the live database which is to be configured as the primary. The
other database, sdbase, is created as a duplicate of pdbase and will be configured as the
secondary database. For the purpose of this example it is assumed that pdbase and sdbase are
located in a directory /usr/dbases on their respective systems.

Note: Ensure that shost and phost are defined in the /etc/hosts file.

For the sake of clarity, these procedures identify the primary and secondary databases by
different names (pdbase and sdbase). However, for optimum FailSafe configuration, it is
recommended that you give them the same name. Differences in setting up databases with the
same name and different names are highlighted in the following procedures.

Setting Up Procedures 4-3
Draft 9/92

The procedures consists of the following:

1. Set up Transaction Logging on each system .

2. Define the files to be logged on the unresilient database.

3. Save the unresilient database to tape.

4. Create an identical database.

5. Configure the secondary database.

6. Configure the primary database.

These are detailed in the following sub-sections.

Setting Up First ensure that both systems (phost and shost) are configured for Transaction Logging, with
Transaction a raw log, a clean log partition and clean log file system. Systems will normally be
Handling/Logging configured by McDonnell Douglas support personnel when they are installed. However, in

case re-configuration is necessary, the procedure is detailed in Appendix B.

If necessary configure the live database (pdbase) with a clean log sub-directory using mklog.
Refer to Chapter 7.

Defining the Files Before creating a duplicate of the live database (pdbase) on the second system (shost), it is
to be Logged recommended that you define the log status of the files on pdbase. This is done using the

TL-SET-LOG-STATUS command (See Chapter 8). Then when the database (pdbase) is
copied to the shost, the log status is also duplicated.

Saving the Having configured both systems to support Transaction Logging, you must now save the
Database to Tape current live database (pdbase) to tape, as follows:

1. Log in to the local system (phost).

2. Run reality to enter pdbase and logon to SYSMAN.

3. Enter INHIBIT-LOGONS * to prevent any more users from logging on to the database.

4. Send a message asking users to log off. You can check who is logged on using LISTU.

5. After a reasonable period of time, log off any remaining users using the LOGOFF
command.

4-4 Reality X FailSafe Reference Manual
Draft 9/92

6. Enter TL-STOP to disable logging.

7. Run the FILE-SAVE PROC to save pdbase onto tape and VERIFY-SAVE.

Creating an Having saved pdbase to tape, now create a second database (sdbase) on another system (shost)
Identical Database and restore the FILE-SAVE of pdbase onto sdbase, so that the two databases have identical

user data. The procedure is as follows:

1. Log in to the second system (shost).

2. Change to the directory in which you wish to create the database.

3. Make a new Reality X database by entering

 mkdbase sdbase

4. Lock the database using lockdbase. This prevents others from logging on, allowing only
the database owner or super-user to access it.

5. Run reality to enter sdbase and logon to SYSMAN.

6. Mount the tape containing the FILE-SAVE of pdbase onto a tape unit and ensure that the
unit is on-line.

7. Attach the tape unit to the system using T-ATT or ASSIGN.

8. Position the tape at the beginning of the files section by entering T-FWD, followed by T-
RDLBL, then T-FWD again.

9. Restore the FILE-SAVE onto the newly created sdbase by entering

 ACCOUNT-RESTORE * (O

10. Return to the UNIX shell and use mklog to create the clean log subdirectory for sdbase.
See Chapter 7 for a description of mklog.

Note: Ignore the next step if the two databases have been given the same name

11. If the two databases have different names then you must now ensure that file items
referencing sdbase are changed after the FILE-SAVE of pdbase has overwritten them.
These include: the Reality X ROUTE-FILE items, the CUSTOMER-SYSTEM-IDENT
item in the SYSMAN MD and the LOGON item in SYSTEM.

Setting Up Procedures 4-5
Draft 9/92

 CAUTION

Any attempt to unlock and operate on the secondary database may lead to loss of
synchronisation with the primary.

Configuring the The next step is to mark sdbase as the secondary database and link it with the live database
Secondary (pdbase). This is done using the UNIX utility fsadm.

Note: This sample procedure assumes that the databases are located in the directory
/usr/dbases.

1. Log in to the system (shost) containing the secondary database.

2. Enter fsadm -s -h phost -d /usr/dbases/pdbase sdbase. See Chapter 7 for
details.

 The -h (host) option identifies the remote host as phost.

 The -s option marks sdbase as the secondary, inserting an entry in the raw log header

 The -d (database) option identifies the remote database as pdbase. The absolute path
name must be specified. This must be the same for the primary and secondary. You can
omit the -d option if the primary (pdbase) and secondary (sdbase) are to have the same
name.

 If the primary and secondary database names are the same, for example,

 pdbase = sdbase = dbase

 then you can omit the -d option and enter the following:

 fsadm -s -h phost dbase

 If $REALDBASE is defined dbase can be omitted as well, that is,

 fsadm -s -h phost

4-6 Reality X FailSafe Reference Manual
Draft 9/92

 After configuring the secondary, config file parameters are displayed, similar to the
following.

 Failsafe Pair1:

 Database'/usr/dbases/sdbase'

 TCP Host'shost' (Local)

Failsafe Pair2:

 Database'/usr/dbases/pdbase'

 TCP Host'phost' (Remote)

Mode:

 Logging inactive

 Failsafe enabled,secondary,inactive

Note: The numbering of the FailSafe Pair variables is not significant. The config file
entries on the two hosts may or may not be identical.

Configuring the Now to complete the FailSafe configuration you must configure the live database pdbase as
Primary the primary and link it with the secondary (sdbase). Again, this is done using fsadm, as

follows:;

Note: This sample procedure assumes that the databases are located in the directory
/usr/dbases.

1. Log on to the system containing the primary.

2. Enter fsadm -p -h shost -d /usr/dbases/sdbase pdbase. See Chapter 7 for
details

 The -h (host) option identifies the remote host as shost.

 The -p option marks pdbase as the primary, inserting an entry in the raw log header

 The -d (database) option identifies the remote database as sdbase. The absolute path
name must be specified. This must be the same for the primary and secondary. You can
omit the -d option if the primary (pdbase) and secondary (sdbase) are to have the same
name

Setting Up Procedures 4-7
Draft 9/92

 If the names of the primary and secondary databases are the same, for example,

 pdbase = sdbase = dbase

 then you can omit the -d option with fsadm and enter the following:

 fsadm -p -h shost dbase

 If $REALDBASE is defined dbase can be omitted as well, that is,

 fsadm -p -h shost

 On entering the above fsadm command, config file parameters are displayed similar to
the following.

 Failsafe Pair1:

 Database'/usr/dbases/pdbase'

 TCP Host'phost' (Local)

Failsafe Pair2:

 Database'/usr/dbases/sdbase'

 TCP Host'shost' (Remote)

Mode:

 Logging inactive

 Failsafe enabled,primary,inactive

Note: The numbering of the FailSafe Pair variables is not significant. The config file
entries on the two hosts may or may not be identical.

 The two databases pdbase and sdbase are now configured together as a FailSafe pair.
Only the primary (pdbase) can be logged to and used as a live database. The secondary
(sdbase), is locked at TL-START time.

3. Log on to the primary and create a clean log with a suitable name using TL-CREATE-
FILE. See Chapter 3 for naming conventions.

4-8 Reality X FailSafe Reference Manual
Draft 9/92

Chapter 5
Operating Procedures

This chapter describes operations and facilities which are used during the

routine operation of a FailSafe database. The following procedures are

described:

• Initial startup of FailSafe operation

• Switching to a new clean log

• Synchronising primary and secondary databases

• Reversing the roles of a FailSafe pair

• Shutdown procedures

• Archiving clean logs to tape

• Retrieving clean logs from tape

• Monitoring logging

5-1
Draft 9/92

Commands and Utilities Referenced in this Chapter

The following TCL commands are used in the operating procedures described in this chapter.

TCL Commands • CLEAR-FILE

• ENABLE-LOGONS

• INHIBIT-LOGONS

• TL-CONTINUE

• TL-CREATE-FILE

• TL-DUMP

• TL-LISTFILES

• TL-LOAD

• TL-REDUAL

• TL-START

• TL-STOP

• TL-SWITCH

• TL-STATUS

• TL-TRANSACTIONS

Detailed descriptions of TL-commands are given in Chapter 8. The other TCL commands are
described in the RealityX reference manuals

UNIX Tools The following UNIX tools are used.

• killreal. Refer to Chapter 7 for details.

• cpio. Refer to the user reference manuals supplied with your system for details

5-2 Reality X FailSafe Reference Manual
Draft 9/92

Initial Startup Procedure

Notes:

 1. It is assumed that the FailSafe software is fully installed and configured. If not, see
Chapter 4.

 2. It is the responsibility of the system administrator to ensure that the primary database
is locked so that no other users are able to log on until logging is enabled. Failure to
do this may result in loss of synchronisation between primary and secondary
databases.

The procedure to start logging is as follows:

1. Check that a FILE-SAVE p tape exists which reflects the current state of the primary and
which can be used as a base for restoring future logged updates onto the primary or
secondary. If not, make one, or you can use a UNIX back-up utility, such as cpio.

2. Run reality to enter the primary database and log on to SYSMAN.

3. If necessary, create the clean log(s) on the primary database, with appropriate names
which adhere to the naming conventions recommended in Chapter 3. For example:

 TL-CREATE-FILE CLOGA-MON

TL-CREATE-FILE CLOGB-MON

 If the required files already exist, ensure that they are empty. Use CLEAR-FILE, if
necessary, to clear them.

Operating Procedures 5-3
Draft 9/92

4. Now start FailSafe logging using the TL-START command. For example:

 TL-START CLOGA-MON

 This starts logging to the primary clean log CLOG-MON, creates a clean log of the same
name on the secondary and starts logging to it. It also starts restoring the logged updates
to the secondary database.

5. Finally, enter ENABLE-LOGONS * at TCL to permit user access to the primary database.

FailSafe operation is now active and the primary database is fully operational with the
secondary database operating as the standby.

 CAUTION

The secondary database is locked to all users, except the super-user and database owner.
Unlocking and accessing of the secondary database may result in loss of synchronisation
with the primary.

5-4 Reality X FailSafe Reference Manual
Draft 9/92

Switching to a New Clean Log

TL-SWITCH, described in Chapter 8, is used to switch from one clean log to another while
Transaction Logging is enabled. It can be entered on the primary only, but switches both
primary and secondary clean logs at the same time. When and how often you switch the clean
log depends on the clean log cycling policy appropriate to your system and database.

Refer to Chapter 3 for detailed advice on establishing a clean log cycling policy, clean log
naming conventions, archiving clean logs etc.

 CAUTION

A "clean log partition full" condition can lead to serious system performance problems and
potential lock-up conditions. A clean log cycling procedure must be chosen to avoid this
happening. See Chapter 3 for advice.

The procedure is as follows:

1. Ensure that appropriate empty clean logs exist on the primary database, as determined by
the clean log cycling policy. For example:

• To switch the clean log once a day with no archiving, you need clean logs such as,
CLOG-MON, CLOG-TUES, CLOG-WED etc., one for each day of the working
week.

• To switch the clean log once a day, then archive it to tape, you need clean logs, such
as, CLOG-09.03.92, CLOG-10.03.92, CLOG-11.03.92 etc, one for each day and
dated appropriately.

• To switch the clean log more than once a day and archive to tape, you need clean
logs, such as, CLOGA09.03.92, CLOGB09.03.92, CLOGA10.03.92,
CLOGB10.03.92 etc. or CLOGA-MON, CLOGB-MON, etc., two or more for each
day, and dated appropriately.

 If necessary, create the required clean log(s) on the primary using TL-CREATE-FILE or
clear them using CLEAR-FILE.

 Associated clean logs on the secondary database are created and cleared automatically
by TL-START or TL-SWITCH.

Operating Procedures 5-5
Draft 9/92

2. Switch to the new clean log using TL-SWITCH. It is recommended that you use TL-
SWITCH with the H option to switch logs just before the FILE-SAVE. This switches
logs, but suspends the secondary database, allowing the FILE-SAVE to be performed on
the secondary while maintaining a fully operational primary. Refer to the section in this
chapter, 'Shutting Down the Secondary Temporarily'.

 For example, enter one of the following:

• TL-SWITCH CLOG-TUES (H) at the end of Monday's working day.

• TL-SWITCH CLOGB-MON during Monday, followed by TL-SWITCH CLOGA-TUES
(H) at the end of Monday's working day. Where archiving is not required, CLOGA-
MON should at be kept at least until after the FILE-SAVE.

• TL-SWITCH CLOG-10.03.92 (H) at the end of the working day dated 9th March
1992.

• TL-SWITCH CLOGB09.03.92 during the day, followed by TL-SWITCH
CLOGA09.03.92 (H) at the end of Monday's working day. The full clean log
CLOGA-09.03.92 can then be archived. This should be done before the clean log
partition becomes full.

 After completing the TL-SWITCH with the H option, you can then execute FILE-
SAVE and VERIFY-SAVE on the secondary database, before resuming normal
FailSafe operation by entering the TL-CONTINUE command on the primary.

5-6 Reality X FailSafe Reference Manual
Draft 9/92

3. If archiving is required, wait until switching is completed before archiving the most
recent full clean log. You can check this using the TL-STATUS command. Logging
status shold have changed from SWITCH IN PROGRESS to ACTIVE.

 To archive the clean log(s), copy to tape using either TL-DUMP at TCL or a UNIX
utility, such as cpio. Refer to the section 'Archiving Clean Logs' for more details.

4. As necessary, clear or delete the old log(s) from disk to release space in the clean log
partition. Use CLEAR-FILE if you wish to clear old clean logs and re-use them. Use
DELETE-FILE if you have archived them and wish to remove the log names from the
system.

 If you clear a primary log and re-use it, the secondary log is cleared automatically at
TL-START or TL-SWITCH. However, if you delete a primary log, then the secondary
log remains full and it is necessary to delete it, to release clean log partition space on the
secondary's system.

Operating Procedures 5-7
Draft 9/92

Reversing Roles in FailSafe Pair

Notes:

 1. This procedure is particularly useful when the roles of primary and secondary have
been reversed after database recovery and where the new roles do not provide for
optimum operating efficiency.

 2. The changeover is only made when all recent primary updates have been applied to
the secondary and the two databases are synchronised.

 3. Any active transactions will be rolled back.

 4. It is not necessary to stop logging.

To reverse the roles of the primary and secondary databases in a FailSafe pair, proceed as
follows:

1. Log in to the machine containing the primary database, and log on to the primary
database For the sake of this procedure lets call it 'dbase'.

2. On dbase, enter

 INHIBIT-LOGONS *

 then send a message to all users to log off.

3. Wait a reasonable period to allow users time to log off, then LOG OFF all remaining
users.

4. Now log off dbase and return to the UNIX shell by entering

 OFF

5. At the UNIX shell, enter

 fsadm -T dbase

 This converts the dbase to be a secondary and locks it. If dbase is defined in the
environment variable £REALDBASE, then you can omit the database name from fsadm.

6. If necessary log in to the system containing the secondary. Lets assume the secondary
database is also called dbase. Ensure no one is logged on to the secondary database.

5-8 Reality X FailSafe Reference Manual
Draft 9/92

7. At the UNIX shell, enter

 fsadm -T dbase

 This converts the secondary dbase to be a primary and unlocks it for users. If dbase is
defined in the environment variable £REALDBASE, then you can omit the database
name from fsadm.

 Users can now log on to the new primary database and continue working.

Operating Procedures 5-9
Draft 9/92

Shut-down Procedures

A number of shut-down options are supported in a Reality X FailSafe configuration. They
are:

• To shut down both primary and secondary databases together so that they remain
synchronised.

• To suspend the secondary only, maintaining synchronisation.

• To shut down the secondary only permanently, leaving the primary as a stand-alone
database.

• To shut down all databases on a complete system.

Shutting Down a To shut-down FailSafe on your database carry out the following steps.
FailSafe Pair

1. Enter the primary database and log on to SYSMAN.

2. Enter INHIBIT-LOGONS * to prevent further user access.

3. Send a message to ask all users to log off the database. Use LISTU to check that all
users have logged off.

4. After a reasonable period of time, log off all remaining users from the database.

5. Stop logging using the TL-STOP command.

 You can check that logging has completed using the TL-STATUS command. This
should show the logging status as INACTIVE. The FailSafe database is now in the
logging disabled state. It can be restarted using TL-START as described in the initial
start up procedure.

6. Maintain the clean log on disk according to your back-up policy.

The current clean log, together with any other clean logs filled since the last back-up, can be
used together with the last back-up tape to recover the most recent and consistent database.
However, remember that, if the system crashes, all updates made to the database after shut-
down of logging and before the next TL-START are not recoverable.

It is the system administrator's responsibility to ensure that users cannot log on to the primary
while FailSafe logging is disabled. Failure to do this may result in loss of synchronisation
between primary and secondary databases.

5-10 Reality X FailSafe Reference Manual
Draft 9/92

Note also that the execution of a TL-STOP followed by a TL-START will terminates one
chain of clean logs and start a new one. Therefore in the event of a failure, two restore
operations will be required in order to complete the recovery of all clean logs. Recovery
procedures are described in Chapter 6.

Suspending the TL-SWITCH with the H option suspends update operations on the secondary database, until
Secondary TL-CONTINUE is executed, while maintaining FailSafe logging to the secondary's clean log.
Database Primary updates continue to be logged to the secondary clean log. This allows you to back-up

the secondary without shutting the secondary down completely and losing synchronisation.
The procedure is as follows:

1. Create a empty clean log on the primary, for example, CLOG-FRI.

2. On the primary database, enter TL-SWITCH CLOG-FRI (H.

 This creates a CLOG-FRI clean log on the secondary. Logging is switched to CLOG-
FRI on the primary and secondary, and the restore process which applies the updates to
the secondary database is disabled.

3. Use TL-STATUS on the secondary to ascertain when the restore process has completed,
indicated by a ACTIVE-SECONDARY PAUSED status.

4. You can now save the secondary database onto a back-up tape. Primary users may
continue operating on the database unaffected.

Note: A TL-STOP and TL-SWITCH cannot be performed until the databases have been
returned to FailSafe synchronised mode using the TL-CONTINUE verb.

5. Re-synchronise the secondary with the primary by entering TL-CONTINUE on the
primary.

 TL-CONTINUE re-enables the updating of the secondary database. Firstly, all
outstanding updates, logged in the secondary clean log, are restored on the secondary
database, after which, all current primary updates are applied to it.

 This process updates the secondary database with all outstanding updates from the
secondary log, made since the secondary was suspended. This continues until the
databases are synchronised and normal FailSafe operation is resumed.

Operating Procedures 5-11
Draft 9/92

Shutting Down the TL-SWITCH with the K option is used to shut down the secondary database while
Secondary maintaining the primary as a stand-alone database. Primary users are unaffected by the
Database Only secondary shut-down. The procedure is as follows:

1. Create a empty clean log on the primary, for example, CLOG-FRI.

2. On the primary database, enter

 TL-SWITCH CLOG-FRI (K

 This switches logging to the new primary log CLOG-FRI and disconnects the FailSafe
link to the secondary causing the secondary to become idle. The databases are marked
as 'Failsafe failed'. Synchronisation between the primary and secondary databases is
therefore lost and you have to execute a TL-REDUAL in order to restart FailSafe
operation.

Shutting Down a The killreal command (without options) shuts down the RealityX central daemon and all
System database daemons on a system. killreal with the -d option shuts down a specified database. It

is recommended that you shut-down Transaction Logging on each database before shutting
down the complete system. The procedure is as follows.

1. Log on to each primary database on the system to be shut down and enter TL-STOP.

2. If there are any secondary databases on the system, log on to their associated primaries
and in each case enter TL-STOP.

3. Wait until the last TL-STOP is completed (This will just under 5 minutes.), then enter
killreal on the system to be shut down. This will terminate the Reality X central
daemon and all associated processes.

Note: Failure to execute a TL-STOP before executing killreal may result in loss of
synchronisation between the associated databases.

5-12 Reality X FailSafe Reference Manual
Draft 9/92

Archiving Clean Logs

To archive clean logs to tape the following commands are available:

• TL-DUMP. This is entered at TCL and archives clean logs one at a time onto tape.

• cpio. This is entered at the UNIX shell, either as part of the standard daily back-up of the
whole database or to copy multiple clean logs onto a separate clean log tape.

Using TL-DUMP For example, to archive the clean logs CLOGA21.03.91, CLOGB21.03.91 and
CLOGC21.03.91 using TL-DUMP, proceed as follows:

1. Enter the database and log on to SYSMAN.

2. Load and attach the first tape, then enter the following at TCL:

 TL-DUMP CLOGA21.03.91

3. Load and attach another tape, then, enter the following at TCL:

 TL-DUMP CLOGB21.03.91

4. Load and attach another tape, then enter the following at TCL:

 TL-DUMP CLOGC21.03.91

Note: Each clean log is copied onto a separately attached tape. It is necessary to archive
one clean log per tape, as TL-LOAD cannot read multiple logs from a single tape.

Using cpio For example, using the UNIX copying utility cpio you can archive clean logs
CLOGA21.03.91, CLOGB21.03.91 and CLOGC21.03.91, as follows:

1. Change to the clean log sub-directory. For example, enter

 cd /clean-logs/dbase1-clogs

 where 'clean-logs' is the main clean log directory and 'dbase1-clogs', the sub-directory
for the database 'dbase1'

Operating Procedures 5-13
Draft 9/92

2. Use the -o (output) option of cpio to archive the day's clean logs to tape. For example,
type

 ls CLOG?21.03.91|cpio -ocvB > /dev/rmt/1bm

 Using this statement, the clean logs, filled during the 21 March 1991, are listed and
piped to the standard input of the cpio utility which copies the listed logs to the tape
device /dev/rmt/1bm and archives them with relative path names.

Having archived the clean logs, they may be cleared and, if appropriate, deleted from the
database using DELETE-FILE to release clean log partition space. Typically they would be
deleted if their file names were date-specific.

Note: You should use DELETE-FILE and not the UNIX command rm, as rm will not
delete the D pointers.

5-14 Reality X FailSafe Reference Manual
Draft 9/92

Retrieving Clean Logs

To retrieve clean logs from tape the following commands are available.

• TL-LOAD. This is entered at TCL within the Reality X environment and loads clean logs
one at a time from tape.

• cpio. This is entered at the UNIX shell, either as part of a selective restore of clean logs
from a standard daily back-up tape or to copy multiple clean logs from a separate clean log
tape.

Using TL-LOAD For example, to load clean logs back into your database from tape, you can use TL-LOAD, as
follows:

1. Enter the database and log on to SYSMAN.

2. Load and attach the first tape containing CLOGA21.03.91, then enter the following:

 TL-LOAD CLOGA21.03.91

3. Load and attach the tape containing CLOGB21.03.91, then enter the following at TCL

 TL-LOAD CLOGB21.03.91

4. Load and attach the tape containing CLOGC21.03.91, then enter the following:

 TL-LOAD CLOGC21.03.91

Each command takes the specified clean log and loads it back into the clean log sub-directory
for your database. This operation will fail if the file names already exist in the sub-directory.

Using cpio For example, to selectively restore the files archived on 21 March 1991, proceed as follows:

1. Change to the clean log sub-directory in which you want to restore them. For example,
enter

 cd /clean-logs/dbase1-clogs

 where 'clean-logs' is the main clean log directory and 'dbase1-clogs', the sub-directory
for the database 'dbase1'

Operating Procedures 5-15
Draft 9/92

2. Use the -i (input) option of cpio to retrieve all 21 March '91 clean logs to tape. For
example, type

 cpio -icvB "*21.03.91"</dev/rmt/1bm

This statement copies all files with path names ending in 21.03.91 from tape device
/dev/rmt/1bm into the clean log sub-directory in which you are currently working.

Finally log on to the database and recreate the clean log D-pointers, previously deleted from
the database, using TL-CREATE-FILE with the E option. For example:

TL-CREATE-FILE CLOGA21.03.91 (E)

5-16 Reality X FailSafe Reference Manual
Draft 9/92

Facilities to Monitor Transaction Logging

Three TCL commands are available to monitor Transaction Logging:

• TL-LISTFILES to list information about the log files on the database.

• TL-STATUS to monitor the current status of logging on the database.

• TL-TRANSACTIONS to display information about transactions currently active on the
database.

For a description of these commands refer to Chapter 8.

Operating Procedures 5-17
Draft 9/92

Chapter 6
Recovery Procedures

This chapter introduces the data recovery methods supported by Transaction

Logging in a FailSafe configuration. It then describes the first steps in the

procedure to recover a database and four optional procedures to complete

the restoration of clean logs and the resynchronisation of FailSafe operation.

These are:

1. A procedure using TL-REDUAL to restore a chain of clean logs in one

sequence.

2. A procedure using TL-REDUAL to restore clean logs one at a time.

3. A procedure using TL-RESTORE to restore chained clean logs in one

sequence, followed by the use of TL-REDUAL to resynchronise

databases.

4. A procedure using TL-RESTORE to restore clean logs one at a time,

followed by the use of TL-REDUAL to resynchronise databases.

Finally it describes the facilities available for copying clean logs from one

database to another.

6-1
Draft 9/92

Commands and Utilities Referenced in this Chapter

TCL Commands The following TCL commands are used in the recovery procedures described in this chapter.

• TL-RESTORE

• TL-REDUAL

• TL-DUMP

• TL-LOAD

• SET-FILE

 CAUTION

TL-RESTORE and TL-REDUAL require all clean logs to have been TL-SWITCH'ed in
order to restore clean logs in one chained sequence. If a TL-STOP/TL-START operation
has been carried out, then the linkage between logs will be broken, in which case the
restore will terminate at the clean log which was active when the TL-STOP occurred. It is
essential that TL-SWITCH is used to change logs to maintain linkage between clean logs.

UNIX Tools Also, the following UNIX utilities are used.

• ftp

• cpio

• fsadm

6-2 Reality X FailSafe Reference Manual
Draft 9/92

Introducing Recovery Methods

Full Recovery Full Recovery means restoring a database from all logged updates. This is carried out by first
restoring the most recent back-up of the database, then restoring all clean logs since that back-
up was taken, onto the now partially-restored database. Facilities are also supported to re-
establish the FailSafe link and resynchronise the databases.

There are a number of ways in which you can to recover and resynchronise a FailSafe
database. These use TL-RESTORE and/or TL-REDUAL. Which one you choose will depend
partly on system limitations and partly on personal preference. Four ways are summarised
below. Guidance on which way to choose is given in a flowchart in Figure 6-1. Each method
is described step by step in subsequent sections of this chapter.

1. Execute a TL-REDUAL after copying all necessary clean logs to the corrupted database.
TL-REDUAL then initiates one automatic restore sequence which restores all clean logs
onto the corrupted database in a verified chronological order, resynchronises the
databases and resumes FailSafe operation. This is probably the most efficient method,
but in order to do this it is necessary for the clean log disk partition to be large enough to
hold all the necessary clean logs and the machine-to-machine link to be up and reliable.

2. Execute a TL-REDUAL, copying clean logs to the partially-restored database one at a
time. The restore process, initiated by TL-REDUAL, restores clean logs in
chronological order, if present on the database. If the next clean log in chronological
order is not present, the restore process prompts for it. Once loaded onto the database
the chained restore continues. If the next clean log is detected as being missing then the
prompt sequence is repeated. This interactive method is useful if the disk partition is not
large enough to hold all the clean logs. It allows you to load and delete clean logs one at
a time, but still verifies the order in which they are restored. FailSafe operation is re-
established in parallel with the restoring of clean logs and on completing the restore, the
primary and secondary databases are re-synchronised,

3. Execute TL-RESTORE with the AE option and with all clean logs to be restored present
on the database, then resynchronise using TL-REDUAL. TL-RESTORE with the AE
option restores all clean logs in a verified chronological order. Before executing TL-
RESTORE, all necessary logs need to be loaded onto the database.

4. Execute TL-RESTORE with the AE option, but only load one clean log at a time onto
the database. This method is useful when disk space is limited. Having loaded and
restored a clean log you then delete or clear it to release space in the clean log partition.
If a clean log is not present, TL-RESTORE prompts and wait for it to be copied to the
database. This method is particularly useful if you do not want to resume FailSafe
operation, but you want to commence restoring the database, for example, if the
machine-to-machine link is down.

Database Recovery 6-3
Draft 9/92

Selective Recovery Selective Recovery is a procedure in which only selected items from a clean log are restored.

Selection of the update items to be restored from the clean log is made using the ENGLISH
SELECT verb, then TL-RESTORE is applied to the SELECTed list.

Chapter 9 gives details on the use of ENGLISH to manipulate clean log items. Refer to the
ENGLISH Reference Manual for details on the use of the SELECT verb.

6-4 Reality X FailSafe Reference Manual
Draft 9/92

First Steps to Recovery

This section outlines first steps to recovering a FailSafe database after a system failure causes
a primary or secondary database to be corrupted.

Procedure after a If the primary database fails, proceed as follows:
Primary Failure

1. On the system containing the corrupted primary, enter

 fsadm -R pdbase

 where pdbase is the corrupted primary. This re-configures the database as a secondary
and locks it.

2. Similarly, on the system containing the associated secondary database, enter

 fsadm -R sdbase

 where sdbase is the secondary database name. This re-configures the database as a
promary and unlocks it.

3. Now inform all users to access the new stand-alone primary (previously the secondary).

4. Repair and re-boot the failed system

5. Restore the most recent FILE-SAVE or UNIX back-up onto the corrupted database.
Once the back-up is restored, the next stage is to restore clean logs and resynchronise
FailSafe operation. See below the sections on Recovering Clean Logs.

Procedure after a When a secondary database system fails, primary users are unaffected and the primary
Secondary Failure database continues to operate normally as the live database. They are also unaware that the

secondary has failed unless the FailSafe failed flag is set. If the secondary fails while the
primary is IDLE (no one is logged on), the FailSafe failed flag will not be set, so that when
the first primary user attempts to log on, the logon will fail. Hence the followin procedure
ensures that the FailSafe failed flag for the primary is set.

1. Enter

 fsadm -f pdbase

 on the system containing the primary. This sets the FailSafe failed flag for pdbase.

2. Repair and re-boot the failed system

Database Recovery 6-5
Draft 9/92

3. Restore the most recent FILE-SAVE or UNIX back-up onto the corrupted database.
Once the back-up is restored, the next stage is to restore clean logs and resynchronise
FailSafe operation. See below the sections on Recovering Clean Logs.

Recovering
SWITCH'ed Clean
Logs

If all the clean logs to be restored have been TL-SWITCH'ed so that they are linked in a single
chronological chain, then you can use one of four options to restore them depending on
system limitations as follows:

Option 1 If the clean log disk space is large enough to hold all clean logs made
since the last back-up and the machine-to-machine link is up and
reliable, carry out Option 1 - Using TL-REDUAL to Restore a Chain
of Clean Logs in One Sequence.

Option 2 If the clean log partition space is too small to hold all clean logs, but
the machine-to-machine link is up and you wish to restore and
resynchronise FailSafe operation, carry out Option 2- Using TL-
REDUAL to Restore Clean Logs One at a Time.

Option 3 If the clean log disk space is large enough to hold all clean logs made
since the last back-up, but the machine-to machine-link is down, or for
some other reason you wish to commence the restore, but not re-
establish FailSafe operation, carry out Option 3 - Using TL-RESTORE
to Restore Chained Clean Logs in One Sequence, then TL-REDUAL.

Option 4 If the clean log disk space is too small to hold all clean logs made
since the last back-up, and the machine-to machine-link is down, or for
some other reason you wish to start to restore, but not re-establish
FailSafe operation, carry out Option 4 - Using TL-RESTORE to
Restore Clean Logs One at a Time, then TL-REDUAL.

A flowchart to help in this decision process is shown in Figure 6-1 below.

Recovering TL- If logging has been stopped and started again when changing to a new clean log, this breaks
STOP/ the link between clean logs. Restore of clean logs cannot be executed as one complete chain.
TL-START'ed Log It is therefore necessary to use TL-RESTORE with the AE options, as in Options 3 and 4, for
Sequences each sub-chain of clean logs created by a TL-START/STOP sequence except for the last sub-

chain of logs linked to the active log when you use TL-REDUAL.

6-6 Reality X FailSafe Reference Manual
Draft 9/92

Clean Log
Partition Large

Enough?

Failsafe
Machine LInk

Up?

Failsafe
Machine Link

Up?

YES NO

NOYESYES NO

Option 2 Option 4Option 1 Option 3

Notes:

 1. Options 1 to 4 are detailed later in this chapter.

 2. Options 1 to 4 are described with reference to a typical sequence of SWITCH'ed
clean logs logged on a FailSafe database since the last back-up. This sequence is
illustrated in Figure 6-2.

Figure 6-1 Flowchart to Choose Clean Log Restore Procedure

Database Recovery 6-7
Draft 9/92

Copy Copy Copy

Live Database

Corrupted Database

Last
Backup

crash TL-REDUAL CLOG7 CLOG6

corrupted

TL-CREATE-FILE

tlrestore switch to

CLOG1 CLOG2 CLOG3 CLOG4 CLOG5 CLOG6
active

CLOG7
empty

CLOG1 CLOG2 CLOG3 CLOG4 CLOG5 CLOG6 CLOG7
empty

TL-REDUAL

to
switch

Copy
after

Figure 6-2 Example of Clean Log Restore Sequence

Notes:

 1. The chain of clean logs illustrated below assumes that changing from one clean log
to the next has been achieved by a TL-SWITCH or TL-REDUAL.

 2. The clean log restore and resynchronisation procedures described next in this chapter
use the scenario illustrated in this diagram as a basis for the descriptions.

6-8 Reality X FailSafe Reference Manual
Draft 9/92

Option 1 - Using TL-REDUAL to Restore a Chain of Clean Logs in One
Sequence

The procedure is as follows:

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the system
crashed.

Note: This is necessary as CLOG3 on the corrupted database may be out of synchronisation
with the corresponding clean log (CLOG3) on the now live database. Updates to the
live database may have been added to the CLOG3 while the failed system was down.

 To do this, enter

 TL-CREATE-FILE CLOG3 (E)

 then

 DELETE-FILE CLOG3

 This recreates the D-pointers, lost when the database was restored from the last back-up
tape, then deletes the clean log.

 Alternatively, enter

 rm /clean/dbase/CLOG3

 rm /clean/dbase/CLOG3v

 to remove both visible and binary files.

2. Copy all necessary clean logs, CLOG1 to CLOG5, to the failed system. Facilities to
copy clean logs between databases or from tape are described at the end of this chapter.
The necessary clean logs may be

• already on the failed system, in which case, recreate their D-pointers using
TL-CREATE-FILE with the E option to make them available on the partially-
restored database.

• on the live database, in which case copy them over to the failed system.

• archived, in which case retrieve them from tape and load onto the failed system.

Database Recovery 6-9
Draft 9/92

 If you use a UNIX utility to copy a clean log across you will need to use the TL-
CREATE-FILE verb with the E option to create a D-pointer for the clean log, before it
can be used on the database. Refer to the section on Copying Clean Logs between
Databases at the end of this chapter.

Note: CLOG6 cannot be copied over yet as it is still the active log.

3. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

4. Execute TL-REDUAL on the live database. For example, enter

 TL-REDUAL CLOG7 CLOG1

 This switches logging to CLOG7 on both databases. If an empty clean log (CLOG7)
does not exist on the secondary, TL-REDUAL creates one.

 TL-REDUAL also re-establishes the FailSafe link. Updates on the live database (the
primary) are once more logged to the secondary clean log, but are not yet applied to the
secondary (partially-restored database). Instead, the secondary is restored from the clean
logs starting with CLOG1 and carrying on in sequence through to CLOG7 (the active
log), assuming all appropriate clean logs were TL-SWITCH'ed during logging run time.

 TL-REDUAL informs you that CLOG6 does not exist by displaying a prompt at the
system console similar to the following:

 Jul 09 16:32:03 #7309 tlrestore WARNING Log/cleanlog failsafe/LOG6 empty

 Please load new log file

 The message is repeated every 5 minutes. You have to wait approximately 5 minutes to
allow switching of clean logs to be completed before you can load CLOG6 onto the
secondary database.

5. Execute TL-STATUS with the L option on the primary to monitor the state of switching.
You must wait until the Status field on the TL-STATUS screen changes from SWITCH
IN PROGRESS to ACTIVE before you copy CLOG6 across. This should take just
under 5 minutes.

6. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from the
primary. With CLOG6 copied across the restore process continues on through to the
current active clean log (CLOG7), until the backlog of updates in CLOG7 are restored
and recovery is complete. The recovered secondary database is now synchronised with
the live primary database and normal FailSafe operation is re-established.

6-10 Reality X FailSafe Reference Manual
Draft 9/92

Option 2- Using TL-REDUAL to Restore Clean Logs One at a Time

If clean log partition space is a problem then you can still use TL-REDUAL, but copy clean
logs onto the failed system one at a time and restore them singly. The procedure is as follows:

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the system
crashed.

Note: This is necessary as CLOG3 on the corrupted database may be out of synchronisation
with the corresponding clean log (CLOG3) on the now live database. Updates to the
live database may have been added to the CLOG3 while the failed system was down.

 To do this, enter

 TL-CREATE-FILE CLOG3 (E)

 then

 DELETE-FILE CLOG3

 This recreates the D-pointers, lost when the database was restored from the last back-up
tape, then deletes the clean log.

 Alternatively, enter

 rm /clean/dbase/CLOG3

 rm /clean/dbase/CLOG3v

 to remove both visible and binary files.

2. Copy the first clean log CLOG1 to the failed system. Facilities to copy clean logs
between databases or from tape are described at the end of this chapter. The required
clean log may be

• already on the failed system, in which case, recreate their D-pointers using TL-
CREATE-FILE with the E option to make them available on the partially-restored
database.

• on the live database, in which case, copy it over to the failed system.

• archived, in which case, retrieve it from tape and load onto the failed system.

Database Recovery 6-11
Draft 9/92

 If you use a UNIX utility to copy a clean log across you will need to use the TL-
CREATE-FILE verb with the E option to create a D-pointer for the clean log, before it
can be used on the database. Refer to the section on Copying Clean Logs between
Databases at the end of this chapter.

3. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

4. Execute TL-REDUAL on the live database. For example, enter

 TL-REDUAL CLOG7 CLOG1

 This switches logging to CLOG7 on both databases. If an empty clean log (CLOG7)
does not exist on the secondary, TL-REDUAL creates one.

 TL-REDUAL also re-establishes the FailSafe link. Updates on the live database (the
primary) are once more logged to the secondary clean log, but are not yet applied to the
secondary (partially-restored database). Instead, the secondary is restored from the clean
logs starting with CLOG1 and carrying on to CLOG7 (the active log).

 After restoring CLOG1, TL-REDUAL looks for CLOG2 and if it does not find it, it
displays a prompt at the system console similar to the following:

 Jul 09 16:32:03 #7309 btlrestore WARNING Log/cleanlog failsafe/LOG2 empty

 Please load new log file

 The message is repeated every 5 minutes.

5. Now delete the previously restored clean log from the failed system to recover clean log
partition space. You can use DELETE-FILE

6. Copy the requested log (CLOG2) on the failed system. TL-RESTORE will then
continue restoring CLOG2.

7. Repeat steps 5. and 6. for CLOG2 through to CLOG5, deleting each clean log after the
restore is complete and copying across the next consecutive clean log, as requested by
the message prompt.

 You have to wait approximately 5 minutes to allow switching of clean logs to be
completed. before you can load CLOG6 onto the secondary database.

8. Execute TL-STATUS with the L option on the primary to monitor the state of switching.
You must wait until the Status field on the TL-STATUS screen changes from SWITCH

6-12 Reality X FailSafe Reference Manual
Draft 9/92

IN PROGRESS to ACTIVE before you copy CLOG6 across. This should take just
under 5 minutes.

9. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from the
primary.

 With CLOG6 copied across the restore process continues on through to the current
active clean log (CLOG7), until the backlog of updates in CLOG7 are restored and
recovery is complete. The recovered secondary database is now synchronised with the
live primary database and normal FailSafe operation is re-established.

Database Recovery 6-13
Draft 9/92

Option 3 - Using TL-RESTORE to Restore Chained Clean Logs in One
Sequence, then TL-REDUAL

To restore all clean logs in one chain, proceed as follows:

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the system
crashed.

Note: This is necessary as CLOG3 on the corrupted database may be out of synchronisation
with the corresponding clean log (CLOG3) on the now live database. Updates to the
live database may have been added to the CLOG3 while the failed system was down.

 To do this, enter

 TL-CREATE-FILE CLOG3 (E)

 then

 DELETE-FILE CLOG3

 This recreates the D-pointers, lost when the database was restored from the last back-up
tape, then deletes the clean log.

 Alternatively, enter

 rm /clean/dbase/CLOG3

 rm /clean/dbase/CLOG3v

 to remove both visible and binary files, where /clean/dbase is the clean log sub-directory
path-name.

2. Ensure that CLOG1 to CLOG5 are present on the failed system. These may be

• already on the failed system, in which case, recreate their D-pointers using TL-
CREATE-FILE with the E option.

• on the live database, in which case, copy them over to the failed system.

• archived, in which case, retrieve them from tape and load onto the failed system.

 If you use a UNIX utility to copy a clean log across you will need to use the TL-
CREATE-FILE verb with the E option to create a D-pointer for the clean log, before it

6-14 Reality X FailSafe Reference Manual
Draft 9/92

can be used on the database. Refer to the section on Copying Clean Logs between
Databases at the end of this chapter.

3. Execute TL-RESTORE with the AE option on the partially-restored database. For
example,

 TL-RESTORE CLOG1 (AE

 The restore commences at CLOG1, and continues with CLOG2 through to CLOG5 in
chronological order until all inactive clean logs are restored. The restore process will
then prompt for CLOG6, as follows:

 Log CLOG6 empty. Please load new log file.

 Hit A to Abort or C to continue.

4. Enter A to abort the restore.

5. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

6. Ensure that the network connection is up, then execute TL-REDUAL on the live
database (now the primary). For example, enter

 TL-REDUAL CLOG7 CLOG6

 This switches logging to CLOG7 on both databases. If an empty clean log (CLOG7)
does not exist on the secondary, TL-REDUAL creates one.

 TL-REDUAL also re-establishes the FailSafe link. Updates on the live database (the
primary) are once more logged to the secondary clean log, but are not yet applied to the
secondary (partially-restored database). Instead, the secondary is restored from the clean
logs starting with CLOG6 and carrying on to CLOG7 (the active log).

 TL-REDUAL informs you that CLOG6 does not exist by displaying a prompt at the
system console similar to the following:

 Jul 09 16:32:03 #7308tlrestore WARNING Log/cleanlog failsafe/LOG6 empty

 Please load new log file

 The message is repeated every 5 minutes. You have to wait approximately 5 minutes to
allow switching of clean logs to be completed. before you can load CLOG6 onto the
secondary database.

Database Recovery 6-15
Draft 9/92

7. Execute TL-STATUS with the L option on the primary to monitor the state of switching.
You must wait until the Status field on the TL-STATUS screen changes from SWITCH
IN PROGRESS to ACTIVE before you copy CLOG6 across. This should take just
under 5 minutes.

8. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from the
primary.

 With CLOG6 copied across the restore process continues on through to the current
active clean log (CLOG7), until the backlog of updates in CLOG7 are restored and
recovery is complete. The recovered secondary database is now synchronised with the
live primary database and normal FailSafe operation is re-established.

6-16 Reality X FailSafe Reference Manual
Draft 9/92

Option 4 - Using TL-RESTORE to Restore Clean Logs One at a Time, then TL-
REDUAL

In this procedure clean logs are copied onto the failed system one at a time because of
restrictions in clean log partition space and restored separately.

This procedure uses TL-RESTORE with the AE option which restores a chain of clean logs in
chronological order and prompts for the correct log in the chain if it is not present on the
database.

 CAUTION

It is important that you use TL-RESTORE with the AE options. Using TL-RESTORE
without the AE options does not verify the order in which logs are restored.

The procedure is as follows:

Note: This procedure requires you to copy clean logs between databases or from tape.
Facilities to do this are described at the end of this chapter.

1. Delete, from the failed system, the clean log (CLOG3) active at the time that the system
crashed.

Note: This is necessary as CLOG3 on the corrupted database may be out of synchronisation
with the corresponding clean log (CLOG3) on the now live database. Updates to the
live database may have been added to the CLOG3 while the failed system was down.

 To do this, enter

 TL-CREATE-FILE CLOG3 (E)

 then

 DELETE-FILE CLOG3

 This recreates the D-pointers, lost when the database was restored from the last back-up
tape, then deletes the clean log.

 Alternatively, enter

 rm /clean/dbase/CLOG3

Database Recovery 6-17
Draft 9/92

 rm /clean/dbase/CLOG3v

to remove both visible and binary files.

2. Copy the first clean log CLOG1 to the failed system. Facilities to copy clean logs
between databases or from tape are described at the end of this chapter.

 The required clean log may be

• already on the failed system, in which case, recreate their D-pointers using TL-
CREATE-FILE with the E option.

• on the live database, in which case, copy them over to the failed system.

• archived, in which case, retrieve them from tape and load onto the failed system.

 If you use a UNIX utility to copy a clean log across you will need to use the TL-
CREATE-FILE verb with the E option to create a D-pointer for the clean log, before it
can be used on the database.

3. Enter

 TL-RESTORE CLOG1 (AE

 After restoring CLOG1, TL-RESTORE looks for CLOG2 and if it does not find it, it
displays the following prompt at the system console and waits:

 Log CLOG2 empty. Please load new log file.

 Hit A to Abort or C to continue.

4. Now delete the previously restored clean log from the failed system to recover clean log
partition space. You can use DELETE-FILE

5. Copy the requested log (CLOG2) on the failed system and type C to continue. TL-
RESTORE will then continue restoring CLOG2.

6. Repeat steps 4. and 5. for CLOG2 through to CLOG5, deleting each clean log after the
restore is complete and copying across the next consecutive clean log, as requested by
the message prompt.

7. When CLOG6 is prompted for type A to abort the restore.

8. Create an empty clean log (CLOG7) on the live database using TL-CREATE-FILE.

6-18 Reality X FailSafe Reference Manual
Draft 9/92

9. Execute TL-REDUAL on the live database. For example, enter

 TL-REDUAL CLOG7 CLOG6

 This switches logging to CLOG7 on both databases. If an empty clean log (CLOG7)
does not exist on the secondary, TL-REDUAL creates one.

 TL-REDUAL also re-establishes the FailSafe link. Updates on the live database (the
primary) are once more logged to the secondary clean log, but are not yet applied to the
secondary (partially-restored database). Instead, the secondary is restored from the clean
logs starting with CLOG6 and carrying on to CLOG7 (the active log).

 TL-REDUAL informs you that CLOG6 does not exist by displaying prompt at the
system console similar to the following:

 Jul 09 16:32:03 #7308 tlrestore WARNING Log/cleanlog failsafe/CLOG6 empty

 Please load new log file

 You have to wait approximately 5 minutes to allow switching of clean logs to be
completed. before you can load CLOG6 onto the secondary database.

10. Execute TL-STATUS with the L option on the primary to monitor the state of switching.
You must wait until the Status field on the TL-STATUS screen changes from SWITCH
IN PROGRESS to ACTIVE before you copy CLOG6 across. This should take just
under 5 minutes.

11. Once the Status on the TL-STATUS screen has changed, copy CLOG6 across from the
primary.

 With CLOG6 copied across the restore process continues on through to the current
active clean log (CLOG7), until the backlog of updates in CLOG7 are restored and
recovery is complete. The recovered secondary database is now synchronised with the
live primary database and normal FailSafe operation is re-established.

Database Recovery 6-19
Draft 9/92

Copying Clean Logs between Databases

Clean logs need to be copied from one database to another, as part of the recovery procedure.
This section discusses the methods available. Two main media for transferring copies are
available:

• Magnetic tape

• Communications network

Copying Clean Dumping a clean log onto tape and reloading it onto another database can be performed in
Logs via Tape either the Reality X database or in UNIX. Reality X supports the TCL verbs TL-DUMP and

TL-LOAD, and UNIX supports the cpio command.

TL-DUMP and TL-DUMP is used to copy a clean log to tape and TL-LOAD to reload it from tape onto a
TL-LOAD database. Both commands are detailed in Chapter 8. Archiving and retrieval procedures,

which are very similar, are described and illustrated in Chapter 5.

cpio Utility cpio is a UNIX utility that enables you to copy a set of files to tape and recover them
individually. The command is detailed in the UNIX user manuals supplied with your system
Archiving and retrieval procedures using cpio are described and illustrated in Chapter 5.

Copying Clean Clean logs can be copied across a network using remote Q pointers or a UNIX file transfer
Logs via a facility, such as ftp (ARPANET file transfer program). These options are discussed below.
Network

Using Remote Q The following procedure is an example of how you can use a remote Q pointer to copy a clean
Pointers log between databases.

1. Create a remote Q pointer to a clean log on the remote database using SET-FILE.

Note: A clean log must already exist on the remote database. If not, it must be created
before using SET-FILE.

6-20 Reality X FailSafe Reference Manual
Draft 9/92

 For example,

 SET-FILE failsafe-a.SYSMAN CLOG1

 The screen displays

 QFILE and QF*port updated

2. If necessary, clear the binary data section of the remote clean log via the Q pointer. For
example,

 CLEAR-FILE QFILE,BINARY

3. Copy all clean log items from CLOG1 on the live database to the empty clean log on the
remote database. For example,

 COPY CLOG1,BINARY *

TO:(QFILE,BINARY

Using ftp Clean logs can also be copied across a network from UNIX using ftp. The following is an
example of a procedure for transferring from a remote active system to a local corrupted
system.

1. Change to the appropriate clean log sub-directory on the local database. For example,

 cd /clean-logs/dbase1

2. Enter ftp at the shell prompt. The ftp prompt is now displayed.

 ftp>

3. Open a connection to the remote system. For example, enter

 open 192.67.50.36

 where 192.67.50.36 is the network address of the remote system.

 The system responds with

 Connected to 192.67.50.36

Host1 FTP server (Version ### ready)

Name:

Database Recovery 6-21
Draft 9/92

4. Enter the UNIX user id for the remote system, for example,

 Name:realman

 The system responds with

 password required for realman

Password:

5. Enter the password. The system responds with

 User realman logged in

6. Change to the appropriate clean log sub-directory. For example, enter

 cd /clean-logs/dbase1

 The system responds with

 CWD command successful

7. Set the file transfer type to support binary images. Enter

 type binary

 The system responds with

 Type set to I

8. Turn off interactive prompting. Enter

 prompt

 The system responds with

 Interactive mode off

 Multiple files are now transferred by 'mget' in one sequence without user intervention.

9. Transfer all CLOG files from the clean log sub-directory for the remote database. For
example, enter

 mget CLOG?

6-22 Reality X FailSafe Reference Manual
Draft 9/92

 The system responds with

 Using binary mode to transfer files

 followed by a sequence of messages similar to the following.

 Opening data connection for CLOG1

Transfer complete

Local: CLOG1 Remote: CLOG1

6293696 bytes received in 34.4 seconds

 Opening data connection for CLOG2

Transfer complete

Local: CLOG2 Remote: CLOG2

141592 bytes received in 0.78 seconds

 Opening data connection for CLOG3

Transfer complete

Local: CLOG3 Remote: CLOG3

82328 bytes received in 0.44 seconds

10. Run reality and enter dbase1. If the files do not already exist on the database, create the
clean log D-pointers and link the visible and binary file names. To do this, enter

 TL-CREATE-FILE CLOG1 (E)

TL-CREATE-FILE CLOG2 (E)

TL-CREATE-FILE CLOG3 (E)

Database Recovery 6-23
Draft 9/92

Chapter 7
UNIX Tools

This chapter details the special UNIX utilities available to administer a

FailSafe system. They include:

• fsadm

• lockdbase

• killreal

• mklog

• runrealcd

• unlockdbase

7-1
Draft 9/92

fsadm

Purpose Used to configure and administer databases in FailSafe mode

Syntax fsadm {options} {local-dbase}

Parameters options These are defined below. Enter fsadm with no options to show usage.

local-dbase The path name of the database on the local host. If not specified, the default
is the environment variable £REALDBASE. How reality processes
£REALDBASE to find the database is described in the Administrator's
Guide to Reality X.

Options
-c Clears failed flag.

-d remote-dbase Used when the database name on the remote host is different from the
database name on the local host with which it is paired. The database name
remote-dbase must be specified as an absolute path name.

-f Sets failed flag

-H Shows the local system name. No changes made.

-h remote-host Edits config file entries to pair the local host with the system called remote
host.

-L Switch the config file entry FailsafeAllowLogons to off

-l Switch the config file entry FailsafeAllowLogons to on. With
FailSafeAllowLogons set, users can log on to the database as a standalone
primary when the secondary is unavailable.

-p Marks local-dbase on the local host as a primary FailSafe database. This is
flagged in the local raw log header.

-q Query option which shows the current set up of the FailSafe configuration.
No changes made.

-R This option is similar to the -T option, but is used to swap primary and
secondary roles in a FailSafe pair when the primary database fails. When
applied to both the primary and associated secondary it reverses the roles,
leaving an active stand-alone primary and a failed secondary database.

7-2 Reality X FailSafe Reference Manual
Draft 9/92

 When applied to the failed primary, it logs off current primary users, locks
the database and re-configured it as a failed secondary, that is, the FailSafe
failed flag is maintained set. Any active transactions are rolled back.

 When applied to the secondary, it unlocks the database and re-configures it
as a primary, but with the FailSafe failed flag still set and hence, the
database still operates in stand-alone mode.

-r Removes all FailSafe entries from config file.

-s Marks local-dbase on the local host as a secondary FailSafe database. This
is flagged in the local raw log header.

-T Used to swap primary and secondary roles in an active FailSafe
configuration and maintain active FailSafe operation with primary and
secondary roles reversed.

 When applied to a primary database, it logs off current users, locks the
database and re-configured it as a secondary. Any active transactions are
rolled back.

 When applied to a secondary database, it unlocks the database and re-
configures it as a primary.

-t transport Specifies network transport protocol. transport may be specified as 'TCP' or
'X25'. Without the -t option, the default is TCP.

-u Marks local-dbase on the local host as unpaired, removing the FailSafe flag
from the local raw log header.

Restrictions Can be used by the super-user or the database owner only. The central daemon must be
running and the database must be configured for logging using mklog.

Comments Some fsadm facilities can also be executed from Reality X TCL using the FSADM command
and associated menu commands described in Chapter 8.

UNIX Tools 7-3
Draft 9/92

killreal

Purpose Used to terminate the Reality X daemon process(es).

Syntax killreal {options}

Options -y suppresses the WARNING.

-d {database} kills daemon for the named database only. The default is £REALDBASE

Restrictions Can be used by the super-user. The -d option can be executed by the database owner as well.

Comments This command without the -d option affects all databases, sending a termination message to
the central daemon which in turn sends messages to terminate the database daemons. Each
database daemon then broadcasts requests to all associated active reality processes to initiate a
controlled and orderly log off. If a reality process fails to respond after a period of
approximately 30 seconds, the database daemon initiates a forced termination. Reality X is
made unavailable on the system.

Using the -d option, killreal kills the database daemon for a specified database only. The
central daemon and other database daemons and processes are maintained.

Reality X is terminated in an orderly and controlled manner so that the affected database(s)
are left in a consistent and predictable state. Note, however, that use of killreal in a FailSafe
configuration may cause loss of synchronisation. It is therefore recommended that
Transaction Logging be shut down using TL-STOP on the primary before killreal is executed.

Example On entering killreal the following is displayed:

WARNING

This will cause all Reality X databases running on message
queue-id to be killed, and the daemons to exit.

Type 'y' if you are sure you want this:

See runrealcd to start up the central daemon again.

7-4 Reality X FailSafe Reference Manual
Draft 9/92

lockdbase

Purpose Used to disable all connections to a database, preventing all users, except the database owner
and super-user, from logging on. This exception is modified by the -a option.

Syntax lockdbase {database-name}

Options -a prevents all users, except super-user from logging on.

Parameters database-name The name of the database on the local host which is to be locked. The
default is £REALDBASE.

Restrictions Can only be used by the super-user or owner of the database.

Comments lockdbase only prevents users logging on. it does not log off users that are currently logged
on.

A LOCK.FILE in the database directory with zero permissions is used to maintain the lock on
the database, hence, the lock is maintained across a system re-boot or shut-down of the
Reality X daemons.

lockdbase provides an alternative to the INHIBIT-LOGONS TCL command.

The -a option performs the same function as INHIBIT-LOGONS with the A option at TCL.

See unlockdbase for unlocking a database.

UNIX Tools 7-5
Draft 9/92

mklog - Making a Raw Log

Purpose Used to create a raw log.

Syntax mklog -r {-o} {-e} {-s size}{-b size}{-t} partition bin-path

Parameters -r specifies that a raw log is to be created

-o enables any existing link to the raw log in $REALROOT/bin to be
overwritten with a new raw partition link.

-e empties the raw log

-s size enables a raw log smaller than the specified raw log partition to be created.
The default is the size of the partition.

-b size specifies a central buffer cache. Without this option the default is 128
Kbyte.

partition is the path name of the raw log.

bin-path is the path name of Reality X binaries (normally £REALROOT/bin).

Examples For example,

mklog -r /dev/rdsk/0s4 £REALROOT/bin

initialises the raw log, where 0s4 is the allocated raw partition. This will fail if the raw log
already exists.

If a raw log already exists, but you are certain you want to create a new one, for example
allocated to a different raw partition (0s3), use the -o option, as follows:

mklog -or /dev/rdsk/0s3 £REALROOT/bin

The -o option re-initialises the raw log with the new raw partition path and overrides the
current link.

7-6 Reality X FailSafe Reference Manual
Draft 9/92

mklog - Making a Clean Log Sub-directory

Purpose Used to create a clean log sub-directory and set the logging mode for the specified database.

Syntax
mklog {-o}{-c sub-dir-name}{-m log-mode} {clog-dir} dbase-path

Parameters
-o overrides the current clean log sub-directory entry in the database config file

to enable the creation of a new clean log sub-directory.

-c sub-dir-name enables you to give the clean log sub-directory a different name from that of
the database. The default is the database name.

-m log-mode enables the logging mode to be set for a specified databases. log-mode can
be:

F(ULL) Committed transactions are written synchronously to the raw
log. A reality process waits until the write to disk is completed
before continuing. This ensures that all committed transactions
are guaranteed saved. This is at the expense of a performance
overhead due to the synchronised write at each transaction
commit..

B(RISK) Committed transactions are not synchronised and are written to
the raw log periodically, or when the raw log input buffer is
full. This means that committed transactions may be lost if a
system fail. However, the performance of RealityX is faster.

 The choice between FULL and BRISK modes is made
according to whether transaction security or database
performance is most important.

(N)ONE Transaction Handling only. Transaction Logging is disabled.
Only before images are logged.

(O)FF Disables Transaction Handling and Logging.

clog-dir is the full UNIX path-name of the clean log directory on the system. One
directory is created per release of RealityX.

dbase-path is the UNIX path-name of the database you wish to configure.

UNIX Tools 7-7
Draft 9/92

Examples For example, if you enter

% mklog /clean-logs /usr/jones/dbase1

a clean log sub-directory called dbase1 is created in the clean log directory clean-logs for the
database dbase1. This will fail if a sub-directory already exists. The -o option must be used
to overwrite an existing directory.

If you want, you can specify a different name from that of the database for the clean log sub-
directory by using the -c option, for example, you may call it dbase1-clogs. To do this, enter:

% mklog -c dbase1-clogs /clean-logs /usr/jones/dbase1

This creates the clean log sub-directory dbase1-clogs in the directory clean-logs for dbase1.

Note: It is recommended that the clean log sub-directory name is the same as the database
name.

If only Transaction Handling is required without logging, then enter

% mklog -m N /usr/jones/dbase1

7-8 Reality X FailSafe Reference Manual
Draft 9/92

runrealcd

Purpose Used to start up the Reality X central daemon.

Syntax runrealcd

Restrictions Can be used by the super-user only.

Man Pages Information on runrealcd is also available on your system. Enter

man runrealcd

at the UNIX shell prompt to display this information.

Comments The central daemon exercises overall control of the Reality X applications environment. Until
the central daemon is started, Reality X is unavailable on the system. This command is
normally run automatically at boot time.

UNIX Tools 7-9
Draft 9/92

unlockdbase

Purpose Used to re-enable all connections to a database, previously locked by lockdbase or INHIBIT-
LOGGINGS (A).

Syntax unlockdbase database-name

Parameters database-name The name of the database on the local host which is to be unlocked.

Restrictions Can only be used by the super-user or the owner of the database.

 CAUTION

Unlocking a secondary database makes it available for users to log on. Updates performed
by users on a secondary database may lead to loss of sychronisation.

7-10 Reality X FailSafe Reference Manual
Draft 9/92

Chapter 8
TCL Commands

This chapter details, in alphabetical order, the TCL commands supported by

Reality X to administer and operate a FailSafe configuration. This is a

reference resource for the rest of the manual, as many of the operational and

administrative procedures, described in the manual, require one of these

commands. Refer to Chapter 10 for a description of the Transaction

Handling commands.

8-1
Draft 9/92

TCL Commands Described in this Chapter

Special TL/FS FSADM TL-LOAD
Commands

FSADM-PRIMARY TL-REDUAL

FSADM-SECONDARY TL-RESTORE

FSADM-STATUS TL-SET-LOG-STATUS

FSADM-UNPAIR TL-START

TL-CONTINUE TL-STOP

TL-CREATE-FILE TL-STATUS

TL-DUMP TL-SWITCH

TL-LISTFILES TL-TRANSACTIONS

Modified Standard ACCOUNT-RESTORE CREATE-FILE
Commands

CREATE-ACCOUNT SEL-RESTORE

8-2 Reality X FailSafe Reference Manual
Draft 9/92

ACCOUNT-RESTORE

Purpose To restore one or more accounts from tape.

Syntax ACCOUNT-RESTORE [accounts-names|*] {(options

Special Option for L Specifies that, if Transaction Logging is running on the database, the
Transaction restored items are to be logged as updates to the database, otherwise the
Logging restored items are not logged.

Restrictions This command cannot be executed inside a transaction. Use is restricted to SYSMAN or
SYSPROG.

Comments For a complete description of this command, with examples, refer to the standard RealityX
reference manuals.

TCL Commands 8-3
Draft 9/92

CREATE-FILE

Purpose To create a new file and define its log status

Syntax CREATE-FILE {DICT} file-name {,data-sect} m1{,s1} {m2{,s2}
{(options}

Special Options L Indicates that the file should not be logged, but that the
for Transaction CREATE-FILE operation itself should be logged.
Logging

X Indicates that the file should not be logged and that the CREATE-FILE
operation should not be logged.

Logged by Default When a file is created by the CREATE-FILE command, it is logged by default. 'DL' is placed
in attribute 1 of the file's definition item(s). If only a single level file is created, then only that
level is logged.

The special options described above enable the suppression of logging of the file's items or the
creation of the file itself.

Comment For a complete description of CREATE-FILE, with examples, refer to the standard RealityX
reference manuals.

8-4 Reality X FailSafe Reference Manual
Draft 9/92

CREATE-ACCOUNT

Purpose To create a new account and define the log status of its MD.

Syntax CREATE-ACCOUNT

Operation When the account is created, its MD is automatically set up as a file which should be logged.

Files within the account can be individually set as logged or not logged.

Comments For a complete description of this command with examples, refer to the standard RealityX
reference manuals.

TCL Commands 8-5
Draft 9/92

FSADM

Purpose To configure and administer databases in FailSafe mode. It provides some, but not all, of the
functionality of fsadm.

Command Class Cataloged DATA/BASIC program.

Syntax FSADM

Restrictions Use is restricted to SYSMAN.

Menu Screen The following screen is displayed when you enter FSADM.

 FAILSAFE ADMINISTRATION
_ _

 1. Show current settings

 2. Mark as primary

 3. Mark as secondary

 4. Remove primary/secondary mark

 Enter option:

You can select one of the four menu options by entering the appropriate number at the screen
Menu Options prompt. The options and their equivalent TCL/UNIX commands are:

Show current Used to display the current status of the FailSafe configuration. This is
settings equivalent to entering FSADM-STATUS at TCL or fsadm with the -q

option at the UNIX shell.

Mark as primary Used to mark the database currently logged to as a primary in a
FailSafe pair. This is equivalent to entering FSADM-PRIMARY at
TCL or fsadm with the -p option at the UNIX shell.

8-6 Reality X FailSafe Reference Manual
Draft 9/92

Mark as secondary Used to mark the database currently logged to as a secondary in a
FailSafe pair. This is equivalent to entering FSADM-SECONDARY
at TCL or fsadm with the -s option at the UNIX shell.

Remove Used to mark the local database, primary or secondary, as unpaired.
primary/secondary This is equivalent to entering FSADM-UNPAIR at TCL or fsadm with
mark the -u option at the UNIX shell.

Comments Only partially fsadm functionality is supported by FSADM. This is detailed in the description
of the menu options given above. Refer to Chapter 7 for a description of full fsadm
functionality, executed from the UNIX environment.

The equivalent FSADM TCL verbs for each menu option are described in this chapter.

TCL Commands 8-7
Draft 9/92

FSADM-PRIMARY

Purpose To mark a database as a primary in a FailSafe pair.

Command Class Cataloged DATA/BASIC program.

Syntax FSADM-PRIMARY

Restrictions Use is restricted to SYSMAN.

Comments The primary mark is entered into the config file. Refer to the description of
FSADM-STATUS.

The primary can also be marked from the UNIX environment using fsadm with the -p option..
Refer to Chapter 7.

8-8 Reality X FailSafe Reference Manual
Draft 9/92

FSADM-SECONDARY

Purpose To mark a database as a secondary in a FailSafe pair

Command Class Cataloged DATA/BASIC program.

Syntax FSADM-SECONDARY

Restrictions Use is restricted to SYSMAN.

Comments The secondary mark is entered into the config file. Refer to the description of
FSADM-STATUS.

The secondary can also be marked from the UNIX environment using fsadm with the -p
option. Refer to Chapter 7.

TCL Commands 8-9
Draft 9/92

FSADM-STATUS

Purpose To display the current status of the FailSafe configuration.

Command Class Cataloged DATA/BASIC program.

Syntax FSADM-STATUS

Restrictions Use is restricted to SYSMAN.

Example The following report is an example of the status information displayed by FSADM-STATUS.

 FailSafe Pair1:

 Database'/usr/databases/dbase1'

 TCP Host'host1' (Local)

FailSafe Pair2:

 Database'/usr/databases/dbase1'

 TCP Host'host2' (Remote)

Mode:

 Logging inactive

 FailSafe enabled,primary,inactive

Explanation of This example shows the following information.
Example

• The name of the local system and database in the FailSafe pair.

• The name of the remote system and database in the FailSafe pair.

• The status of logging in the local database, that is, active or inactive.

• The status of FailSafe configuration in the local database, that is, enabled (configured),
disabled (not configured).

• The primary, or secondary, marker, if set.

• The status of FailSafe operation in the local database, that is, active, inactive, etc

Comments This status information can also be queried in the UNIX environment using fsadm with the -q
option. Refer to Chapter 7.

8-10 Reality X FailSafe Reference Manual
Draft 9/92

FSADM-UNPAIR

Purpose To mark the local database as unpaired.

Command Class Cataloged DATA/BASIC program

Syntax FSADM-UNPAIR

Restrictions Use is restricted to SYSMAN

Comments A Failsafe pair can also be unpaired from the UNIX environment using fsadm with the -u
option. Refer to Chapter 7.

TCL Commands 8-11
Draft 9/92

SEL-RESTORE

Purpose To restore one or selected items from a file stored on tape using an FILE-SAVE,
ACCOUNT-SAVE, or equivalent.

Syntax SEL-RESTORE file{,data-sect} item-list (options

Special Option for L Specifies that, if Transaction Logging is running on the database, the
Transaction restored items are to be logged as updates to the database; otherwise the
Logging restored items are not logged.

Restrictions This command cannot be executed inside a transaction.

Comments For a complete description of this command with examples, refer to the standard RealityX
reference manuals.

8-12 Reality X FailSafe Reference Manual
Draft 9/92

TL-CONTINUE

Purpose To resume secondary FailSafe operation after the secondary has been suspended by a
TL-SWITCH with the H option.

Command Class Cataloged DATA/BASIC program.

Syntax TL-CONTINUE

Restrictions Use is restricted to SYSMAN on the primary database.

TL-CONTINUE can be used only after secondary database operation has been suspended by
TL-SWITCH with the H option.

Comments All outstanding updates from the secondary's clean log are restored until the databases are
synchronised and full FailSafe operation resumed.

TCL Commands 8-13
Draft 9/92

TL-CREATE-FILE

Purpose To create a new log file, that is, clean log, reject log or error log. See Chapter 9.

Command Class Cataloged DATA/BASIC program.

Syntax TL-CREATE-FILE log-file {E}

Syntax Elements
log-file The name assigned to the new log file.

Options
E allows the creation of a log file when the UNIX file already exists in the

clean log sub-directory. This option re-creates the log dictionary and the D-
pointer to it in the Master Dictionary. It also creates a UNIX link to the
visible file.

Restrictions Use is restricted to SYSMAN. The file name must be unique in the SYSMAN Master
Dictionary.

Comments Three types of log files are supported by Reality X Transaction Logging.

• Clean log

• Reject log (TL-REJECT)

• Error log (TL-ERRORS)

TL-CREATE-FILE can be used to create each of these, although TL-REJECT and TL-
ERRORS are normally created automatically. See Chapter 9. TL-CREATE-FILE only needs
to be executed on the primary database. An identical secondary clean log is created
automatically at TL-START.

With logging enabled, log files are created in the clean log sub-directory. However, if
Transaction Handling only is specified, then the TL-ERRORS log file is created in the
database directory.

TL-LISTFILES can be used to display a list of log files for the database and DELETE-FILE
can be used to remove a log from the database.

Example TL-CREATE-FILE DBASE-MON

[CTL] Logfile DBASE-MON created

8-14 Reality X FailSafe Reference Manual
Draft 9/92

TL-DUMP

Purpose To dump clean log files to a tape device or other system file.

Command Class Cataloged DATA/BASIC program.

Syntax TL-DUMP log-file {device}

Syntax Elements log-file is the name of the clean log file to be dumped.

device the name of the tape device or system file to dump the clean log to. The
default is the device attached by ASSIGN or T-ATT.

Restrictions Use is restricted to SYSMAN on the primary database.

Multiple clean logs should not be archived to one tape as it is not possible to retrieve multiple
files using the TL-LOAD verb.

An active clean log should not be dumped.

TCL Commands 8-15
Draft 9/92

TL-LISTFILES

Purpose To list information on all clean logs and error logs on the database.

Command Class Cataloged DATA/BASIC program.

Syntax TL-LISTFILES

Restrictions Can only be executed from SYSMAN.

Log File
Information

Clean log files in SYSMAN at 15:40:02 on 20 JUN 1991Displayed

File name Bytes Items Created

TL-ERRORS 0 11:05 15/06/91

CLOG3 0 0 22:05 15/06/91

CLOG2 6,093,330 35,100 22:10 16/06/91

CLOG1 4,119,456 25,267 22:09 17/06/91

TL-REJECT 0 1035 19/06/91

The information provided in each column is defined as follows:

File name The name of the log.

Bytes The size in bytes of the log.

Items The number of update items held in the log.

Created The creation date and time of the log file.

8-16 Reality X FailSafe Reference Manual
Draft 9/92

TL-LOAD

Purpose To load a clean log file from tape

Command Class Cataloged DATA/BASIC program.

Syntax TL-LOAD log-file {device}

Syntax Elements log-file is the name of the clean log file to be loaded.

device the name of the tape device or system file from which the clean log is to be
loaded. The default is the device attached by T-ATT.

Restrictions
Use is restricted to SYSMAN on the primary database.

TCL Commands 8-17
Draft 9/92

TL-REDUAL

Purpose To resynchronise databases for normal FailSafe operation.

Command Class Cataloged DATA/BASIC program

Syntax TL-REDUAL new_clog {first_clog}

Syntax Elements
new_clog is the name of empty clean log to which logging on the primary and

secondary databases is switched to.

first_clog is the name of the first clean log to be restored onto the secondary database
to bring it into line with the primary. The default is the clean log which is
active on the primary database prior to switching.

Restrictions Use is restricted to SYSMAN on the primary database. Logging must be enabled. new_clog
on the primary must be empty. On the secondary it will be created or cleared, if necessary.
first_clog and all chained clean logs, since the last back-up, must be available on the
secondary database. If a clean log is unavailable, or empty, TL-REDUAL prompts for it and
waits.

 CAUTION

TL-REDUAL requires a continuous chain of clean logs between first_clog and new_clog.
Use of TL-STOP followed by a TL-START divides the clean logs into two separate
chains.

Operation TL-REDUAL is entered on the current live database (the primary). Its purpose is to restart
logging on the secondary database and to bring the partially-restored secondary database up-
to-date with the primary, until the state of both databases is identical (synchronised) and
normal FailSafe operation is resumed. To do this:

1. It switches logging to a new empty clean log (new_clog) on both the live database
(primary) and the partially-restored database (secondary). new_clog need only be
present on the primary. It is created on the secondary automatically by TL-REDUAL.

 Having switched to new_clog, updates on the primary database are logged in both the
primary and secondary clean logs. However, they are not applied to the secondary
database until it has been restored with earlier updates, as described below.

8-18 Reality X FailSafe Reference Manual
Draft 9/92

 Note that the clean log switching initiated by TL-REDUAL takes about 5 minutes, you
cannot copy the previously active clean log across to the secondary until switching is
complete, that is, the TL-STATUS screen displays logging ACTIVE.

2. It also initiates, in parallel with the clean log switching, a restore process on the
secondary which restores the updates from the clean logs, required to recover the
database, commencing with the first_clog specified in the TL-REDUAL command. On
completing the restore from first-clog, it continue with one or more subsequent clean
logs if a chain of logs exists. See below.

Chaining of Clean A chain of clean logs is created where TL-SWITCH or TL-REDUAL has been used to switch
Logs from one clean log to the next. This creates a pointer to the next log. Thus having completed

restoring the first clean log, the restore process continues with the next log. Assuming the
chain is continuous, the restore process restores all clean logs in chronological order right
through to the current log (new_clog).

Having completed the restore and synchronised the databases, updates logged in the new_clog
are once again applied to the secondary database and normal FailSafe operation is resumed.

If the next clean log is not available on the secondary, the restore process displays a message
prompt at the system console of the form:

Jul 09 16:32:03 #7308 tlrestore WARNING Log /cleanlog failsafe/LOG empty

 Please load new log file

This message is repeated every 5 minutes until the required clean log becomes available.

If the clean logs are divided into two separate chains by a TL-STOP/START operation, it will
be necessary to restore the first chain using TL-RESTORE with the A option, before
continuing with a TL-REDUAL to restore the second chain and resynchronise the FailSafe
databases. The earliest log to TL-REDUAL will be the first log used after the restart.

TCL Commands 8-19
Draft 9/92

TL-RESTORE

Purpose initiates a restores all updates, or a selected list of updates, from a specified clean log onto a
the database

Command Class Cataloged DATA/BASIC program.

Syntax TL-RESTORE first_clog {(options)}

Syntax Elements
first_clog The name of the first clean log to be restored.

Options
A causes the restore process to sequence through clean logs in chronological

order until no more logs exist. Using this option all clean logs in the chain
must be present on the database.

AE causes the restore process to sequence though all existing logs in
chronological order, then wait at the EOF mark of the last log until the next
log is available. If a log is missing or invalid it is prompted for.

Note: The A and AE options require clean logs to be chained together during logging run
time in order for them to work.. See the description in this in the section on the
chaining of clean logs.

C displays a count of sets of 500 updates applied to the database and
information about the images applied.

H{n} specifies the maximum size (n) of the history file item listing the last n
image ids applied to the database. The default is 2000. The CLOG.PORTS
item size is always 20. n set to 0 inhibits the history function.

L Prompts you for alternative file names to TL-REJECT and TL-LIST , as
follows:

 ERROR LOG:

HISTORY FILE:

 When you enter a name, the file is created if it does not already exist.
Rejected images and history information for the restore are then entered into
the named files.

8-20 Reality X FailSafe Reference Manual
Draft 9/92

 If you enter RETURN, TL-RESTORE uses files with the default file names,
TL-REJECT and TL-LIST, creating them if necessary. This is equivalent to
executing TL-RESTORE without the L option, when TL-REJECT and TL-
LIST are created automatically without prompts.

R Prevents the error log (TL-REJECT) and history file (TL-LIST) from being
cleared by a TL-RESTORE. Rejected images and history information for
the current restore are then appended to the files.

 If this option is not specified, TL-RESTORE clears these files before using
them for the current restore.

S generates an asterisk for each update restored.

Restrictions Use is restricted to SYSMAN.

TL-RESTORE does not allow you to specify image selection criteria. To initiate selective
recovery you must carry out a SELECT operation first; then use TL-RESTORE on the select
list.

TL-REJECT Initially when TL-RESTORE is executed, it creates two files:
and
TL-LIST

TL-REJECT Used to log After images that fail to be restored on the database by
TL-RESTORE.

TL-LIST Used to contain history information about the last 2000 images
successfully restored and the last 20 images successfully restored per
port.

Subsequent execution of TL-RESTORE clears these files before they are used, unless the R
option is invoked, in which case the files are not cleared and data is appended. This may be
particularly useful during a multi-file restore, to retain previous history information.

TCL Commands 8-21
Draft 9/92

Chaining of Clean TL-SWITCH and TL-REDUAL create a pointer from the current clean log to the new clean
Logs log to which logging is switched. Hence this creates a chain of clean logs which can be

restored by TL-RESTORE without manual intervention using the A and E options.

TL-RESTORE with the A option commences by restoring the first_clog on the database then
continues with the next clean log in the chain Assuming the chain is continuous, the restore
process restores all clean logs in chronological order right through to the clean log before the
current active one.

TL-RESTORE with the AE option sequences through a chain of clean logs in the same way as
the A option, however, if the next clean log is not available, TL-RESTORE prompts for the
next log and waits, as follows:

 Log CLOG2 empty. Please load new log file.

 Hit A to Abort or C to continue.

The chain of clean logs will be interrupted by a TL-STOP/TL-START operation, in which
case the restore will terminate at the clean log active when the TL-STOP occurred. If this is
the case, it will be necessary to execute a TL-RESTORE with the A option, before continuing
a TL-REDUAL. The earliest log to TL-REDUAL will be the first log used after the restart.

Selective Recovery To carry out a selective recovery you must first execute the SELECT command to compile a
select list of the After images and transaction boundary images to be recovered from the
clean log, then execute TL-RESTORE. TL-RESTORE will then only restore the images in
the select list. For a list of attribute definitions which can be used as selection criteria, refer
to Chapter 9. For general information on the use of the SELECT verb, refer to the ENGLISH
Reference Manual.

 CAUTION

You must not use the SORT verb to manipulate items in a clean log as this will cause
incorrect sequencing of images during a TL-RESTORE.

8-22 Reality X FailSafe Reference Manual
Draft 9/92

TL-SET-LOG-STATUS

Purpose To define or modify the set of files to be logged by Transaction Logging.

Command Class Cataloged DATA/BASIC program.

Syntax TL-SET-LOG-STATUS

Restrictions Use is restricted to SYSMAN.

Options 4 and 5 only can be executed when Transaction Logging is active.

Menu Screen On entering TL-SET-LOG-STATUS (except for the first time after installation, see note
below), Reality X displays a menu screen, as follows:

 SET-LOG-STATUS

 [0] Exit

 [1] All system and user accounts

 [2] All system accounts

 [3] All user accounts

 [4] Selected accounts

 [5] Selected files

Enter option :

To select an option, type the associated number, and press RETURN.

Note: When you first run TL-SET-LOG-STATUS after initial installation of Transaction
Logging, Option 1 is run automatically.

TCL Commands 8-23
Draft 9/92

Explanation of Menu The purpose of the menu options is as follows:
Options

[0] Exits from TL-SET-LOG-STATUS to the TCL prompt.

[1] Allows you to define the logging status of some or all data sections in all accounts on
your database (except those with compulsory logging status). You can define whether
they are to be all 'Logged', all 'Not Logged' or selectively 'Logged'.

[2] Allows you to define the logging status of some or all system files on your database
(except those with compulsory logging status). You can define whether they are to be all
'Logged', all 'Not Logged' or selectively 'Logged'.

[3] Allows you to define the logging status of some or all data sections in all user accounts
on your database. You can define whether they are to be all 'Logged', all 'Not Logged' or
selectively 'Logged'.

[4] Allows you to select a specific account and define the logging status of some or all data
sections in it. You can define whether they are to be all 'Logged', all 'Not Logged' or
selectively 'Logged'.

[5] Allows you to select a individual data section/system file and define its logging status as
'Logged' or 'Not Logged'.

 Selecting the L, N or S On selecting one of options [1] to [5], messages are displayed prompting you to select the
Options logging status of the accounts and/or files selected by that option. The messages are unique to

each option. but the responses asked for are the same, that is, L, N or S. A typical message
prompt is:

Globally Log all data sections
Enter option (L,N,S) :

The three options are

L which sets all specified files/data sections, to be 'Logged', except for those
which have the compulsory status of 'Not Logged'.

N which omits all files/data sections from being logged, except for those
which have the compulsory status of 'Logged'.

8-24 Reality X FailSafe Reference Manual
Draft 9/92

S which allows you to specify the logging status of files/data sections
individually, except for those which are preset as 'Compulsory Logged' or
'Compulsory Not Logged'. Entering S is followed by further prompts. For
example for each account:

Log all data sections

Enter Option: (L,N,S):

If you enter S, the prompt (L, N): is returned for each data section. This
enables you to select the logging status of each system file or data section
individually.

Completion of Menu When you have finished defining the logging status of all files/data sections allowed by a
Option particular option, you are returned to the main menu. You can then update the logging status

of the database again or exit to TCL by entering 0.

Comments

Selecting the Logging At initial installation, unless there are some special considerations for your installation, it is
Status option recommended that you specify L at the (L, N, S): prompt to log the whole database. It is

normally easier to set all files/data sections to be logged, and then, if necessary, de-select the
files which you do not wish to log.

Compulsory Logging For some files the logging status is preset to 'Compulsory Logged' or 'Compulsory Unlogged',
Status as appropriate, and cannot be changed using TL-SET-LOG-STATUS.

SYSTEM and Master The SYSTEM dictionary is 'Compulsory Logged', as are all account master dictionaries.
Dictionaries Making all master dictionaries 'Compulsory Logged' ensures that the logging facility records
'Compulsory Logged' each CREATE-FILE and MOVE-FILE operation, where a D-pointer is placed in or removed

from the MD.

'Compulsory Not Also, certain files are defined as 'Compulsory Not Logged'. For these files, restoration of
Logged' Files updates is unnecessary or may even be undesirable.

The following files are 'Compulsory Not Logged'.

In DENAT account:

BP
ENGLISH
UTILITY

TCL Commands 8-25
Draft 9/92

In SYSFILES account:

USER.LOG
SESSION-LOG
ROUTE-FILE
PH-HISTORY
SYSTEM-LOG
LANG.PTRS

Scrolling Through When you select menu options [1], [2] and [3] followed by the S option, accounts and files
Compulsory Log Status with 'Compulsory Logged' or 'Compulsory Not Logged' status are displayed, but scrolled by
Information automatically. The scrolling stops at the next account or file for which the logging status must

be selected.

8-26 Reality X FailSafe Reference Manual
Draft 9/92

Example 1 The following is an example of the TL-SET-LOG-STATUS report when you select menu
option [1] followed by the L (log everything that can be logged) option.

 SET-LOG-STATUS

 [0] Exit
 [1] All system and user accounts
 [2] All system accounts
 [3] All user accounts
 [4] Selected accounts
 [5] Selected files

 Enter option : 1

Globally Log all data sections

Enter option (L,N,S): L

SYSTEM

 SYSMAN M/DICT Compulsory Logged
 SYSTEM M/DICT Compulsory Logged
 UPGRADE.ACCOUNT M/DICT Compulsory Logged
 SYSPROG M/DICT Compulsory Logged
 ENGLISH-TUTORIAL M/DICT Compulsory Logged
 HOTEL M/DICT Compulsory Logged
 DENAT M/DICT Compulsory Logged
 SYSFILES M/DICT Compulsory Logged

SYSMAN

 NETWORK
 NETWORK Logged
 SYSPL
 SYSPL Logged
 SECURITY
 SECURITY Logged
 SYSBP.MSGS
 SYSBP.MSGS Logged

[and so on, listing all files in SYSMAN]

TCL Commands 8-27
Draft 9/92

Example 1
(Continued)

 UPGRADE.ACCOUNT

SYSPROG

 BP
 BP Logged
 SYSPROG-PL
 SYSPROG-PL Logged

ENGLISH-TUTORIAL Logged

HOTEL

 SAVE.BED-CODES
 SAVE.BED-CODES Logged
 SAVE.ROOMS
 SAVE.ROOMS Logged
 GUESTS
 GUESTS Logged
 FEB Logged

[and so on, listing all files in HOTEL files]

DENAT

 BP
 BP Compulsory Not Logged
 ENGLISH
 ENGLISH Compulsory Not Logged
 UTILITY.MSGS
 UTILITY.MSGS Compulsory Not Logged

SYSFILES

 BASIC-COMPILERS
 BASIC-COMPILERS Logged
 CURSOR-DEFS
 CURSOR-DEFS Logged
 USER.LOG
 USER.LOG Compulsory Not Logged

 [and so on listing all files in SYSFILES, followed by list of all user accounts on the database]

8-28 Reality X FailSafe Reference Manual
Draft 9/92

Example 2 The following is an example of the TL-SET-LOG-STATUS report when you select menu
option [1] followed by the S (Selected files) option.

 SET-LOG-STATUS

 [0] Exit
 [1] All system and user accounts
 [2] All system accounts
 [3] All user accounts
 [4] Selected accounts
 [5] Selected files

 Enter option : 1

Globally Log all data sections
Enter option (L,N,S): S

SYSMAN

Log all data sections
Enter Option: (L,N,S): S

 NETWORK
 NETWORK (L,N) L Logged
 SYSPL
 SYSPL (L,N) L Logged
 SECURITY
 SECURITY (L,N) L Logged
 SYSBP.MSGS
 SYSBP.MSGS (L,N) L Logged

[and so on, listing all files in SYSMAN]

SYSTEM

 SYSMAN M/DICT Compulsory Logged
 SYSTEM M/DICT Compulsory Logged
 UPGRADE.ACCOUNT M/DICT Compulsory Logged
 SYSPROG M/DICT Compulsory Logged
 ENGLISH-TUTORIAL M/DICT Compulsory Logged
 HOTEL M/DICT Compulsory Logged
 DENAT M/DICT Compulsory Logged
 SYSFILES M/DICT Compulsory Logged

UPGRADE.ACCOUNT

Log all data sections
Enter Option: (L,N,S): L

SYSPROG

TCL Commands 8-29
Draft 9/92

Example 2
(Continued)
Log all data sections
Enter Option: (L,N,S): S

 BP
 BP (L,N) L Logged
 SYSPROG-PL
 SYSPROG-PL (L,N) L Logged
ENGLISH-TUTORIAL

Log all data sections
Enter Option: (L,N,S): L

HOTEL

Log all data sections
Enter Option: (L,N,S): N

 SAVE.BED-CODES
 SAVE.BED-CODES Not Logged
 SAVE.ROOMS
 SAVE.ROOMS Not Logged
GUESTS
 GUESTS Not Logged
 FEB Not Logged

[and so on, listing all files in HOTEL files]

DENAT

 BP
 BP Compulsory Not Logged
 ENGLISH
 ENGLISH Compulsory Not Logged
 UTILITY.MSGS
 UTILITY.MSGS Compulsory Not Logged

SYSFILES

Log all data sections
Enter Option: (L,N,S): L

 BASIC-COMPILERS
 BASIC-COMPILERS Logged
 CURSOR-DEFS
 CURSOR-DEFS Logged

[and so on, listing all files in SYSFILES, followed by list of all user accounts on the database]

8-30 Reality X FailSafe Reference Manual
Draft 9/92

TL-START

Purpose Used to start logging and activate FailSafe operation initially.

Command Class Cataloged DATA/BASIC program.

Syntax TL-START {log-file}

Syntax Elements log-file The name of an empty clean log to log to. This is omitted to enable
Transaction Handling without logging.

Restrictions Use is restricted to SYSMAN on the primary database. TL-START can be used only when all
other primary users are logged off. The clean logs used for both primary and secondary must
be empty.

Transaction If a database is configured for 'no logging', TL-START is used without a clean log name to
Handling without enable Transaction Handling.
Logging

Error Messages If logging is configured (using mklog) and you do not specify a clean log, TL-START
displays:

[CTL2206] You must specify a clean log file name with this command

If you specify the name of a clean log which already has data in it, TL-START displays:

[2108] Logfile logfile is not empty, use CLEAR-FILE

The clean log used must be empty. You can either clear a current log using CLEAR-FILE or
create a new one using TL-CREATE-FILE.

If you attempt to start logging within 5 minutes of executing a TL-STOP, TL-START
responds with the error message

You can't do this when logging is in a state of switching/stopping

This is because all committed transactions and independent update images sent to the 'old'
clean log are retained in the raw log for 5 minutes after being transferred, to ensure that they
have reached the clean log.

Refer to Appendix A for a list of TL error messages.

TCL Commands 8-31
Draft 9/92

TL-STATUS

Purpose Displays the current status of logging on either the primary or secondary database (S option).

Command Class Cataloged DATA/BASIC program

Syntax TL-STATUS {(options}

Options L {n} Repeats (Loops) the TL-STATUS command every n seconds, where n is
decimal. Type CTRL+E or X to terminate the loop and return to TCL. If you
do not specify the looping period (n seconds) , the default is 3 seconds

S Shows the secondary status only

T Displays the status of the primary and a list of active transactions.

W Shows the staus of the database after waiting for clean log switching to
complete, at which point it also rings a bell.

Status Information
Transaction Logging Status at 20:05:01 on 21 AUG 1992Displayed

Status ACTIVE

Clean Log file CLOG3

Recovery file CLOG2

Raw log items waiting 89

Clean log items logged 3130

Clean log in use 560,253

Transactions open 2

Database Recovery mode FULL RECOVERY

Time of last status change 11:41 14 JAN 1992

Size of raw log 1,994,624 bytes

Raw log usage 6%

Maximum raw log usage 16%

Post processor status PRESENT

TL-RESTORE file and status CLOG Image 3250 Time 10:35

FailSafe configured as PRIMARY

FailSafe status ACTIVE

Restoring from CLOG2

Sequence/time so far restored 3250, 14:15 MAY 1992

8-32 Reality X FailSafe Reference Manual
Draft 9/92

The status information given on each report line is:

Status

Current state of the logging. This may be one of the following:

ACTIVE In progress, initiated by TL-START.

INACTIVE Supported, but not in progress.

SWITCH A switch to a new clean log has been requested, but not yet actioned.
REQUESTED

SWITCH IN In the process of changing to a new clean log. It will remain in this
PROGRESS state until the old clean log is no longer required.

STOP IN Writing of updates to raw log is stopped, but committed transactions
PROGRESS and independent updates are still being flushed to the clean log.

STOPPED Inactive, but still maintaining images in the raw log until all committed
transactions and independent updates have been flushed from the
UNIX buffers to the clean log.

PASSIVE The secondary database is being restored with primary updates.
-RESTORING
(secondary only)

ACTIVE Logging to the primary and secondary logs is active, but updating of
-SECONDARY the secondary database has been suspended by TL-SWITCH with the
PAUSED H option.

Clean log file

Name of the clean log to which transactions are currently being logged.

Recovery file

Name of the previous clean log retained while in a state of switching or switched.

Raw log items waiting

The number of 'After' images and transaction boundary images still held in the raw log.

Clean log items logged

The number of 'After' images saved in the clean log.

TCL Commands 8-33
Draft 9/92

Clean log in use

The number of bytes currently stored in the clean log.

Transactions open

The number of transactions which are still active and open in the raw log.

Database recovery mode

The mode of recovery supported by the logging. The status options are, FULL
RECOVERY or NONE.

Time of last status change

The time in hours:minutes and the date when logging status was last changed.

Size of raw log

The size of the raw log in bytes.

Raw log usage

The proportion of the raw log currently filled with images.

Maximum raw log usage

The maximum proportion of the clean log filled during the period of its use.

Post processor status

Indicates the presence or absence of the post processor.

TL-RESTORE file and status

Displays the status of a full restore in progress.

Failsafe configured as

Indicates whether PRIMARY or SECONDARY status is displayed

Failsafe status

Current state of the failsafe operation. This may be one of the following:

ACTIVE FailSafe logging has been activated by TL-START on primary.

INACTIVE FailSafe logging has been deactivated by TL-STOP on primary.

IDLE FailSafe operation is disabled

8-34 Reality X FailSafe Reference Manual
Draft 9/92

TL-STOP

Purpose Used to perform a controlled close-down of FailSafe and disable logging.

 CAUTION

Use of TL-STOP ends the current chain of clean logs and TL-START starts a new chain.
Hence, in order to maintain a continuous chain of logs for TL-RESTORE or TL-REDUAL
purposes, it is recommended that you use TL-SWITCH and not TL-STOP/TL-START.

Command Class Cataloged DATA/BASIC program.

Syntax TL-STOP

Restrictions Use is restricted to SYSMAN on the primary database. TL-STOP can be used only when all
other users are logged off.

Comments There may be a condition when the close-down cannot be completed because there are one or
more transactions still in progress. An open transaction may be caused, for example, by an
absent operator leaving a transaction open. You can use the TL-TRANSACTIONS command
to see which users are within transactions, and when the transactions were started. This
information may help with the decision to contact a user who can then terminate the
transaction with TRANSEND, or you can log off the process, which will force a
TRANSABORT.

TCL Commands 8-35
Draft 9/92

TL-SWITCH

Purpose Used to switch clean logs while logging is enabled. It can also be used to suspend update
operations to the secondary database or close down the secondary database permanently,
while maintaining the primary as a standalone database.

Command Class Cataloged DATA/BASIC program.

Syntax TL-SWITCH log-file {(options}

Syntax Elements log-file The name of the primary clean log to switch to.

Options H Suspends the restore process which applies updates to the secondary
database.

K Kills the secondary database.

Restrictions Use is restricted to SYSMAN on the primary database. Logging must be enabled and the
clean log named must be empty. The associated secondary log is created or cleared
automatically.

Comments The H option causes logging to switch to an empty clean log on both the primary and the
secondary and suspends the restore process from updating the secondary. This allows the
secondary database to be temporarily stopped for backup purposes, while maintaining an
active primary database with logging to both primary and secondary logs.

Although secondary database operations are stopped, synchronisation is not lost, as updates
are still logged to the secondary log. The TL-CONTINUE can be used to restart the restore
processes which re-synchronises the secondary with the primary and resumes full FailSafe
operation.

The K option disconnects the FailSafe link so that the secondary database becomes idle. In
this case synchronisation is lost. It must then be recovered using TL-REDUAL as described
in Chapter 6.

8-36 Reality X FailSafe Reference Manual
Draft 9/92

TL-TRANSACTIONS

Purpose To display information about active transactions currently open on the database

Command Class Cataloged DATA/BASIC program.

Syntax TL-TRANSACTIONS {(options}

Syntax Elements
L {n} Repeats (Loops) the TL-TRANSACTIONS command every n seconds,

where n is a decimal, so that the screen is continually refreshed and the
active transactions information updated. Enter CTRL+E or X to terminate the
loop and return to TCL. If you do not specify the looping period (n
seconds) in the command line, the default is 3 seconds.

Restrictions Use is restricted to SYSMAN on the primary database.

Transaction
Active transactions at 09:30:09 on 24 JUN 1991. Page 1 of 1.Information

Displayed
 PORT USER ID...LOCATION.................. TRANSACTION START

 *24 SYSMAN Room 5 16:46 02 APR 19

 110 TYPING Room 12 17:56 02 APR 19

The information contained in each column is as follows:

PORT
The port from which the transaction was started.

USER ID
Identity of the user that started the transaction.

LOCATION
The location from which the transaction was started.

TRANSACTION STARTED
The time and date that the transaction was started.

TCL Commands 8-37
Draft 9/92

Chapter 9
Log Files

This chapter describes the purpose and structure of three types of log file

and a standard RealityX file. These are:

• Clean log

• Reject log, default name TL-REJECT

• Error log, default name TL-ERRORS

• History file, default name TL-LIST

It describes how you can use ENGLISH to examine these logs and carry out

a selective recovery of items.

9-1
Draft 9/92

Overview

Reality X supports three types of log file on a database, each with the same file structure and
created in the database's clean log sub-directory. They are:

Clean Log Used to log committed transactions and independent updates applied to
the database. It stores their 'After' images and transaction boundary
images. A clean log is created using TL-CREATE-FILE.

Error Log Used to log images of uncommitted transactions, still in the raw log,
(TL-ERRORS) which fail to be applied to the database when a system is re-booted

after a crash. The TL-ERRORS log is created automatically by TL-
START. The file name TL-ERRORS is mandatory.

Reject log Used to log 'After' images which cannot be applied to the database by
(TL-REJECT) a TL-RESTORE. The TL-REJECT log is created automatically by a

TL-RESTORE. TL-RESTORE with the L option allows you to
specify an alternative name for the reject log, instead of TL-REJECT.

In addition, to these three log files, RealityX supports a normal RealityX file called:

History File This file, as its name implies, contains history information about
(TL-LIST) images successfully applied to a database by a TL-RESTORE. TL-

LIST is created automatically by a TL-RESTORE. TL-RESTORE
with the L option allows you to specify an alternative name for the file,
instead of TL-LIST. The contents of TL-LIST are described in this
chapter.

The ENGLISH retrieval language is used to display and analyse the contents of the log files.

9-2 Reality X FailSafe Reference Manual
Draft 9/92

Log Files

The clean log, reject log (TL-REJECT) and error log (TL-ERRORS) files all have the same
structure, consisting of a dictionary with two data sections, one containing binary data and one
containing ASCII data which can be viewed by the user.

For example, CLOG1, has a dictionary, DICT CLOG1, with two data sections, CLOG1 and
CLOG1,BINARY.

CLOG1 This is the default data section containing items with 'visible' ASCII
formatted attributes, extracted from the binary disk images, giving
information about the logged update held in the log file. It is this data
section which is accessed and viewed by the user using the dictionary
name CLOG1, to list the log statistics, for example, LIST CLOG1.
The user view is strictly read-only. Writing to this data section is not
permitted.

BINARY This is a non-default data section containing binary items which
represent the logged images exactly as stored on disk. Items from this
data section are not normally viewed by the user. When necessary it is
referenced as CLOG1,BINARY.

The log dictionary contains D-pointers to the data sections, a set of attribute definition items
which are used by ENGLISH to generate a meaningful listing of the visible log and a number
of macros to help in the production of useful listings. The attributes defined in the visible log
item are described below.

Log Item Format item-id OFFSET. This is an ASCII representation of the hex offset of the
image in the binary file.

001 TYPE. The type of log image. This may be one of the following:
Start, Switch, Before, After, Commit and Pre-commit. The Commit
image is logged at 'Transaction end'. Before and Pre-commit images
are logged in the TL-ERRORS log only.

002 SERVICE. The RealityX service which generated the image. This
may be either REALITY File Services (RFS) which generates update
images and REALITY Transaction Services (RXS) which generates
transaction boundary images.

003 Reserved for future use

004 DATE. The date when the image was first logged, stored in internal
format.

Log Files 9-3
Draft 9/92

005 TIME. The time when the image was first logged, stored in internal
format.

006 RLOGSEQ. The transaction id which is the sequence number of the
transaction COMMIT image. All images in the committed transaction
have the same RLOGSEQ id as the COMMIT image. Independent
updates each have different ids.

007 CLOGSEQ. The sequence number of the image in the clean log.

008 PORT. The number of the port being used when the image was
logged.

009 RESULT. This is a failure code which will appear in an error log
image. It indicates the reason for the failure to restore the update.
Clean log items where recovery has not been attempted or where
recovery has been successful contains a '0'.

You can use the perror at the UNIX shell to interpret the code and
find out the reason for the failure. The use of perror is explained in a
man page.

010 USER. The RealityX user id being used when the image was logged.

011 ACCOUNT. The RealityX account id being used when the image was
logged.

012 FILENAME. The RealityX file for which the image was logged.

013 This is defined as one of three attributes:

INFO. Information field from
TRANSTART/TRANSEND/TRANSABORT image.

ITEM. The item id of the associated item, except transaction
boundaries.

ITEMINFO. This combines the previous two attribute definitions and
can be used instead of them to display both an information field from a
TRANSTART/TRANSEND image and an item-id from update
images, as appropriate.

014 OPERATION. The type of operation for which the image was logged.

9-4 Reality X FailSafe Reference Manual
Draft 9/92

History File - TL-LIST

TL-LIST contains two items for each log restored, log and log.PORTS, each containing a list
of images which have been successfully applied to the database during a TL-RESTORE. For
example, TL-LIST contains the following two items corresponding to CLOG1.

CLOG1 which lists the item-ids of the last 'n' images successfully applied to
the database. The value of 'n' is set by TL-RESTORE using the H
option, the default being 2000. Refer to Chapter 8.

CLOG1.PORTS which lists item-ids for the last 20 images successfully applied to the
database from each port on the database. Lists for each port are
concatenated in the same item.

TL-LIST is the default named file which is automatically created by TL-RESTORE.
However, if you enter TL-RESTORE with the L option, you are prompted for a name for the
History File. You can then specify a different name. Refer to the description of TL-
RESTORE in Chapter 8.

The ENGLISH verb NEW-GET-LIST is used to retrieve a list of items from TL-LIST for
display. This facility is described next in the section on 'Using ENGLISH to Examine Logs'.

Log Files 9-5
Draft 9/92

Using ENGLISH to Examine a Log

The ENGLISH retrieval language can be used to examine a log and analyse the information in
the logged image items. Most of the facilities supported by ENGLISH can be used. An
exception is the SORT verb which must not be used as it rearranges the order of images in the
clean log. This affects the sequence in which images are restored on a database leading to
data corruption.

Refer to the ENGLISH Reference Manual for details on the ENGLISH facilities referred to in
this section.

 CAUTION

You must not use the SORT verb to manipulate items in a clean log as this will cause
incorrect sequencing of images during a TL-RESTORE.

Log Item Log file information can be retrieved under 16 attribute names. They are:
Attributes

TYPE SERVICE DATE TIME

RLOGSEQ CLOGSEQ. PORT RESULT

FILENAME ACCOUNT OPERATION USER

ITEM ITEMINFO INFO

The definitions of these attributes are given earlier in this chapter under the description of the
log item format.

You can retrieve each piece of data stored in the log items using the LIST verb and by
specifying the attribute(s) required.

9-6 Reality X FailSafe Reference Manual
Draft 9/92

Macros To save time typing you can define an ENGLISH macro to execute a predefined ENGLISH
statement and retrieve a predefined set of log item attributes for display on your screen.

Examples of these are the VIS and VISF macros provided on your installed database. VIS is
used to list the default attributes. LIST CLOG1 displays the same as LIST CLOG1 VIS.
VISF displays the RealityX File details for each clean log image in sequential order. If you
enter an ENGLISH statement of the type:

LIST CLOG1 VISF

ENGLISH displays a report similar to the following.

CLog. Time. Type..... Port User.. Account. File...... Item/Info.Operation..

 0 12:17 Start 24 START

 1 12:17 After 24 SYSMAN HOTEL BED-CODES Q DELETE ITEM

 2 12:17 After 24 SYSMAN HOTEL BED-CODES WB DELETE ITEM

 3 12:17 After 24 SYSMAN HOTEL BED-CODES D DELETE ITEM

 4 12:17 After 24 SYSMAN HOTEL BED-CODES K DELETE ITEM

 5 12:17 After 24 SYSMAN HOTEL BED-CODES CLEAR SECT

 6 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 7 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 8 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 9 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 10 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 11 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 12 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 13 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 14 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 15 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 16 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 17 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

 18 12:17 After 24 SYSMAN HOTEL GUESTS 140 DELETE ITEM

Using TL-LIST You can select one of the two item lists in TL-LIST using the ENGLISH verb
NEW-GET-LIST, then examine the associated images in the clean log using the LIST verb.
For example, enter

NEW-GET-LIST TL-LIST CLOG1.PORTS

Log Files 9-7
Draft 9/92

This retrieves the CLOG1.PORTS list item from TL-LIST. The system responds with

160 ITEMS SELECTED
>

You then use the LIST verb to display some or all of the selected items in the clean log
CLOG1. For example, enter

LIST CLOG1 WITH USER = "SYSMAN"

This will then display details of updates made by SYSMAN and applied in the last 20 images
from each active port on the database.

Selective Recovery The SELECT verb is used to choose a subset of items in the clean log in order to carry out a
selective recovery of the database.

9-8 Reality X FailSafe Reference Manual
Draft 9/92

Chapter 10
Applications Interface

This chapter describes the methods used to create, or modify, TCL, PROC,

DATA/BASIC and ALL applications for transactions. Execution of a

transaction start, end, abort and query are deatailed for each application. An

example of a DATA/BASIC program containing transactions is also

provided.

10-1
Draft 9/92

Introduction

Defining a A transaction is defined by issuing a command to start the transaction followed by a command
Transaction to end it. Updates between the start and end of the transaction belong within that transaction.

Note: An elementary introduction to the nature of transactions is given in Chapter 2.

Two commands are supported to mark out a completed transaction: 'transaction start' and
'transaction end'. These may be issued from TCL, PROC, DATA/BASIC or ALL. It is
recommended as good programming practice that both commands are issued by the same
language, that is, TCL, PROC, DATA/BASIC or ALL, although, technically, this is not
necessary,

A 'transaction abort' command may be issued which will undo all of the updates performed
since the transaction start: again, the abort may be issued from TCL, PROC, DATA/BASIC or
ALL.

Optimum Size of Transactions in general should be made as small as possible, to give maximum resilience to
Transaction the system (minimise the work lost in the event of a system failure) and minimum impact on

performance. Performance may be affected by large transactions, since during a transaction
the release of item locks is suspended: this may prevent other transactions proceeding. Very
large transactions also increase the possibility of deadly embraces (see Glossary).

Note: The possibility of deadly embraces can be reduced by always processing the same set
of files and/or items in the same order.

Aborting or When you LOGOFF or LOGTO another account whilst you are in a transaction, a message
Ending a will be displayed giving you the option to abort or end the transaction.
Transaction

If a port is logged off remotely whilst inside a transaction, no message is displayed and the
transaction is forced to abort.

Aids to Update Transaction starts, ends and aborts may be given identity labels. This enables the
Analysis administrator to identify the following:

• updates and complete transactions which have been restored or saved in the clean log.

• transactions which were started but not finished due to failure before transaction end.

• complete transactions and updates which were rejected when an attempt was made to
restore them, and the reason for rejection.

10-2 Reality X FailSafe Reference Manual
Draft 9/92

The administrator may then use this information to determine where to restart applications
following a restore, when updates were done and so on. These labels are shown in the ITEM
IDENTITY column of the standard listings of clean logs and TL-REJECT files.

Item Locking This is a mechanism to prevent multiple processes accessing the same item at the same time.
Transaction Handling suspends the release of item locks set within transactions to prevent
interaction between transactions and other processes causing inconsistencies in the database.
Item locks set before the start of a transaction are not released at transaction end. Also, once
inside a transaction, Transaction Handling suspends item locks set outside the transaction.

Avoid File It is strongly recommended that you do not create or delete a file inside transaction
Creation/Deletion boundaries. If you execute a CREATE-FILE command inside a transaction, the file is not
Within a committed to the database until transaction end. However, Transaction Handling is unable to
Transaction keep a lock on the file, which means that other processes can use the file before it is

committed.

For example:

1. Process A opens a transaction and executes a CREATE-FILE command.

2. Process B opens the file and begins creating items in the file via a DATA/BASIC
application.

3. Process A executes a TRANSABORT; the CREATE-FILE operation is rolled back and
the file space is returned to the system.

4. Process B is unaware of the roll-back and continues to write items to the space where
the file once was, but when the file is closed, the UNIX file is deleted.

Applications Interface 10-3
Draft 9/92

TCL/PROC Interface to Transactions

The Transaction Handling commands which can be executed from TCL or PROC are detailed
in the following pages. These include:

TRANSTART to mark the start of a transaction.

TRANSEND to mark the end of a transaction.

TRANSABORT to undo all updates performed by the current transaction.

TRANSQUERY to determine the transaction status of a port.

These commands can also be executed as statements in DATA/BASIC. These are discussed
later in the chapter.

10-4 Reality X FailSafe Reference Manual
Draft 9/92

TRANSTART Verb

Purpose TRANSTART is executed to mark the start of a transaction.

Syntax TRANSTART {transaction-information}

Syntax Elements transaction- optionally specifies the text to be saved in the TRANSTART item
information which is logged. This information can be useful when examining the

item in the clean log, or during a TL-RESTORE. By making this
parameter describe what you are doing (for example, PAY-
EMPLOYEE-28090) it can be used to identify a particular transaction,
or iteration of a repetitive transaction. A space is used as a delimiter.

Operation Initially, TRANSTART checks that the current process is not within a transaction
(transactions may not be nested) and that Transaction Logging is enabled. If this is not the
case, it displays an appropriate error message and exits. Otherwise, it writes a TRANSTART
item to the raw log.

Error Messages Refer to Appendix A for descriptions of error messages.

Applications Interface 10-5
Draft 9/92

TRANSEND Verb

Purpose TRANSEND is executed to mark the end of a transaction and to 'commit' (see Glossary) the
updates performed by the transaction.

Syntax TRANSEND {transaction-information}

Syntax Elements transaction- optionally specifies the text to be saved in the TRANSTART item
information which is logged. This information can be useful when examining the

item in the clean log, or during a TL-RESTORE. By making this
parameter describe what you are doing (for example, PAY-
EMPLOYEE-28090) it can be used to identify a particular transaction,
or iteration of a repetitive transaction. A space is used as a delimiter.

Operation Initially, TRANSEND tests whether a transaction is open. It then sets up a TRANSEND
image in the raw log. All item locks that were set during the transaction are released and the
transaction is committed.

Error Messages Refer to Appendix A for descriptions of error messages.

10-6 Reality X FailSafe Reference Manual
Draft 9/92

TRANSABORT Verb

Purpose TRANSABORT is executed to undo the updates performed inside the current transaction and
release all item locks set during the transaction. The item locks are released only after the
TRANSABORT image has been logged to the raw log.

Syntax TRANSABORT {transaction-information}

Syntax Elements transaction- optionally specifies the text to be saved in a TRANSABORT item.
information This information may be useful when examining the TL-ERRORS log.

TRANSABORT images are not logged to the clean log during normal
logging operations.

Operation The undoing of updates inside a transaction is called roll-back. This is executed by restoring
the 'Before' images of all updates inside the aborted transaction onto the database. The
database is therefore 'rolled back' to its pre-transaction consistent state. All the other ports on
the system remain active whilst this restore procedure is being carried out.

Error Messages Refer to Appendix A for descriptions of error messages.

Applications Interface 10-7
Draft 9/92

TRANSQUERY Verb

Purpose This command is used to determine the transaction status of the port currently in use. (Use
TL-STATUS for status of other ports.)

Operation The port's transaction status is indicated by one of the following messages:

• [CTL1151] Transaction Logging is not enabled

Transaction Handling is installed on the system but not enabled.

• [CTL1155] There is a transaction already active for this
process.

Transaction Handling is installed and the port performing the TRANSQUERY is inside a
transaction.

• [CTL1156] There is no currently active transaction for this
process.

Transaction Handling is installed on the system but the port performing the
TRANSQUERY is not inside a transaction.

10-8 Reality X FailSafe Reference Manual
Draft 9/92

DATA/BASIC Interface to Transactions

Like TCL and PROC, DATA/BASIC supports four Transaction Handling statements. Three
to mark transaction boundaries and one to monitor transaction status. These commands are
detailed in the pages following:

• TRANSTART

• TRANSEND

• TRANSABORT

• TRANSQUERY

More than one transaction may occur within a single DATA/BASIC program, or a single
transaction may span several CHAINed programs. However, transactions may not be nested,
i.e. a TRANSTART may not be followed by another TRANSTART without an intervening
TRANSEND or TRANSABORT. This would cause a run-time error whereby the ELSE
clause in the TRANSTART statement would be executed.

Note: If Transaction Logging has not been installed and enabled, then the ELSE clause is
used in every case.

The function of item READ/WRITE statements and RELEASE statements is altered so that
item locks set within a transaction are not released until transaction-end (or transaction-abort).

An example of a DATA/BASIC program using transactions is given later.

Applications Interface 10-9
Draft 9/92

TRANSTART Statement

Purpose Marks the start of a transaction, and precedes the first READ/WRITE operation on the
database included in the transaction.

Syntax TRANSTART {transaction-information} [THEN statements| ELSE statements]

Syntax Elements transaction- optionally specifies additional text to be saved in the 'transaction start'
information record. This information can be useful when examining a clean log.

If you do not supply this parameter, transaction-information comprises
the file-name and the item-name containing the program performing
the transaction.

THEN is a clause which specifies the statement(s) to be executed if
statements transaction-start is successful.

ELSE is a clause which specifies the statement(s) to be executed should the
statements transaction-start fail (for example, transaction is already active or

Transaction Logging is not enabled.)

Examples of If this parameter contains text describing the purpose of the transaction, it can be used to
transaction- easily identify that particular transaction. For example,
information

TRANSTART ORDER ENTRY TRANSACTION ELSE GOTO 500

Alternatively, you can use variables to identify a particular iteration of a repetitive transaction.
For example,

TRANSACTION.INFORMATION=ORDER:"-":CUSTOMER
TRANSTART TRANSACTION.INFORMATION ELSE GOTO 500

or

TRANSACTION.INFORMATION = "PAY-EMPLOYEE": PAYROLLNUM
TRANSTART TRANSACTION.INFORMATION ELSE GOTO 500

10-10 Reality X FailSafe Reference Manual
Draft 9/92

TRANSEND Statement

Purpose Marks the end of a transaction and follows the last READ/WRITE operation on the database
included in the transaction.

Syntax TRANSEND {transaction-information} [THEN statements ELSE| statements]

Syntax Elements transaction- optionally specifies text to be saved in the TRANSEND item which is
information logged. This information can be useful when examining a clean log.

You can use literals or variables to identify a transaction or iteration of
a repetitive transaction. (See description of TRANSTART statement.)

If you do not supply this parameter, transaction-information comprises
the file-name and the item-name containing the program performing
the transaction.

THEN is a clause which specifies the statement(s) to be executed if the
statements transaction-end is successful.

ELSE is a clause which specifies the statement(s) to be executed should the
statements transaction-end fail (for example, no transaction is active or

Transaction Logging not enabled.)

Applications Interface 10-11
Draft 9/92

TRANSABORT Statement

Purpose This statement aborts the current transaction and undoes any updates to the database
performed by it.

Syntax TRANSABORT {transaction-information} [THEN statements| ELSE statements]

Syntax Elements transaction- Optionally specifies text to be saved in the 'transaction abort' record.
information This information may be useful when examining a TL-ERRORS item.

TRANSABORT is not logged to the clean log during normal logging.

If you do not supply this parameter transaction-information comprises
the file-name and the item-name containing the program performing
the transaction.

THEN is a clause which specifies the statement(s) to be executed if
statements transaction-abort is successful.

ELSE is a clause which specifies the statement(s) to be executed should
statements transaction-abort fail (for example, no transaction is active) or

Transaction Logging not be enabled. This clause is mandatory if you
have not included a THEN clause.

Operation The undoing of updates inside a transaction is called roll-back. This is executed by restoring
the 'Before' images of all updates inside the aborted transaction onto the database. The
database is therefore 'rolled back' to its pre-transaction consistent state. All the other ports on
the system remain active whilst this restore procedure is being carried out.

10-12 Reality X FailSafe Reference Manual
Draft 9/92

TRANSQUERY Function

Purpose This function is used to determine the transaction status of the current port. Alternative
statements can then be executed, depending on the transaction status.

Syntax IF TRANSQUERY() [THEN statements | ELSE statements]

Operation The function TRANSQUERY() will evaluate to true (1) if the process is inside a transaction,
or to false (0) if the process is not inside a transaction.

Applications Interface 10-13
Draft 9/92

Example of Transaction Boundaries in a DATA/BASIC Program

The following program illustrates the use of Transaction Handling commands in
DATA/BASIC and also illustrates use of item locks.

PAGE 1 DATA/BASIC 15:36:30 15 MAY 1990
PROGRAM1

001 *VERSION 0001
002 *---*
003 * This program demonstrates the use of the Transaction*
004 * Handling commands and also some of the @(-n) *
005 * commands. *
006 *---*
007 * Copyright:McDonnell Douglas Information Systems 1989*
008 *---*
010 * Open all relevant files and do any necessary
011 initialisation
012 *
013 OPEN 'DATA1' TO DATA1 ELSE STOP 201, 'DATA1'
014 OPEN 'DATA2' TO DATA2 ELSE STOP 201, 'DATA2'
015 OPEN 'DATA3' TO DATA3 ELSE STOP 201, 'DATA3'
016 *
017 KEY = ''
018 RECORD= ''
 *
 *---
019 10 * This is the start of the main transaction loop
020 * It simply requests an item id from the user and
021 * then locks that item in each of three files.
022 * The program then prompts the user to enter data
023 * for each of the three files and updates the files
024 * as the data is entered (instead of doing all the
025 * updates at the end of the transaction).
026 * The user is allowed to abort the transaction at
027 * any input field by entering '/' which calls a
028 * transaction abort, automatically rolling back
029 * all of the updates which have taken place and
030 * also releases all of the locks previously set.
031 *---
032 *
033 CRT @(-1): ; * Clear the screen
034 *
035 CRT @(10,5): "Enter record key ": ; INPUT KEY
036 *
037 CRT @(-13) ; * Clear line 25
038 *
039 IF KEY = '' OR KEY = '/' THEN CRT @(-1): ; STOP
040 *
041 TRANSTART THEN

10-14 Reality X FailSafe Reference Manual
Draft 9/92

042 . *
043 . * The transaction is now in progress and the log
044 . * will contain a start entry for this port plus
045 . * the name of the program which started it.
046 . *
047 . READU RECORD FROM DATA1,KEY THEN
048 . .CRT @(-13): "Item '":KEY:"' exists in file
049 'DATA1'":@(-14):
050 . . SLEEP 1
051 . . GOTO 100 ; * Abort the transaction, it exists
052 . END
053 . *
054 . READU RECORD FROM DATA2,KEY THEN
055 . .CRT @(-13):"Item'":KEY:"' exists in file
056 'DATA2'":@(-14):
057 . . SLEEP 1
058 . . GOTO 100 ; * Abort the transaction, it exists
059 . END
060 . *
061 . READU RECORD FROM DATA3,KEY THEN
062 . .CRT @(-13):"Item '":KEY:"' exists in file
063 'DATA3'":@(-14):
064 . . SLEEP 1
065 . . GOTO 100 ; * Abort the transaction, it exists
066 . END
067 . *
068 . * All records are now locked and don't exist
069 . * Now get the data for each record and update them
070 . *
071 . *---
072 . CRT @(10,8): "Enter data for record 1": ; INPUT
073 RECORD
074 . *
075 . IF RECORD = '/' THEN GOTO 100 ; * Transaction abort
076 request.
077 . *
078 . WRITE RECORD ON DATA1,KEY; *File updated but lock
079 not released
080 . *---
081 . CRT @(10,10): "Enter data for record 2": ; INPUT
082 RECORD
083 . *
084 . IF RECORD = '/' THEN GOTO 100 ; * Transaction abort
085 request.
086 . *
087 . WRITE RECORD ON DATA2,KEY; *File updated but lock
088 not released
089 . *---
090 . CRT @(10,12): "Enter data for record 3": ; INPUT
091 RECORD
092 . *
093 . IF RECORD = '/' THEN GOTO 100 ; * Transaction abort

Applications Interface 10-15
Draft 9/92

094 request.
095 . *
096 . WRITE RECORD ON DATA3,KEY; *File updated but lock
097 not released
098 . *---
099 . *All inputs and updates are complete so 'commit'
 . * the transaction
 . TRANSEND "Transaction completed - ITEM ID =
 '":KEY:"'" THEN
 . . *
 . .CRT @(-13):"Transaction accepted and logged -Item
 Id =
 '":KEY:"'":@(-14):
 . . GOTO 10 ; * Start another transaction
 . . *
 . END ELSE
 . . *
 . . *The ELSE clause will be taken for the following
 reasons:-
 . . * 1.If no TRANSTART command has previously been
 executed.
 . . * 2.If Transaction Logging has not been enabled
 on the
100 * machine
101 . . *
102 . . GOTO 100 ; * Unable to commit the transaction so
103 attempt an
104 abort
105 . END
106 . *
107 END ELSE
108 . *
109 . * Unable to start a transaction so quit the program
110 . *This ELSE clause will be taken for the following
111 reasons
112 . * 1.If a transaction is already in progress
113 . * 2.If transaction Logging has not been enabled on
114 this
115 machine
116 . *
117 . CRT @(-13):"Unable to start a new transaction -
118 program
 cancelled":@(-14):
 . STOP
 END
 *
119 100 * Transaction abort routine
120 *
121 * Abort the current transaction incorporating some
122 text
123 * and the item id into the transaction log
124 *

10-16 Reality X FailSafe Reference Manual
Draft 9/92

125 TRANSABORT "Abort transaction - ID = '":KEY:"'" THEN
126 . *
127 . * Display a message on line 25
128 . *
129 . CRT @(-13):"Your transaction has been aborted":@(-
130 14):
131 . *
132 . GOTO 10 ; * Prompt for a new transaction start
133 . *
134 END ELSE ;* Cannot abort the transaction for some
135 reason
136 . *
137 . * The ELSE clause will be taken for the following
138 reasons:-
139 . * 1.If no TRANSACTION command has previously been
140 executed.
141 . * 2.If Transaction Logging has not been enabled on
142 the
143 . * machine
 . *
 . CRT @(-13):"Unable to abort the transaction -contact
 your
 . supervisor":@(-14):
 . ABORT ; * EXIT COMPLETELY FROM ALL PROCESSING
 END
 END

Applications Interface 10-17
Draft 9/92

ALL Interface to Transactions

In ALL, transactions can be defined at two levels:

• Function level, where a transaction consists of one or more complete functions, OR

• Block level, where a transaction comprises one logical update, screen or report.

Function Level In this case a transaction consists of one or more complete functions. Transaction boundaries
Transaction are defined via the function definition screen. An ALL function may be specified as one of
Boundaries the following:

• A transaction on its own: that is, both the start and the end of a transaction.

• The start of a transaction.

• The end of a transaction.

• An intermediate function within a transaction consisting of a chain of three or more
functions, or a function not within any transaction.

Function Definition The prompt given in the function definition screen is Transaction?. The screen appears
Screen as follows:

01/05/90 Function: 1-DEFINITION MIC/SYS/00

Function name: Title:
 Type: Transaction?:
Category: Analyst:
 Level: Entry Date:
Exit Link: Reset On:
Error Link: By:

The responses to the Transaction? prompt are shown in the table below.

10-18 Reality X FailSafe Reference Manual
Draft 9/92

Response to Type of Function
'TRANSACTION?'
prompt

 S Start of a chain of functions together comprising a
 transaction.

 E End of a chain of functions together comprising a
 transaction.

 SE Start and end of a transaction: function comprises a single
 transaction. (If the function is not one-time-only, all passes
 through the function are part of the one transaction).

 null Intermediate function within a chain of functions comprising
 a transaction or function not within any transaction.

Where a function is defined on the transaction boundary, the entire function is part of one
transaction. If the function is both the start and end of the transaction, all file updates from
the time the function is entered to the time the function is closed are part of one transaction.
Where a function is defined as only the start of the transaction it must link to another function
in that transaction.

Note: Having defined a transaction boundary at function level, you cannot then define
transactions at block level within that function.

Block Level In this case, a transaction comprises one logical update, screen or report. When defining
Transaction transaction boundaries at block level, you must not make any response to the
Boundaries Transaction? prompt on the function definition screen. Instead, you should define the

transaction at the function characteristics screen.

Function The prompt given in the function characteristics screen is 'Trans?'. An update characteristics
Characteristics Screen screen appears as follows:

01/05/90 Function: 2- CHARACTERISTICS MIC/SYS/00

Update#:- Trans?: Sort/Select?:
One-time?: Start Upd#: Descending?:
Logic ID: End Upd#: SSEL Lgc ID:
 Paging?: SSEL Efile#:

Applications Interface 10-19
Draft 9/92

Note: If you have used the Transaction? prompt on the function definition screen to
define a transaction boundary at function level, then your response to the Trans?
prompt on the function characteristics screen must be N.

When transaction boundaries are defined at block level, each iteration through the block is one
transaction. If you are using function level boundaries, transactions can cross functions, but
block level transactions must start and end in the same logical block. If the block is one-time-
only, then the block is equivalent to one transaction. Where a block is not one-time-only,
there is a transaction for each primary record read in the block.

Non-Paging Screens The transaction is opened before the first field is processed and is closed after the files are
written. The default logic is executed outside the transaction, so any 'CHAIN' or 'LINK'
statements in this logic are outside the transaction boundaries. All other logic and all nested
screens are executed inside the transaction.

Paging Screens As with other blocks, in a paging screen there is one transaction for each primary record read.
These correspond to one or more lines on a paging screen, not to the entire screen.

In Add or Change mode, the transaction boundaries are the same as for non-paging screens,
but in Insert or Delete mode an extra transaction is included. During Insert mode on paging
files, all of the file items after the insert must be read and rewritten with a new sequence
number. This re-sequencing is treated as a transaction in its own right. Similarly, in Delete
mode, each record deleted is a transaction, with the transaction opened before the file reads
and closed following the file writes. Once a block of records is deleted, all following records
must be re-sequenced and this re-sequencing is treated as a separate transaction.

Random Paging If a paging file is accessed randomly in any type of block, the file is re-sequenced when
Updates records are deleted. In this case, the re-sequencing is included as part of the delete

transaction, it is not a transaction in its own right.

Subfiles Transaction boundaries on a subfile are meaningless because the subfile is not actually written
until the master file is written. If a subfile is part of a transaction, the master file must be part
of the same transaction.

10-20 Reality X FailSafe Reference Manual
Draft 9/92

Identifying Transactions

The name of the transaction can be supplied via the system variable @$TRVAR which can be
specified by a string of up to 50 characters placed in logic thus:

@$TRVAR = "Invoice No. 552"

The contents of this variable are written to the Transaction-Log at the start and end of each
transaction to enable the transactions to be easily identified. This information can be used in a
number of ways: to identify transactions on a log tape, to provide audit trail information to
identify complete and restored transactions or incomplete, rejected transactions.

Where to Set The Start Transaction command is issued before the first field in the transaction is processed.
@$TRVAR @$TRVAR can therefore be set in the start of function logic, to name a function level

transaction or the first block-level transaction in a function. Subsequent block-level
transactions can be given different names by re- setting @$TRVAR within the function logic.

Item Locks In ALL locks all items accessed unless in look-up mode. Transaction Logging maintains these
ALL locks until the end of a transaction. If a user's process is held up waiting for a lock the

message 'Waiting for Lock' is output to inform the user of the reason for the delay.

Aborting A transactions is aborted if:
Transactions

• An attempt is made to start a new transaction before the current one has completed.

• The &$CANCEL.TR flag is enabled at the end of the Logical Screen/Report/Update.

• A TRANSABORT is performed from TCL or DATA/BASIC.

Logging Of Files Whenever you create a file in ALL, you are asked "Should this file be transaction logged?".
Enter Y(es) or N(o) as required.

The Chain If the control is passed from one function to another via the CHAIN command the status of
Command any on-going transaction is not affected. There is no automatic Abort issued and any

Transaction End defined for the function is not issued after the CHAIN command has been
carried out.

External Calls Using the LINK command to pass control outside a function is not allowed unless an abort
transaction has been issued by an ENABLE CANCEL.TR

Applications Interface 10-21
Draft 9/92

Notes on Defining Transactions in ALL

 1. Transactions cannot be defined on both function level and block level within one
function.

 2. Transactions cannot be nested.

 3. Transactions must be kept as small as possible to avoid performance problems caused by
holding item locks for longer than necessary.

 4. The possibility of deadly embraces can be reduced by always processing the same set of
files in the same order.

10-22 Reality X FailSafe Reference Manual
Draft 9/92

Appendix A
Error Messages

This appendix contains a list of error messages which may appear while

running Transaction Logging and provides suggestions as to what to do

when each message is displayed.

A-1 Reality X Failsafe Reference Manual
Draft 9/92

CTL1000 An unrecognised error has occurred

Call support.

CTL1001 Unable to open file 'file-name'

File name does not exist. Re-enter with command with correct file name.

CTL1002 Unable to read item 'item-id' from 'file-name'

File name does not exist. Re-enter with command with correct file name.

CTL1004 unable to create file 'file-name'

Call support.

CTL1005 Error 'code'

Call support.

CTL1006 System file 'file-name' exists

Use TL-CREATE-FILE again with the E option.

CTL1007 System file 'file-name' doesn't exists, don't use (E) option.

Use TL-CREATE-FILE again without the E option.

CTL1008 Operation incomplete, aborted by user

You have pressed the break key during TL-RESTORE. Re-execute TL-RESTORE

CTL1009 An invalid option has been requested

Re-enter command with correct option.

CTL2000 There is a transaction already active for this process

Issue a transaction end or abort before opening another transaction.

A-2 Reality X Failsafe Reference Manual
Draft 9/92

CTL2001 There is no currently active transaction for this process

Unless it is in response to a TRANSQUERY, it is caused by an applications programming
error. Re-program with the necessary TRANSTART.

CTL2102 Start logging operation failed with code 'code'

Call support.

CTL2103 Stop logging operation failed with code 'code'

Call support

CTL2105 Get file information on file 'file-name' failed

Check to see if physical file is missing. If so, re-create UNIX file with the appropriate name.

CTL2106 File 'filename' is not a log file

You are trying to restore from a file which is not a clean log or does not exist. Use a valid
clean log name.

CTL2107 Transaction logging is unsupported

Ensure that Transaction Logging is targetted on your system and the system and your database
are configured correctly (using mklog) to support Transaction Logging. Refer to Chapter 4.

CTL2108 Log file 'file-name' is not empty, use CLEAR-FILE

Either use another log file which is empty or empty the log file using CLEAR-FILE.

CTL2109 Logging is already active on 'log file name'

Either continue logging to the current clean log or re-enter TL-START with a different empty
log name.

CTL2111 This file is the active log

You cannot restore from an active clean log. Also, after switching clean logs the recovery
file, from which you have just switched, remains active for 5 minutes.

A-3
Draft 9/92

CTL2112 You can't do this when logging is in a state of switching/stopping

Wait until switching/stopping is complete. This takes about 5 minutes.

CTL2113 Logging is already inactive or in a state of becoming inactive

You have already executed a TL-STOP.

CTL2114 Logging state unknown - you have out of date transaction verbs

Obtain the correct release of TL commands

CTL2115 You can't do this when the secondary failsafe system is paused

Use TL-CONTINUE to resynchronise failsafe before repeating operation.

CTL2150 The restore operation has failed with code 'code' ('error message')

Call support.

CTL2200 This command must be run from the 'account-name' account

Log to 'account-name' and re-run command.

CTL2201 This command can only be run when transaction logging is active

Re-run the command after executing a TL-STOP.

CTL2202 This command cannot be run when transaction logging is active

Re-run the command after executing a TL-START.

CTL2203 This command cannot be run when you are inside a transaction

Wait for transaction end or abort transaction, then retry.

CTL2204 You must have account privilege level of 2 to execute this command

Log to an account with the required privileges then re-try.

A-4 Reality X Failsafe Reference Manual
Draft 9/92

CTL2205 This command may only be used when no other users are logged on.

There are in fact 'number' others users logged on,

Use LISTU to see logged on users.

Either wait until all users are logged off or force all users off using LOGOFF. You can use
INHIBIT-LOGONS to prevent more users from logging on.

CTL2206 You must specify a clean log file name with this command

Re-run the command with a valid clean log name.

CTL2207 You must run TL-SET-LOG-STATUS before you can start logging

You have not yet defined the logging status of the database

CTL2209 This command can only be run when transaction logging is active

Execute TL-START, then reenter command.

CTL2210 This command can only be run when clean logging is inactive

You cannot enter TL-START while logging is active.

CTL2211 This command can only be run on a primary or a standalone system

You cannot enter TL-START on the secondary database.

A-5
Draft 9/92

Appendix B
Installation of Transaction Handling/Logging

This appendix contains detailed examples of the procedures that you need to follow to install

Transaction Handling and Logging on the UMAX V and M88 systems.

B-1
Draft 9/92

Introduction

The installation of transaction logging for a particular release involves

• ensuring that the disk is dedicated to logging. All swap partitions and file systems
removed.

• creating raw log and clean log partitions.

• mounting the clean log file system.

• initialising the raw log.

• configuring the database with a clean log sub-directory.

 CAUTION

For effective operation of transaction logging the raw and clean log partitions should be
placed on their own disk. They must not reside on the same disk as any data bases or
swap partitions.

This appendix contains detailed examples illustrating how to create and initialise the
partitions for the raw log and clean log on both UMAX V and M88 systems.

The examples assumes that you have 8 disks, 0 to 7, and that disk 7 is to be set up for the sole
use of raw and clean logs. In this example disk 7 is currently used for a file system called
/user7 and also constitutes part of virtual partition vp0. File system /user7 will be removed
and virtual partition vp0 will be redefined to exclude the physical partition on disk 7.

Notes:

 1. This is only an example. Your system configuration may be different.

 2. Remember to save the contents of /user7 and vp0 if you wish to keep them

 3. The example contains some embedded comments, which are highlighted by the use
of italics.

B-2 Reality X Failsafe Reference Manual
Draft 9/92

Procedure for UMAX V Systems

Removing Swap The log disk must be dedicated to logging. If swap partitions are defined on the disk, they
Partitions from must be removed. The procedure is as follows:
Log Disk

1. Find out if there are any swap partitions on disk7

 $ su
Password:

cd /etc

cat init.d/swap

USAGE="Usage:/etc/init.d/swap (start | stop)"

 if [! -d /usr/bin]

then # /usr/not mounted ??

 exit

fi

 case "$1" in

'start')

 # Add swap area described here

 /etc/swap -a /dev/dsk/1s1 0 131820

 /etc/swap -a /dev/dsk/7sl 0 131820 Yes there is

 ;;

 'stop')

 # Don't bother deleting swap areas

 ;;

*)

 echo ${USAGE}

 exit 1

 ;;

esac

#

swap -d /dev/dsk/7s1 0 So remove it
swap -l

path dev swaplo blocks free

/dev/dsk/0s1 0,1 0 196608 177880

/dev/dsk/1s1 0,17 0 131816 113288

/dev/dsk/7s1 0,23 0 131816 113288

#

Installation of Transaction Handling/Logging B-3
Draft 9/92

2. Repeat 'swap -l' until swap partition on 7s1 is disabled. This is indicated by it no longer
appearing on the swap -l output. On an idle system this may not take very long.

 # swap -l

path dev swaplo blocks free

/dev/dsk/0s1 0,1 0 196608 177880

/dev/dsk/1s1 0,17 0 131816 113288

#

#

vi init.d/swap

3. Remove the line "/etc/swap -a /dev/dsk/7s1 0 131820" to prevent this partition
being used as swap space again

Removing File The log disk must also be cleared of any virtual partitions. The procedure is, as follows:
Systems from Log
Disk 1. Find out if there are any virtual partitions which use disk7

 #

cat vptab

 /dev/rdsk/vp0 16/dev/rdsk/2s5 /dev/rdsk/3s5 /dev/rdsk/7s5
 Yes there is

2. Find out it there are any filing systems using disk 7

 # df

/ (/dev/dsk/0s0): 458 blocks 4219 i-nodes

/tmp (/dev/dsk/1s4): 41874 blocks 8082 i-nodes

/usr (/dev/dsk/1s5): 11702 blocks 14615 i-nodes

/usr/tmp (/dev/dsk/1s5): 42712 blocks 8188 i-nodes

/user0 (/dev/dsk/0s6): 31906 blocks 50165 i-nodes

/user1 (/dev/dsk/1s6): 155162 blocks 52868 i-nodes

/user2 (/dev/dsk/2s4): 73978 blocks 53109 i-nodes

/user3 (/dev/dsk/3s4): 115594 blocks 57361 i-nodes

/user4 (/dev/dsk/4s4): 107478 blocks 58855 i-nodes

/user4a (/dev/dsk/4s6): 76868 blocks 47520 i-nodes

/logs (/dev/dsk/4s9): 8024 blocks 24569 i-nodes

/user5 (/dev/dsk/5s4): 225356 blocks 43550 i-nodes

/user6 (/dev/dsk/6s4): 160824 blocks 42053 i-nodes

/user7 (/dev/dsk/7s4): 23680 blocks 58334 i-nodes Yes there is
/usr/cora (/dev/dsk/vp0): 120434 blocks 53853 i-nodes Yes there is

B-4 Reality X Failsafe Reference Manual
Draft 9/92

3. Unmount the filing systems.

 #umount /user7

#umount /usr/cora

#

4. Disable the offending virtual partition

 # vpadmin -d /dev/rdsk/vp0

vpadmin

 Virtual Inter No.

 Partition leave Prt Size Real Partitions

/dev/rdsk/vp0 16 3 1759680 /dev/rdsk/2s5 /dev/rdsk/3s5

 /dev/rdsk/7s5

5. Repeat the 'vpadmin' command until virtual partition vp0 is disabled. On an idle system
this may not take very long.

 #

vi vptab

6. Remove the string /dev/rdsk/7s5 to exclude disk 7 from the definition of virtual partition
vp0. The line becomes:

 /dev/rdsk/vp0 16 /dev/rdsk/2s5 /dev/rdsk/3s5

7. Remove file system name /user7 from fstab, as its virtual partition is to be obliterated.
File system /usr/cora on virtual partition vp0 is ok because the virtual partition still
exists, we've just reduced it's size

 # vi fstab

 Remove line "/dev/dsk/7s4 /user7 BSD"

8. Remove mount point of the file system, the definition of which has just been removed.

 # rmdir /user7

Installation of Transaction Handling/Logging B-5
Draft 9/92

Defining the Raw 1. Check disk 7 for partitions which may be in use but which aren't used for an
Log and Clean Log automatically mounted file system.
Partitions

Note: Partitions 2 and 3 are always defined, 15 will usually be defined. So we expect
partitions 4 and 5 to be the only additional partitions. If there are any others
you must determine their purpose and ensure that they aren't used in the future.

 # partdisk /dev/rdsk/7s3

Enter 'initialize', 'edit', '?' or 'quit' [e]: e

 Current Partition Layout

 Partition Offset Size Type Name

 2 0 1173930 All all

 3 0 780 Header header

 15 1172340 1590 Diagnostic diagnostic

 Partition 2, 'all', defines the whole accessible disk, all other partitions map onto some
part of partition 2. Partition 3 occupies the first 780 blocks, partition 15 occupies the
last 1590. This leaves us 1171560 blocks to define the raw and clean log partitions.

 Enter 'add', 'delete', 'rename', 'copy', 'view', 'geom', 'quit',

'?' [?]: add

Enter partition number: 4

Enter partition name: rawlog

Enter size of partition in sectors: 204800

205140 sectors makes partition size a multiple of cylinders

do you wish to use 205140 sectors instead?: yes

First unallocated space of this size at sector number 780.

Enter sector number of partition offset: 780

Is this a diagnostic partition?: no

Enter 'add', 'delete', 'rename' 'copy', 'view', 'geom', or'quit':

add

Enter partition number: 5

Enter partition name: clogs

Enter size of partition in sectors: 966420

966420 sectors makes partition size a multiple of cylinders

Do you wish to use 966420 sectors instead?: yes

first unallocated space of this size at sector number 205920

Enter sector number of partition offset: 205920

 Is this a diagnostic partition?: no

B-6 Reality X Failsafe Reference Manual
Draft 9/92

 Enter 'add', 'delete', 'rename', 'copy', 'view', 'geom', 'quit',

'?' [?]: view

 Current Partition Layout

 Partition Offset Size Type Name

 2 0 1173930 All all

 3 0 780 Header header

 4 780 205140 Standard rawlog

 5 205920 966420 Standard clogs

 15 1172340 1590 Diagnostic diagnostic

 Enter 'add', 'delete', 'rename', 'copy', 'view', 'geom', 'quit',

'?' [?]: quit

Enter 'y' to save changes: y

 This completes the partitioning of the transaction logging disk.

2. Re-enable the virtual partition vp0

 #

vpadmin -e /dev/rdsk/vp0

vpadmin

 Repeat vpadmin command until the virtual partition is shown enabled. On an idle
system this may not take very long.

 # vpadmin

 Virtual Inter No.

 Partition leave Prt Size Real Partitions

 /dev/rdsk/vp0 16 3 1173120 /dev/rdsk/2s5 /dev/rdsk/3s5

Installation of Transaction Handling/Logging B-7
Draft 9/92

Creating the Clean 1. Update fstab so that the new clogs file system is automatically mounted at system
Log File System initialisation.

 # vi fstab

 Add line to define the clogs filing system:

 /dev/dsk/7s5 /clogs BSD

2. Make the clean log file system and remake the file system on virtual partition vp0. Then
mount them.

 #

bsdmkfs /dev/dsk/7s5
bsdmkfs /dev/dsk/vp0
#

mkdir /clogs Defines the mount point for clogs file system
chmod +rw /clogs Allows all users read/write access to the clean log directory
chmod +rw /dev/rdsk/7s4 Allows all users access to raw log partition
mount /usr/cora
mount /clogs

Initialising the Lastly initialise the raw log for the release, as follows:
Raw Log

 CAUTION

Ensure that you identify the correct partition, otherwise a valid file system may be
corrupted.

REALROOT=/usr/realman/3.1X X being the rev number
export REALROOT

cd $REALROOT/bin

./mklog -r /dev/rdsk/7s4 $REALROOT/bin 7s4 is what we defined with
exit partdisk above for the rawlog
$

Configuring a After a database has been created, it may be configured to use transaction handling/logging
database for with the following command:
logging

$ mklog <clean_log_directory> <data_base_path> { -c subdir }

For example:

B-8 Reality X Failsafe Reference Manual
Draft 9/92

$ mklog /clog /usr/jones/dbase1

Creates a clean log sub-directory 'dbase1' in clean log directory '/clog' and updates the
database 'dbase1' configuration file to reference this sub-directory.

To use a different name for the clean log sub-directory, the '-c' option should be used:

For example:

$ mklog /clog /usr/jones/dbase -c jones_clog

This does the same as the previous example, but instead names the clean log sub-directory
'jones_clog'.

Once a database has been configured, the system manager can log onto the database and
enable logging using the TCL commands:

:TL-CREATE-FILE cleanlog-name
:TL-START cleanlog-name

Installation of Transaction Handling/Logging B-9
Draft 9/92

Procedure for M88 Systems

This example is for one of the larger deskside M88 machines. On the smaller desktop
machines, the disk controller is on the motherboard and so the disk partitions will typically be
named /dev/dsk/m187_000s7

1. The log disk must be dedicated to logging. If swap partitions are defined on the disk,
they must be removed. The procedure is as follows:

2. Find out if there are any swap partitions on disk 7

 $su

Password:

swap -l

path dev swaplo blocks free

/dev/dsk/m328_000s ll6,1 1 255992 255992

/dev/dsk/m328_007s ll6,16 0 32768 32768 Yes there is.

swap -d /dev/dsk/m328_007s1 0 To remove it.

3. Repeat 'swap -l' until swap partition on 7sl is disabled, ie. until it no longer appears on
the 'swap -l' output. On an idle system this should not take very long.

swap -l

path dev swaplo blocks free

/dev/dsk/m328_000sl ll6,l 1 255992 255992

4. Edit the /etc/init.d/rc2 file to ensure this partition is not enabled as swap again

cd /etc/init.d

vi rc2

 # "Run Commands" executed when the system is changing to init

state2,

traditionally called "multi-user".

 umask 022

. /etc/TIMEZONE

B-10 Reality X Failsafe Reference Manual
Draft 9/92

Pickup start-up packages for mounts, daemons, services, etc.
set 'who -r'

if [$9 = "S"]

then

 stty sane tab3 2>/dev/null

 echo 'The system is coming up. Please wait.'

 BOOT=yes

 if [-f /etc/rc.d/PRESERVE] # historical segment for

vi and ex

 then

 mv /etc/rc.d/PRESERVE/etc/init.d

 ln /etc/init.d/PRESERVE/etc/rc2.d/SO2PRESERVE

 fi

 elif [$7 = "2"]

then

 echo 'Changing to state 2.'

 if [-d /etc/rc2.d]

 then

 for f in /etc/rc2.d/K*

 {

 if [-s ${f}]

 then

 /bin/sh ${f} stop

 fi

 }

 fi

fi

 if [-d /etc/rc2.d]

then

 for f in /etc/rc2.d/S*

 {

 if [-s ${f}]

 then

 /bin/sh ${f} start

 fi

 }

fi

Installation of Transaction Handling/Logging B-11
Draft 9/92

 if ["${BOOT}"="yes"]

then

 stty sane 2>/dev/null

fi

 if ["${BOOT}"="yes" -a -d /etc/rc.d]

then

 for f in 'ls /etc/rc.d'

 {

 if [! -s /etc/init.d/${f}]

 then

 /bin/sh /etc/rc.d/${f}

 fi

 }

fi

 if ["${BOOT}"="yes" -a $7="2"]

then

 echo 'The system is ready.'

elif [$7="2"]

then

 echo 'Change to state 2 has been completed.'

fi

/etc/swap -a /dev/dsk/m328_001s0 0 32768

/etc/swap -a /dev/dsk/m328_007s1 0 32768

5. Remove the line '/etc/swap -a /dev/dsk/m328-007sl 032768' to prevent this partition
being used for swap area again.

B-12 Reality X Failsafe Reference Manual
Draft 9/92

Removing File The log disk must also be cleared of any virtual partitions. The procedure is as follows:
Systems from Log
Disk

1. Find out if there are any virtual partitions which use disk 7, by looking in the
/etc/vdsk.conf file.

 $ cat /etc/vdsk.conf
#
NAME
vdsk.conf - Virtual Disk Configuration file

#

DESCRIPTION

Each line defines a specified Virtual Device.

The first device name is the Virtual Device configured with

white space separated list of the physical devices specified

after the virtual device name.

The optional size of the physical device can be specified

after the physical device name separated by a colon.

Each Virtual Device configuration is separated

from the next by a newline.

Lines can be continued by the backslash character before

the newline character.

#

EXAMPLE

/dev/dsk/vdsk0 /dev/dsk/m328_000sl:10000 /d v/dsk/m328_001sl:10000

/dev/dsk/vdsk1 /dev/dsk/m328_100sl /dev/dsk/m328_101sl \

/dev/dsk/m328_110sl /dev/dsk/m328_lllsl

#

/dev/dsk/vdsk0 /dev/dsk/m328_00s4 /dev/dsk/m328_007s2 Yes there is

2. Find out if there are any filing systems using this virtual partition.

 # df
/ (/dev/dsk/m328_000s0): 25080 blocks 5962 i-nodes

/usr (/dev/usr): 200596 blocks 53317 i-nodes

/real (/dev/dsk/m328 000s3): 132428 blocks 37270 i-nodes

/user7 (/dev/dsk/7s4): 23680 blocks 58334 i-nodes

/usr/cora (/dev/dsk/vdsk0: 1867608 blocks 65190 i-nodes Yes
there is

Installation of Transaction Handling/Logging B-13
Draft 9/92

 CAUTION

The following operations will obliterate /user7 and reduce the size of /usr/cora (and
initialise it), if necessary, save these filestores before continuing.

3. Unmount the filing systems

 # umount /user7
umount /usr/cora

4. Edit the vdsk.conf file to remove the partition on disk7 from the virtual partition.

 # vi /etc/vdsk.conf

5. Change the line

/dev/dsk/vdsk0 /dev/dsk/m328-000s4 /dev/dsk/m328-007s2

 to

 /dev/dsk/vdsk0 /dev/dsk/m328-000s4

6. Remove the file system name /user7 from /etc/fstab because we are going to obliterate it.
File system /usr/cora on virtual partition vdsk0 is ok because the virtual partition still
exists, we've just reduced it's size.

 # vi /etc/fstab

 /dev/dsk/m328_000s3 /real

/dev/dsk/vdsk0 /usr/cora

/dev/dsk/m328_007s4 /user7

7. Remove the line /dev/dsk/m328_007s4 /user7

8. Remove the mount point of the file system

 # rmdir /user7

9. Check all partitions defined for disk 7 and ensure they are freed off in one of the above
ways before repartitioning the disk.

Note: Partition 7 is used to access the whole disk and will always be defined.

B-14 Reality X Failsafe Reference Manual
Draft 9/92

Defining the Raw Repartition disk 7 using msledit to define a rawlog and a cleanlog partition.
Log and Clean Log
partitions The following is an example of a msledit session.

msledit /dev/rdsk/m328_007s7

slice offset sl size fs size fsname vol-id info

0 648 32768 0 1h8

1 33416 1994149 1994148 1h8

2 0 0 0 1h8

3 0 0 0 1h8

4 0 0 0 1h8

5 0 0 0 1h8

6 0 0 0 1h8

8 0 0 0 1h8

9 0 0 0 1h8

10 0 0 0 1h8

11 0 0 0 1h8

12 0 0 0 1h8

13 0 0 0 1h8

14 0 0 0 1h8

15 0 0 0 1h8

7 0 2027565 0 1h8

slice 0> offset: 648 Enter return to keep.
slice 0> slice size: 32768 1800000 this value.
slice 0> filesystem size: 1800000 Enter size for clean
slice 0> filesystem name: swap clean log partition.
slice 0> vol-id name: R32

slice 0> filesystem information: 1h8

slice 1> offset: 1800648 Calculate new offset
slice 1> slice size: 1994149 225916 Enter raw log size.
slice 1> filesystem size: 0 Enter 0 to inhibit
slice 1> filesystem name: /user0 raw the file system
slice 1> vol-id name: R32 build.
slice 1> filesystem information: 1h8

slice 2> offset: 0 w Enter to write the
 new config away

'/dev/rdsk/m328_00s7' written

slice 2> slice size: 0 q

Installation of Transaction Handling/Logging B-15
Draft 9/92

msledit will now automatically rebuild any filesystems in this case, quit.

mkfslk: /dev/rdsk/m328_007s

(DEL if wrong)

bytes per logical block=1024

total logical blocks=41020

total inodes=10240

Space reservation: 10% (4102 logical blocks)

cluster size=8

mkfslk: Available blocks=40377

This completes the partitioning of the transaction logging disk.

Update fstab so that the new clean log filing system is automatically mounted when the
system is booted.

Note: when using msledit it is your responsibility to calculate the correct offsets. msledit
performs no validation to ensure that partitions do not overlap.

New offset = Previous offset + Previous slice size.

e.g. In the previous example the new offset for slice 1

= Previous offset (slice 0) + Previous slice size (slice 0)

= 648 + 1800000

= 1800648

B-16 Reality X Failsafe Reference Manual
Draft 9/92

After Image Defines the item update and is used to recover the updated item in the event of a
system/database failure.

ALL Application Language Liberator.

Before Image Defines how the updated item is restored to its original value and is used to 'roll-back' the
associated update to its original value, if the system/database fails in mid-transaction.

Clean Log A file containing a log of changed items, other updates, transaction start/end and other
records.

Commit Permanently update the database with updates made during a transaction. (At any point prior
to commitment, all updates belonging to the transaction may be undone.)

Deadly Embrace A condition which arises when two or more processes active at the same time become
suspended while competing to lock the same set of items or other resources.

Dirty Read A situation where transaction T1 updates an item which is then read by transaction T2, and T1
aborts, causing all its updates to be undone. T2 will have read a non-existent record.

'Hard' System Any hardware or software fault which causes the database to become corrupted.
Failure

Hit Process A process which terminates abnormally (for example, crashes) or is killed.

Image A set of information which collectively defines an operation for an application. For example,
an item update is logged as an 'After image'. this may be passed back to Reality X to perform
the associated update and restore it on the database. The structure of the image is such that it
can be transferred within Reality X without the contents needing to be known.

Item Locking A mechanism to prevent multiple processes attempting to access the same item at the same
time.

Logging The process which takes data relating to changes to the database and writes them to a clean
log.

Lost Update A situation where transaction T1 updates an item which has previously been updated, but not
committed, by transaction T2, and T2 is aborted. The update performed by T1 is then also
lost.

Primary Database The active database in a FailSafe pair which is currently logged on to by users.

Glossary Glossary-1
Draft 9/92

Raw Log A central repository in a raw disk partition which holds the recently logged images of updates
from all databases on the system. Images are held in a circular queue until their transaction
has been committed, after which the 'After' images are transferred to a clean log.

Rolled Back All updates since the start of a transaction are deleted by restoring the 'before' image to the
database, maintaining it in a consistent and predictable state.

Secondary A database in a FailSafe pair which currently operates as the standby. It cannot be logged on
Database to.

Transaction A group of updates or other changes to the database that are interrelated such that if one
update is committed then all updates within the group should also be committed in order to
maintain a consistent database.

Unrepeatable A situation where transaction T1 reads an item which is then updated and committed by
Read transaction T2. T1 then re-reads:definition the same item and sees two different committed

values.

TIPH Process Terminal Independent Process Handler process - one which does not have a terminal
associated with it.

G-2 Reality X FailSafe Reference Manual
Draft 9/92

A D

ACCOUNT-RESTORE 4-5, 8-3 DATA/BASIC interface 10-9
Active transactions program example 10-14

display 8-38 Database recovery
After Image Glossary-1 procedure 6-5
ALL Glossary-1 Deadly Embrace Glossary-1
ALL interface 10-18 Dirty Read Glossary-1
Archiving clean logs 5-13
Archiving logs 3-10

E

ENABLE-LOGONS 5-4
B

ENGLISH macros 9-7
Before Image Glossary-1

F
C

Failesafe
Central daemon principles 2-10

starting 7-9 FailSafe status reporting 8-10
Clean log 2-9, 3-2, 9-2, Glossary-1 FailSafe

archiving 3-10, 5-13 configuring 7-2
continuing logging 8-13 synchronisation 8-18
creation 8-14 FILE-SAVE 4-5
disk 3-3 Fsadm 7-2, 8-6
dumping to tape 8-15 FSADM-PRIMARY 8-8
file structure 9-3 FSADM-UNPAIR 8-11
file system 3-2 Fsadm
item structure 9-3 secondary configuration 4-6, 4-7
listing 8-16 Full recovery 2-13
loading from tape 8-17
location 3-2

H
naming 3-8
retrieving 5-15 Hard' System Failure Glossary-1
switching 8-32, 8-37 History file 9-2, 9-5
viewing 3-9 Hit Process Glossary-1

CLEAR-FILE 5-3 recovery 2-13
Closing down logging 5-10 Hit recovery 2-13
Commit Glossary-1
Conventions 1-5
Cpio 5-13, 5-15
CREATE-ACCOUNT 8-5
CREATE-FILE 10-3, 8-4

Reality X FailSafe Reference Manual Index-1
Draft 9/92

I R

Image Glossary-1 Raw log 2-8, 3-2, Glossary-2
Before and After 3-4 creating 7-6, 7-7

INHIBIT-LOGONS 4-4, 5-3, 5-10 disk 3-3
Initial startup 5-3 flushing 3-4
Item locking 10-3, Glossary-1 location 3-2

size« 3-4
Recovery methods 6-3

K
Recovery

Killreal 7-4 command 8-21
full 6-3, 8-21
hit process 6-4

L
overview 2-13

Listing log files 8-24 selective 6-4, 8-21, 9-8
LISTU 4-4 Reject log 9-2
Lockdbase 7-5 file structure 9-3
Log structure 9-2 Retrieving clean logs 5-15, 8-17
Logging Glossary-1 Rolled Back Glossary-2

closing down 5-10 Runrealcd 7-9
initial startup 5-3

Log
S

attributes 9-6
item structure 9-3 Secondary Database Glossary-2

Lost Update Glossary-1 configuring 4-6
defined 2-10
marking 8-9

M
SELECT verb 9-8

Manuals Selective recovery 2-13
associated 1-2 SEL-RESTORE 8-12

Mkdbase 4-5 SORT verb 9-6
Mklog 4-5, 7-6, 7-7 Starting up logging 8-32

Stopping logging 8-36
Switching clean logs 5-5 to 5-7, 8-32, 8-37

N
Synchronisation of FailSafe 8-18

NEW-GET-LIST 9-5

T
P

TIPH Process Glossary-2
Primary Database Glossary-1 TL-CONTINUE 8-13

configuring 4-7 TL-CREATE-FILE 8-14
defined 2-10 TL-DUMP 5-13, 8-15
marking 8-8 TL-ERRORS

Index-2 Reality X FailSafe Reference Manual
Draft 9/92

file structure 9-3 Unpairing a database 8-11
TL-LIST 9-2, 9-5, 9-7 Unrepeatable Read Glossary-2
TL-LISTFILES 5-17, 8-16
TL-LOAD 5-15, 8-17
TL-REDUAL 8-18
TL-REJECT 9-2

file structure 9-3
TL-RESTORE 9-2
TL-SET-LOG-STATUS 4-4, 8-24 to 8-35
TL-START 8-32
TL-STATUS 5-17, 8-33
TL-STOP 4-5, 5-10, 8-36
TL-SWITCH 5-5, 8-37
TL-TRANSACTIONS 5-17, 8-38
TRANSABORT

DATA/BASIC statement 10-12
TCL verb 10-7

Transaction Glossary-2
Transaction Handling

defined 1-3
described 2-4 to 2-5

Transaction Logging
described 2-7 to 2-9

Transaction
defining from ALL 10-18
defining from TCL/PROC 10-5
defining in DATA/BASIC 10-9
example 2-3
overview 2-3
size of 10-2

TRANSEND
DATA/BASIC statement 10-11
TCL verb 10-6

TRANSQUERY
DATA/BASIC function 10-13
TCL verb 10-8

TRANSTART
DATA/BASIC statement 10-10
TCL verb 10-5

U

Unlockdbase 7-10

Reality X FailSafe Reference Manual Index-3
Draft 9/92

